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1. Introduction

A pulse mechanical seal belongs to non-contact seals 
with self-adjusting clearance; as an alternative to hydrostat-
ic and hydrodynamic non-contact mechanical seals, it was 
invented during the creation of rotor seals of the main cir-
culation pumps for nuclear power plants [1]. Comprehensive 
experimental studies and full-scale tests have shown that 
pulse seals meet the stringent requirements for reliability, 
tightness and resource life required for the main equipment 
of nuclear power plants [2]. Due to their high performance 
characteristics, pulse mechanical seals have attracted the at-
tention of developers of high-speed centrifugal machines for 
other industries, in particular, for fuel pumps of liquid-pro-
pellant rocket engines (LPREs) [3, 4]. Pulse seals were also 
the prototype of promising gate mechanical seals with a 
coaxial arrangement of steps.

Pulse mechanical seals with self-adjusting clearance 
have a number of undeniable advantages compared to con-
ventional mechanical seals and non-contact mechanical 
seals of hydrostatic and hydrodynamic types. In convention-
al mechanical seals, the friction power is proportional to the 
sealing pressure and the peripheral speed; therefore, their 

operability is preserved only in a narrow, calculated range of 
operating parameters—the sealing pressure and the rotation 
speed. In pulse seals, an increase in the rotation frequency 
results in a larger end clearance, and the friction power losses 
practically do not increase, thus making their use especially 
effective for high-speed machines. Low losses of friction 
power and good heat dissipation with leakage from the fric-
tion pair make it sometimes possible to do without additional 
cooling systems even in pumps running on hot liquids, for 
example, in feed pumps of nuclear and thermal power plants.

By proper selection of the basic geometric parameters 
of the friction pair of a pulse seal, it is possible to ensure 
the optimal value of the end clearance, the required leakage 
and power loss in the friction pair in a wide range of sealing 
pressures and rotor speeds. Therefore, the development of 
methods for calculating pulse mechanical seals based on a 
study of their working processes is relevant.

2. Literature review and problem statement

Analysis of previous publications shows that a number 
of studies describe the design of non-contact mechanical 
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частотi обертання. Отриманi вирази амплiтудних i фазових 
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виходили за межi динамiчної стiйкостi. Виявлено, що область 
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fluid and gas seals [5, 6], the principle of work [7], as well as 
methods of calculation and experimental tests of non-con-
tact mechanical seals with dynamic grooves for pumps and 
compressors [8]. The contactless operation of such seals is 
ensured by the implementation of micro-grooves of various 
shapes on one of the sealing surfaces the depth of which is 
commensurate with the size of the end clearance. The man-
ufacture of such seals requires the use of expensive precision 
methods for machining friction pair rings. In addition, ex-
isting methods for calculating them, as a rule, are based on a 
numerical solution of the equations of flow of a liquid or gas 
and there are no simple analytical dependencies for calculat-
ing static and dynamic characteristics that help evaluate the 
geometry of the sealing assembly at the design stage. Meth-
ods for calculating mechanical seals using modern computer 
programs based on numerical finite element methods are 
described in [9, 10].

In conventional mechanical seals, the friction power 
is proportional to the sealing pressure and the peripheral 
speed; therefore, their operability is preserved only in a nar-
row, calculated range of operating parameters—the sealing 
pressure and the rotation speed [11]. In the designs of hy-
drostatic and hydrodynamic non-contact mechanical seals, 
the pressure force of the locking medium is perceived by an 
axially movable ring. With increasing pressure of the locking 
medium, the gap becomes larger [12, 13].

Pulse mechanical seals are devoid of the listed disadvan-
tages [14, 15]. For their successful design, a methodology for 
calculating the basic geometric dimensions of a seal is need-
ed to ensure the required tightness under given operating 
conditions. To obtain analytical calculated dependencies, it 
is necessary to build a physical model of a pulse mechanical 
seal and to study its static and dynamic characteristics.

3. The aim and objectives of the study

The aim of the study is to build a physical model of a me-
chanical sealing mechanism that will help obtain analytical 
dependencies for its calculation at the design stage.

To achieve the aim, the following tasks were set and done:
– to obtain analytical dependencies for constructing the 

static characteristics of mechanical pulse compaction and 
evaluate the influence of structural parameters on them. 
Determine the coefficient of hydrostatic stiffness, the con-
dition of static stability, and the range of permissible sealing 
pressures;

– to analyze the amplitude and phase frequency charac-
teristics of the pulse mechanical seal.

4. Building a physical model of pulse mechanical 
compaction

The simplest design of a single-stage pulse compaction 
unit is shown in Fig. 1. A pulse seal differs from a mechani-
cal seal in the following design features. Closed chambers 2 
are located on the end surface of the axial-movable ring 1, 
and several radial feed channels 5 are made on the rotating 
support ring 6 and are open towards the cavity to be sealed. 
Through these channels, the medium to be sealed is inject-
ed into the chambers under a sealing pressure p1 for those 
short periods of time /c ct = β ω  during which the rotating 
channels 5 pass by the chambers 2. At these moments, the 

pressure 2p  in the chambers increases abruptly to p2max=p1 
minus the inertial pressure ( )2 2 2

* 3 20.5p r r= ρ − ω  that occurs 
in the rotating radial feeding channels. By changing the 
shape of the feeders, it is possible to slightly change the val-
ue of p and thereby the value of 2max 1 *.p p p= −  The inertial 
pressure can be eliminated completely by placing the feeders 
on a non-rotating ring and the chambers on a rotating ring. 
The influence of the inertial pressure on the characteristics 
of the seal will be ignored.

Let us consider the nature of the change in pressure in 
the chamber over a period of 2 / iT n= π ω  (ni is the number 
of feeders) between two subsequent injections. The change in 
pressure depends on the hydraulic resistance gi of the feeders 
and the conductivities of the internal (from the side of the 
pressurized pressure) 3 and the external 4 end clearance 
throttles g1(z) and g3(z).  

Fig. 2 [15] shows approximate graphs of pressure changes 
in a separate chamber. The larger the gap, the smaller the 
p2min.

A similar picture takes place during the expansion pro-
cess, when the feeder is located outside the sector βc at 

Fig.	1.	The	diagram	of	a	pulse	mechanical	seal

Fig.	2.	The	change	in	pressure	in	the	chamber	during	the	
period	T	between	injections
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the time interval T–tc. After the feeder leaves the sector βc 
occupied by the chamber, the pressure p2 in the chamber 
begins to decrease due to leakage of the compressed medium 
through the external flat gap 4; A1 and A3 are the wall areas 
of the flat annular gaps (Fig. 3). The pressure drop continues 
until the next injection (Fig. 2), and the drop depth, i. e., the 
value of p2min, depends on the size of 
the end clearance: the larger the gap, 
the smaller the p2min. Another possible 
combination of parameters is when the 
pressure reaches the minimum of p3 in 
time of t<T. With a decrease in the gap, 
the amplitude of the pressure change in 
the chamber decreases, and the average 
pressure increases.

The shorter the time between injections, the smaller the 
depth of the pressure drop p2min in the chambers (Fig. 4), 
the greater the averaged pressure p2 in the chambers and the 
greater the force Fs that opens the butt joint.

The pressure force Fs(z) revealing the end joint, depends 
on the pressure ( )2р z  and, accordingly, on the gap. As the 
gap decreases, it increases, and its balance with the external 
force Fe independent of the gap is violated. Under the action 
of an axially movable ring of the positive difference Fs–Fe>0, 
the gap decreases (Δz) so that the equality Fs=Fe is restored.

Thus, there is a negative feedback between the end clear-
ance z (adjustable value) and the force Fs (regulatory effect), 
which ensures self-regulation of the end clearance (Fig. 5).

The operation of the seal is based on the creation of 
high-frequency pressure pulses in the discharge chambers; 
therefore, it is called a pulse seal.

5. Research on the influence 
of pulse compaction 
parameters on static 

characteristics

To estimate the pressure in 
the chambers, we will consider 
the radial flow of a viscous com-
pressible fluid in a flat channel 
having the form of a sector with 
a central angle βc and a ra-
dial size of r3–r1 formed by 
elements of the sealing surfaces 
and separated by a flow cham-
ber (Fig. 1). The right wall of 
the gap on which the feeders 
are located rotates; the left 
wall has freedom of axial move-
ment within the micron-size 
mechanical gap. The circum-
ferential component of the 
flow is not taken into account.

The flow in the channels is unsteady. The feeder, passing 
over time tc=βс/ω through the chamber filled with liquid, 
spasmodically brings pressure p1 to it. As a result, the pres-
sure rises to the maximum value of p1, compressing the liquid 
in the chamber. After the feeder leaves the sector βc, the vol-
ume of the liquid compressed in the chamber flows out, and 
the pressure decreases to the initial minimum value. The ex-
pansion process takes place during the time T–tc. After this, 
compression begins again, and the process repeats (Fig. 2).

During compression, the difference in the volumes of 
the liquid flowing in through the feeder and the internal 
end throttle (Qi+Q1)dt and flowing out (Q3dt) through the 
outer throttle is compensated by the volume filling the vol-
ume –dV freed up as a result of the compression of the liquid 
in the chamber: 

( )1 3d d d .iQ Q t Q t V+ − = −    (1)

In the process of expansion, the volume of the outflowing 
fluid (Q3dt) is greater than the volume of the inflowing fluid 
(Q1dt) by the amount of dV with the opposite sign:

3 1d d d .Q t Q t V− =     (2)

Equation (1) differs from (2) only in the flow rate 
through the feeder and in the initial condition: the compres-

Fig.	3.	The	change	in	pressure	on	the	end	surfaces	of	the	axially	movable	ring,	depending	on	
the	end	clearance:	z`>z
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Fig.	5.	The	block	diagram	of	pulse	compaction	as	the	automatic	control	system
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sion starts from the minimum pressure, and the expansion 
starts from the maximum.

The bulk modulus of the fluid is

0

d
,

d
p

Е V
V

= −

whence

0d d ,
V

V p
E

= −

where 0dV V V= −  is the difference between the final V and 
initial V0 volumes of the fluid, V0 is the unchanged volume of 
the chamber, E is the isothermal volumetric modulus of elas-
ticity of the fluid, Qi is the flow rate through the feeder, and 
Q1 and Q3 are the flow rates through the internal and external 
end throttles of the sector βc.

For a laminar flow, the costs linearly depend on the 
pressure drops:

( )1 ,i iQ g p p= −  ( )1 1 1 ,Q g p p= −  ( )3 3 3 .Q g p p= −  (3)

The conductivities of the mechanical throttles for lami-
nar flows are proportional to the cube of the gap z [15] and 
are expressed by the formulae

3
1 1 ,ng g u=  3

3 3ng g u ,=  ,nu z z=

( )
3 3

3
1

3 22 1

,
12 ln 12

с n с n
n

z z r
g

r r l
β β

= ≈
µ µ

 1 3 22,l r r= −

( )
3 3

с 21
3

21 1 3

,
12 ln 12

nс n
n

z z r
g

r r l
β β

= ≈
µ µ

 3 21 1,l r r= −

zn=(2…6) µm is the nominal end clearance adopted for 
this design, nu z z=  is the dimensionless current gap, and µ 
is the dynamic viscosity of the fluid being compacted.

Substituting the expressions of expenditures in (1) 
and (2) and dividing both sides of the equalities by dt, we 
obtain the equations of balance of volume expenditures. On 
the time intervals of compression ( )0 ct t≤ ≤  and expansion 
( )*c ct t T t≤ ≤ −  relative to the current pressure pc, pp in the 
chamber, we obtain inhomogeneous first-order differential 
equations: 

( ) ( ) ( )0
1 1 1 3 3

d
,

d
c

i c c c

pV
g p p g p p g p p

E t
= − + − − −

( ) ( )0
1 1 3 3

*

d
,

d
р

р р

pV
g p p g p p

E t
= − − −  ( )* .ct t t= −  (4)

After some transformations, the equations of pressure 
growth during compression and pressure drop during expan-
sion in the chamber take the following form:

( )3 3
1 1 3 3

d 1
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d
с

с с i i c
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3 1 1 3
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T p p p G
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where the constants of the time of filling and emptying the 
chamber, weight coefficients, dimensionless pressure and 
conductivity are expressed by the formulae:
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The sealing pressure p1 and the back pressure p3 are con-
stant in time; therefore, introducing substitutions

,с с сp p G= +′  ,р р рp p G= +′     (6)

we arrive at the homogeneous equations 

d
0,

d
с

с с

p
T p

t
′

+ =′
d

0.
d

р
pр

p
T p

t

′
+ =′    (7)

The initial conditions necessary for solving equations (5) 
are determined based on the approximate graphs of the pres-
sure change in the chamber during the periods of compres-
sion and expansion (Fig. 2). The end of compression means 
that ,с cр G≈  and at the end of expansion means that .p pр G≈  
Using these limit values, we obtain

( )0 ,с рр G≈  ( ) ( )0 .р с c cр р t G= ≈

To find a solution to the equations of (7), we will use 
the operational method. Let us denote the Laplace image 
of the desired pressure as ( ) ( ),ccp t P s′′   and the image of  
 the derivative will be ( )0 .

d
d c

c
csP p

p
t

−′ ′
′
  Substituting these 

expressions in the first equation of (7), we arrive at an alge-
braic equation for the image

( ) ( ) ( )1 0 0,c c c cT s P s T p+ − =′ ′

where the pressure image is

( ) ( )0
.

1
с с

с
с

Т p
P s

T s

′
=′

+

Using the tables of inverse Laplace transforms, we obtain 
the original pressure as 

( )0 .с

t
T

с ср p e
−

=′ ′     (8)

Taking into account (6) and the initial conditions, we 
finally have 

p G G G ec A c p

t
Tc= − −( ) −

.    (9)

In Fig. 6, the transient response of the compression is 
represented by the exponent in the time interval of t≤tc. 
The characteristic asymptotically approaches the horizon-
tal line of Gc=const, and the time constant Tc is numeri-
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cally equal to the length of the tangent at the asymptote  
Gc=const. If we do not take into account the compress-
ibility of the medium being compressed ( ),Е → ∞  then 
Tc=0, pc=Gc, the pressure remains constant, and its value 
is determined by the ratio of the conductivities of the end 
throttles g1, g3 and feeders gi. With unlimited growth of gi, 

1 3 0,i iα ≈ α ≈  and 1.cp p≈

Static characteristics are the dependencies of the steady-
state values of the end clearance on the steady-state pres-
sures p1 and p3 and the rotor speed ω. To determine them, the 
current values of the compression and expansion pressures 
must be replaced by the values averaged over a period T.

The average pressure p2c in the chamber over the com-
pression time tc is

( )2
0

1
d 1 .

cc

c

tt
Tc

с c с с p
c c

T
р p t G G G e

t t

− 
= = − − − 

 
∫

The curve ( )ср t  in the section 0 сt T< <  practically 
merges with the ordinate axis, and in the section cсT t t< <  
the same happens with the horizontal line 1.cG p≈  Thus, as 
a first approximation, the average pressure in the chamber 
during the compression period can be taken equal to the 
compaction pressure of 2 1.cp p≈

The expansion process is described by the second equa-
tion (5), the solution of which is similar to (8):

( )
*

*0 .p

t

T
р рр p e

−

=′ ′     (10)

The expansion begins at the moment the feeder leaves the 
sector in which the chamber is located, i. e., at the moment 
tc when * 0.t =  The current time in the expansion section is 

* .ct t t= −  According to the formulae, (6) and (10) are similar 
to (9):

p t G G G ep p p c

t

Tp

*

*

.( ) = − −( )
−

For incompressible fluids, 0,с рТ Т= = const.р pр G= =
The average pressure p2p over the expansion time T–tc in 

the chamber is

( ) ( )

2 *
0

1
d

1 exp .

cТ t

р р
c

p c
р р с

c p

р p t
Т t

Т T t
G G G

Т t T

−

= =
−

  −
= − − − −  −    

∫

As seen in Fig. 6, the expansion pressure curve 
pp(t) asymptotically approaches the horizontal line of

3 1 1 3p e eG p p= α + α  and differs little from the averaged pres-
sure p2p.

Based on the found expressions of the average pressure 
on the temporary segments of compression and expansion, 
we will determine the total average pressure over the entire 
period between successive injections:

( )2 2 2

1
.с c р cр р t р T t

Т
 = + −     (11)

The compression pressure distributed over the entire 
period is included in (11) with a small factor of tc/T; the ex-
pansion pressure has a factor of (T–tc)/T close to one. Thus, 
the main contribution to the averaged pressure is made by 
the expansion process. Therefore, the existing calculation 
methods [10, 11] do not take into account the pressure p2c.

After a number of simplifications [16], we will obtain the 
following formula for calculating the dimensionless value of 
the averaged pressure in the chambers:

( )2 3 1 1 3

3

1 ,

е е

cп c p
е

п

и

t T T u

Т

ψ ≈ α ψ + α ψ +

Ω − +
+α ⋅ Ω∆ψ   (12)

where the first two summands represent the pressure in the 
gap without feeders, the last two summands with the factors 
Tp and Tc are the average pressures during expansion and 
contraction of the liquid in the chamber. The main contribu-
tion to the value of ( )2 иψ  is made by the addendum 3 1.еα ψ

Using the linear pressure plots shown in Fig. 3, let us 
calculate the forces included in the equations of axial equi-
librium. The regulatory action is the pressure force Fs on the 
contact surface, revealing the mechanical gap. The pressure 
force Fe pressing the ring against the support disk is an ex-
ternal load, and the driving force is the force Fk of the elastic 
elements.

( )
( ) ( )

1 2 1 2 2

2 3 3 0 2

0.5

0.5 ,

s

s

F p p A p A

p p A F Ap u

= + + +

+ + = +

( )0 1 1 3 30.5 ,sF A p A p= +    (13)

( )2 2
1 3 22 ,А r r= π −  ( )2 2

2 22 21 ,А r r= π −  ( )2 2
3 21 1 ,А r r= π −

Fig.	6.	The	change	in	pressure	in	the	chamber	on	the	segments:	
a	–	compression	(0≤t≤tc);	b	–	extensions	(tc≤t≤T)

a

b



Information technology

63

( )1 2 30.5 2А А А А= + +  is the contact area effective with 
respect to the average pressure in the chamber p2.

1 1 3 3,eF B p B p= +  ( ),kF k z= ∆ +   (14)

( )2 2
1 3 4 ,B r r= π −  ( )2 2

3 4 1 .B r r= π −

The pressure force component Fs0 in the gap and the 
pressing pressure force Fe do not depend on the size of the 
mechanical gap.

The equation of axial equilibrium Fs=Fe+Fk, taking 
into account the fact that the end clearance, is negligible 
in comparison with the preliminary deformation of elastic 
elements ,z << ∆  after substituting forces in (13) and (14), 
it is reduced to

( )2 1 1 3 3 1 1 3 30.5 ,Ap A p A p B p B p k= − + + + + ∆   (15)

where k is the reduced coefficient of axial stiffness of the 
elastic elements. We will divide this equality term by Apn 
and move on to dimensionless forces by introducing the 
following notation:

( ) ,k n n nF Ap k z Ap k Apχ = = ∆ + ≈ ∆

( )1 1 3 3

1
,e e nF Ap B B

A
φ = = ψ + ψ    (16)

( )0 2 ,s
s s

n

F
u

Ap
φ = = φ + ψ  ( )0

0 1 1 3 3

1
,

2
s

s
n

F
А А

ApА
φ = = ψ + ψ

where pn is the nominal pressure of the liquid being sealed 
at the inlet. As a result, from (15) we obtain the equilibrium 
equation of a dimensionless form:

0 2s s eφ = φ + ψ = φ + χ

or

( )2 0 .s eиψ = −φ + φ + χ     (17)

Given (16), we will represent the latter equality in the 
form of

( ) 1 1 3 3
2 1 3

0.5 0.5
.

B A B A
и

А А
− −

ψ = ψ + ψ + χ

We will introduce the notation of the dimensionless ar-
eas K and σ and reveal the difference of 0 :e sφ − φ

( )1 10.5 ,K B A A= − ( )3 30.5 1 ,B A A Kσ = − = −

( )0 1 31 .e s K Kφ − φ = ψ + − ψ    (18)

In this case, equation (17) of the axial equilibrium of the 
axially movable ring takes the form

( ) ( )2 1 31 ,и K Kψ = ψ + − ψ + χ

where ( )2 иψ  is also determined by formula (12). From the 
joint solution of the equations of the balance of expenses and 
the equation of axial equilibrium of the axially movable ring, 
we will express the dependence of the gap on external per-
turbations ψ1, ψ3, Ω and the driving action χ as

3 3 1

3

1 3 1 .

е

cп c p
е е

п

K

t T T u

Т

∆ψ + ψ + χ = α ψ +

Ω − +
+α ψ + α ⋅ Ω∆ψ

After grouping the terms, we will find the dependence of 
the end clearance on the compacting pressure drop, on the 
rotor speed, and on the pre-compression force of the elastic 
elements, i. e., we will find the desired static characteristic:

1
3

1

3 1

р
е

п

cп c
eе

п

Т

Т
и

t T
K

Т

 
α Ω 

 =  − Ωχ + − α − α
 ∆ψ 

.  (19)

6. Identification of factors affecting the dynamic 
characteristics of the seal

Let us consider the axial vibrations of the ring, excited by 
harmonically changing external influences ψ1 and ψ3, rela-
tive to the equilibrium position. In centrifugal machines, as a 
rule, the sealing pressure and the back pressure change with 
a frequency equal to or a multiple of the rotational speed. 
The maximum amplitudes have fundamental harmonics 
with the frequency ω; therefore, the forced oscillations of the 
ring relative to the position of static equilibrium u0 will be 
considered under the influence of dimensionless pressures:

0 ,i t
аи и и e ω= + 1 10 1 ,i t

аe ωψ = ψ + ψ 3 30 3 ,i t
аe ωψ = ψ + ψ   (20)

where ψ10 and ψ30 are the constant components of the pres-
sures; ψ1a and ψ3a are the amplitudes of their oscillations, 
and ua is the amplitude of the axial oscillations of the ring. 
The rotation frequency and the setting action change qua-
sistatically, so they only affect the steady-state position of 
the ring.

In dynamics, the axial vibrations of the ring lead to the 
appearance of additional flow components. The period of 
change of these terms is 2π/ω, and it differs from the periods 
tc and T–tc of the compression and expansion rates caused by 
pressure pulses supplied to the chamber by the feeders. To 
facilitate further consideration of these terms in the general-
ized equation of the balance of expenses, we will consider in 
more detail the transformation of equations (4):

0
1 3

d
,

di
c

V p
Q Q Q

E t
 + − =   

 0
1 3

d
.

d p

V p
Q Q

E t
 − =   

Having multiplied these equations by (dt)c and (dt)p, 
respectively, we turn to the volume balance equations

( )( ) ( )0
1 3 dt d ,i cс

V
Q Q Q p

E
+ − =  

( )( ) ( )0
1 3 d d ,

р р

V
Q Q t p

E
− =

which do not contain time derivatives and can be added 
summand by summand:

Q t Q Q t p

V
E

p p

i c c p

c p

d d d

d d

( ) + −( ) ( ) + ( )



 =

= ( ) + ( )





1 3

0 .
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The sums of the increments of time and pressure cover 
the entire period T between successive injections; they can 
thus be denoted as ( ) ( )d d d ,

cр
t t t+ =  ( ) ( )d d d :

с р
p p p+ =

( ) ( ) 0
1 3d d d .i c

V
Q t Q Q t p

E
+ − =

Dividing this equality by dt, we go to the complete equa-
tion of the expense balance

Q
t

t
Q Q

V
E

pi
c

d

d

( )
+ − =1 3

0
 .

We replace the infinitesimal time increments on the left 
side of the last equation with the corresponding finite incre-
ments ( )d 0 ,с c c сc

t t t t≈ ∆ = − = = β ω  d 0 .t T T T≈ ∆ = − =  As 
a result, the flow balance equation in the absence of forced 
axial vibrations takes the form

0
1 3 .c

i

t V
Q Q Q p

T E
+ − =      (21)

The equation obtained with axial vibrations of the 
axially movable ring excited by harmonic oscillations of 
external pressures contains two additional terms. They 
take into account the flow rate of compression-expan-
sion of the fluid in the chambers Q p and the flow rate of 
displacement Qv from the end clearance (sector βc) with 
a periodic change in pressure caused by fluctuations in 
the gap with frequency ω under the influence of external 
pressures (20) [16]:

( )
0 d

,
dp n

V
Q p

E t
ω

ψ
=  ( )

d
,

dv s n

u
Q A z

t
ω

=   (22)

where ( )1 2 32
c

sА А А А
β

= + +
π

 is the butt surface area of the 
sector βc.

The lower index ω indicates that the increment (dt)ω 
changes in an interval equal to the period 0 2 iT n T= π ω = of 
axial oscillations. In contrast to the static analysis where the 
averaged, time-independent pressure 2 2 пр рψ =  (11) was 
used, here we are dealing with a time-varying pressure, which 
we will denote by p without an index but in the dimensionless 
form .пр рψ =

As in the derivation of equation (21), we will replace the 
differentials with finite increments, i. e., we will use approx-
imate expressions:

( ) ( ) ( ) 0

d d d 1
,

d d d i

t t T
t t t t T n

ω ω ω

ψ ψ ∆
= ≈ ψ = ψ = ψ

∆
  

( ) ( ) ( ) 0

d d d 1
.

d d d i

u u t t T
u u u

t t t t T n
ω ω ω

∆
= ≈ = =

∆
  

Let us substitute them in (22) and add the resulting ex-
pressions to the right side

0
1 3

1
1 .c n

i s
i i n

t zV
Q Q Q A u

T E n n p

 
+ − = ψ + + ⋅  

 

Having expressed the spending through the pressure 
drops (3), we arrive at a first-order nonlinear differential 
equation with respect to the desired dimensionless pressure 
ψ in the chamber:

( )

( )

3
1 1

3 0
3 3

1
1 .

c
i n

n
n s

i i n

t
g g u

T

zV
g u A u

E n n p

 + ψ − ψ −  

 
− ψ − ψ = + ψ +  

   (23)

In the future, we will consider the linearized system 
without taking into account the inertia of the liquid 
during its unsteady motion. We will linearize the area of 
the position of static equilibrium, passing to the devia-
tions of the variables in both sides of equation (23). We 
will also introduce the notations ;i i cg g t T=′  3

1 0 10,ng u g=  
3

3 0 30ng u g=  where g10 and g30 are the conductivities of the 
corresponding end throttles for the steady-state gap value 
of z0. After a series of transformations, the normalized 
equation of the balance of expenses in deviations takes 
the form

( )2 2 1 1 3 3,sT u u k kψ + ψ = − τ + κ + ψ + ψ′ 

where

0
2

0

1
1 ,

s i

V
T

Eg n

 
= +  

 2
0

,s n

i n s

А z
n p g

τ =

( ) ( )

( )( )

30 0 30 10 10 0
0 0

1 30 3 10 10 30
0 0

3
'

3
,

s
s

s

k g g
g u

k g k g
g u

 = ψ − ψ − ψ − ψ = 

= − ψ − ψ  (24)

10
1

0

,i

s

g g
k

g
+′

=  30
3

0

,
s

g
k

g
=  3

0 10 30 0 .s i sng g g g g u= + + =

If we introduce the time differentiation operator s=d/dt 
and denote

( )2 21 ,T s D s+ =  ( )2 2' ,ss k M sτ + =

then we will come to the equation in the operator form with 
respect to the pressure in the chamber:

( ) ( ) ( )2 2 1 1 3 3; .D s t u M s u k kψ = − + ψ + ψ   (25)

We will obtain the dynamic equation of the automatic 
controller by substituting the pressure ( ); ,t uψ  determined 
by differential equation (25), in the linear expression (16) for 
the dimensionless force sφ :

( ) 2 1 1 3 3

2 2

; .
M k k

t u u
D D

ψ + ψ
ψ = − +

At the same time, the regulatory impact is

( ) 0;s st uφ = ψ + φ = 2 1 1 3 3
0

2 2

,s

M k k
u

D D
ψ + ψ

− + + φ

and we obtain the controller equation by multiplying both 
sides of this equality by the differential operator 2 2 1:D T s= +

( ) ( ) ( )2 2 1 1 3 3 2 0.s sD s M s u k k D sφ = − + ψ + ψ + φ  (26)

From equation (26), the dimensionless dynamic stiffness 
of the system, which is the transfer function of the controller 
by mistake, is expressed by the formula
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( ) 2
2

2

'
.

1
s ss k

W s
u T s
φ τ +

= = −
+

The ring is considered as a single-mass system that performs 
one-dimensional axial vibrations described by the equation

,s e kmz F F F cz= − − − 

where the term cz  represents the external (outside the end 
clearance) linear viscous friction force. The remaining forces 
are described by formulae (14) and (16) when replacing the 
averaged pressure in the chamber ( )2 иψ  with a pressure of 

( );t uψ  that depends on both the gap and time. Using these 
formulae, we will write

( ) ( )1 1 3 3 1 1 3 30.5 ,
s emz cz kz F F k

AP A p A p B p B p k

+ + = − − ∆ =

= + + − + − ∆

 

and after going over to deviations under the condition that 
kΔ=const, δ(kΔ)=0 and after dividing each term by Apn, we 
will get

( ) ( )1 1 3 3 1 1 3 3

1 1
.

2

n n n
s e

n n n

mz cz kz
u u u

Ap Ap Ap

А А В В
А А

+ + = φ − φ =

= ψ + ψ + ψ − ψ + ψ

 

Let us denote the coefficients of the left side of this equation

2
1 ,n

n

mz
T

Аp
=  

2

2 ,n

n

c z
mAp

ξ =  n
п

n

kz
Аp

χ =

and use the load factor K (18):

( )0 1 31 .s e K K φ − φ = − ψ + − ψ 

In the operator form, we will obtain the final form of the 
equation of axial oscillations of the ring:

( ) ( )1 1 31 ,s eD s u K K= φ − φ = ψ − ψ − − ψ

( ) 2 2
1 1 12 .nD s T s T s= + ξ + χ     (27)

The coefficients have the following physical meaning: T1 

is the period of free vibrations of the axially movable ring; ξ 
is the damping coefficient of free vibrations due to external 
linear friction; and χn is the dimensionless coefficient of ri-
gidity of the elastic elements.

If the right-hand side of (27) is equal to zero, then the 
equation

( ) 2
1 1 12 0nD s u T u T u u= + ξ + χ = 

becomes the equation of free axial vibrations of the ring 
suspended on elastic elements with equivalent rigidity k 
without taking into account pressure forces. In this case, 

2 2
1 0/ ;п Т k mχ = = ω  ω0 is the natural frequency of the axial 

vibrations of the ring without a regulatory action.
We obtain the equation of dynamics of pulse compaction 

as an automatic control system by eliminating the force sφ  
from equations (26) and (27):

2 1 1 3 3
1 0

2 2

.sе

M k k
D u u

D D
ψ + ψ

= − + + φ − φ

Let us multiply both sides of the equality by the operator D2

D D M u k k D s e1 2 2 1 1 3 3 2 0+( ) = + + −( )ψ ψ φ φ

and group the terms in powers of s, taking into account (18):

( )
( )
[ ]

( )

2 3 2 2
1 2 1 1 2

1 2 2

2 1 1

2 3 3

2

2 '

1 1 .

п n s

s s

T T s T T T s
и

T T s k

KT s K k

k T s k k

 + + ξ +
  =
 + ξ + χ + τ + χ + 
= − + − ψ −

 − − + − − ψ 

The expressions in the square brackets represent the 
operator of the system D(s) and the operators N1(s), N3(s) of 
external influences:

( ) ( ) ( )1 1 3 3D s u N s N s= − ψ − ψ ,   (28)

where

( ) 3 2
0 1 2 3,D s a s a s a s a= + + + ( )1 0 1,N s b s b= +

( )3 0 1,N s c s c= +   (29)

2
0 1 2,a T T= 2

1 1 1 22 ,a T T T= + ξ

2 1 2 22 ,пa T T= ξ + χ + τ 3 ,s na k= + χ′

0 2,b KT=  1 1;b K k= −  ( )0 21 ,c K T= −  1 31 .c K k= − −  (30)

An axially movable ring in the axial direction is affected 
by a number of perturbations, among which harmonic pertur-
bations with frequencies equal to the rotor speed prevail (20). 
In the dimensionless form, the pressure deviations are

1 1 1 ,i t
ae ωδψ → ψ = ψ  1 3 3 ,i t

ae ωδψ → ψ = ψ

( )1 3 .i t
a a e ωδψ → ∆ψ = ψ − ψ

Within the framework of the linear compression model 
under consideration, the superposition principle is valid, i. e., 
the resulting ring reaction is the sum of harmonic reactions 
to individual elementary harmonic perturbations. Therefore, 
the analysis of harmonic axial vibrations of the ring caused 
by each of the harmonic perturbations is of practical impor-
tance. The rotation frequency, as a rule, has the form of a 
stepwise or linear function of time, and the reaction to it is 
characterized by time characteristics.

Forced oscillations are characterized by amplitude and 
phase frequency characteristics, which are the amplitudes 
and phases of the frequency transfer functions. For equa-
tion (28) with two harmonic effects, the frequency transfer 
functions are written as follows:

( ) ( )
( ) ( )

1

1

( )
11

1 1
1

,
i t

ia
i t

a

N iu e
W i A e

e D i

ω +γ
γ

ω

ω
ω = = − = ω

ψ ω

( ) ( )
( ) ( )

3

3

( )
33

3 3
3

,
i t

ia
i t

a

N iu e
W i A e

e D i

ω +γ
γ

ω

ω
ω = = − = ω

ψ ω

where A1 and A3 are the amplitude characteristics while γ1 
and γ3 are the phase frequency characteristics for perturba-
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tions ψ1 and ψ3, respectively. It can be seen from the above 
formulae that when the natural operator is equal to zero, the 
amplitudes increase indefinitely. The corresponding speeds 
are the natural frequencies of the ring-regulator system.

To express the amplitudes and phases in terms of the 
coefficients (30), it is necessary to represent the transfer 
functions as complex numbers in the algebraic form. To do 
this, in the operators of (29), we will introduce the following 
changes in d/dt=s=iω:

( ) 3 2
0 1 2 3 ;D i ia a ia a U i Vω = − ω − ω + ω + = + ω

2
3 1 ,U a a= − ω  2

2 0 ;V a a= − ω

( )1 0 1,N i ib bω = ω +  ( )3 0 1.N i ic cω = ω +

Now the transfer functions take the form

( ) 1 0
1 ,

b i b
W i

U i V
+ ω

ω = −
+ ω

 ( ) 1 0
3 .

c ic
W i

U i V
+ ω

ω = −
+ ω

We will divide the real and imaginary parts of these ex-
pressions by multiplying the numerators and denominators 
by the complex number conjugate to the denominator:

( ) ( )( )

( ) ( ) 1

1 0
1 2 2 2

1 1 1 ,i

b i b U i V
W i

U V
U i V A e γ

+ ω − ω
ω = − =

+ ω
= − − ω = − ω

( ) ( )( )

( ) ( ) 3

1 0
3 2 2 2

3 3 3 ,i

c i c U i V
W i

U V
U i V A e γ

+ ω − ω
ω = − =

+ ω
= − − ω = − ω    (31)

2
1 0

1 2 2 2 ,
bU b V

U
U V

+ ω
= −

+ ω  
1 0

1 2 2 2 ,
bV b U

V
U V

−
=

+ ω
2

1 0
3 2 2 2 ,

с U с V
U

U V
+ ω

= −
+ ω  

1 0
3 2 2 2 .

с V с U
V

U V
−

=
+ ω

The amplitudes and phases of (31) are expressed by the 
formulae:

( )
2 2 2

2 2 21 1 0
1 1 1 2 2 2

1

,а

а

и b b
A U V

U V
+ ω

ω = = + ω =
ψ + ω

0 1
1 2

1 0

arctg ,
b U bV

bU b V
−

γ = − ω
+ ω

   (32)

( )
2 2 2

2 2 23 1 0
3 3 3 2 2 2

3

,а

а

и с с
A U V

U V
+ ω

ω = = + ω =
ψ + ω

0 1
3 2

1 0

arctg .
с U с V

с U с V
−

γ = − ω
+ ω

According to the amplitude frequency characteristics, it 
is possible to estimate the dimensional values of the ampli-
tudes of the forced axial vibrations of the ring at any speed 
if the magnitude of the amplitudes of the oscillations of the 
pressure deviations p1a, p3a is set as follows:

( )1 1 1 ,a n a nz A z p p= ω  ( )3 3 3 .a n a nz A z p p= ω

For the analysis of dynamic stability, the Routh-Hurwitz 
stability criterion can be used. According to this criterion, the 

third-order system is stable if all the coefficients (30) of its own 
operator are positive (the coefficients satisfy this condition). In 
addition, the inequality 1 2 0 3,a a a a>  must be satisfied, which, 
after substituting the values of the coefficients, is reduced to

( )2 2
1 2 1 2 1 2 2 2

1

2 2 ' 2п s

T
T T T T T k T .

T

 
 ξ + ξ + χ > − τ − ξ τ    

If external damping ( )0 ,с = ξ =  is not taken into ac-
count, then the stability condition reduces to the inequality 

2 2 ' ,sT kτ >      (33)

from which there is a stability margin with some tolerance.
After substituting the values of (24) in (33), it is possible 

to determine the chamber volume admissible in stability:

( )( )( )
0 0

0
1 30 3 10 10 30

.
3 1

s s

i

A Ez g
V

n k g k g p p
<

+ − −
  (34)

Since ~sk ∆ψ′  (24), the dynamic stability condition must 
be satisfied for the maximum possible working differential 
pressure of the liquid being sealed, i. e., for the value of the 
stiffness coefficient corresponding to max .∆ψ

7. An example of engineering calculations for the pulse 
mechanical seal

We will consider the engineering calculation procedure 
using an example of a pulse mechanical seal similar to one 
stage of the main circulation pump seal for nuclear power 
plants with a VVER-1000 reactor.

The initial data are r0=0.115 m, p1=(4÷16) MPa, р3=0, 
pn=p1n=10 MPa, and ω=ωn=150 s-1.

The sealed medium is water, µ=10-3 Pa∙s, E=2.2∙103 MPa.
For the design purposes, the dimensions of the contact 

surface are the following: r1=r0+0.005=0.12 m, r3=0.14 m, 
r2=0.5(r1+r3)=0.13 m, r21=0.128 m, r22=0.132 m, l1=l3=0.08 m, 
as well as the size and number of chambers and feeders: 
ni=4, nc=32, 7

0 3 10V −≈ ⋅  m3, di=0.4∙10-3 m, li=8∙10-3 m, 
2 0.196 1.6s c cnβ = π = ≈ β  and 2 0.123c cb rβ = =  rad. 

We will calculate the area of the end sections: 
– ( )2 2 3

1 3 22 6.84 10A r r −= π − = ⋅ m2;
– ( )2 2 3

2 22 21 3.27 10A r r −= π − = ⋅ m2;
– ( )2 2 3

3 21 1 6.23 10A r r −= π − = ⋅ m2;
– 664 10cA −= ⋅ m2;
– A=0.5(A1+2A2+A3)=9.8∙10-3 m2.
The determined parameters are the conductivity of 

the end throttles and their dimensionless values, the time 
constants of filling and emptying of the chambers, and 
weight coefficients. The calculation results are given in 
Tables 1–3 for 5 values of the nominal clearance. This will 
allow us to evaluate the effect of zn on the static charac-
teristics.

Let us calculate the coefficient of hydrostatic stiffness 
(Table 4).

As a result, ks<0, i. e., the equilibrium stability condition, 
is satisfied for 5 values of zn.

We will calculate the load factor Kn, which provides the 
nominal clearance in the nominal mode of 1,∆ψ ≈ Ω ≈  as well 
as the load area В1 and the inner radius r4 corresponding to 
this value (Table 5).
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Table	1

Butt	throttle	conductivity

zn, µm gi g1n g3n gen

3

7.854·10-

11

4.843·10-15 4.428·10-15 2.313·10-15

4 1.148·10-14 1.05·10-14 5.483·10-15

6 3.875·10-14 3.542·10-14 1.851·10-14

8 9.184·10-14 8.397·10-14 4.386·10-14

10 1.794·10-13 1.64·10-13 8.567·10-14

Table	2

Dimensionless	conductivities

zn, µm α1i α3i αe1 αe3

3 6.166·10-5 5.638·10-5

0.48 0.52

4 1.462·10-4 1.336·10-4

6 4.933·10-4 4.51·10-4

8 1.169·10-3 1.069·10-3

10 2.284·10-3 2.088·10-3

Table	3

Time	constants	of	filling	and	emptying	chambers	as	well	as	
weighting	factors

zn, µm Gc Gp Tc Tp Tn tc

3 107

5.224·106

1.736·10-6 0.015

0.01 8.2·10-4

4 107 1.736·10-6 6.205·10-3

6 9.995·106 1.735·10-6 1.839·10-3

8 9.989·106 1.732·10-6 7.756·10-4

10 9.979·106 1729·10-6 3.971·10-4

Table	4

Coefficients	of	hydrostatic	stiffness

zn, µm 3 4 6 8 10

ks –0.5 –0.21 –0.06 –0.03 –0.014

Table	5

Values	of	compaction	parameters

zn, µm Kn B1, m2 r4, m

3 1.231 0.015 0.121

4 0.843 0.012 0.126

6 0.644 9.726·10-3 0.128

8 0.595 9.251·10-3 0.129

10 0.578 9.082·10-3 0.129

The numerical evaluation of 
the effect of the pre-compression 
force of elastic elements will be 
performed for its three values: 
χ=0.004; 0.01; and 0.03.

We will construct stat-
ic (Fig. 7) and consumption 
(Fig. 8) characteristics.

The dynamic calculation 
consists in constructing the 
amplitude and phase frequency 
characteristics for external in-
fluences ψ1 and ψ3.

Of practical interest are, 
first of all, the amplitude fre-

quency characteristics. The results of their calculation for 
various values of the nominal gap are shown in Fig. 9.

Fig.	7.	Static	characteristics	for	various	nominal	gaps	zn:  
а	–	zn=3	μm; b –	zn=8	μm

а

b

Fig.	8.	Consumption	characteristics	for	various	values	of	the	
nominal	clearance	zn

а b

Fig.	9.	Amplitude-frequency	characteristics	for	various	nominal	gaps	zn:		
а	–	zn=3	μm;	b	–	zn=8	μm
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8. An MCP shaft sealing system based on pulse seals

Rotor sealing is one of the most complex and critical com-
ponents of the MCP that determines the reliability of the entire 
unit. This is explained by the difficult operating conditions of 
the seals in combination with high requirements for tightness 
at nominal, transient and emergency operations of the pump.

The seal assembly (Fig. 10) consists of seals such as in-
ner 1, main 2, closing 3, and end 4. The inner seal 1, which is 
a set of three floating rings, separates the chamber A, where 
cold water is supplied, from the sealing cavity B of the pump. 
On the floating rings, the end contact belts are made on both 
sides. In the event of an emergency drop in the pressure of the 
locking water, the rings operate on a pressure difference that 
is changed in the direction, and the entire assembly provides 
the required tightness for 40 s. The pressure drop across the 
inner seal is maintained within 0.1–0.5 MPa; the inner and 
outer diameters of the rings are 200 mm and 210 mm.

The main seal 2 is two series-connected stages of the 
pulse end seal. The same stage 3 serves as a closing seal, which 
should briefly perform the functions of the main in case of 
failure of the latter. The end seal 4 is a simple ring throttle.

The sealing system includes a line for supplying shut-off 
water to the chamber A by high-pressure feed pumps through 
a hydrocyclone 6. Water throttled on the main seals 2 is cooled 
in heat exchangers 5. In case of failure of the shut-off water 
supply system, the alarm system is activated: the valve 7 opens 
through the cooler 8 and the hydrocyclone 6 enters the cham-
ber B, ensuring the normal long-term operation of the seal. If 
necessary, part of the controlled leakage through the throttle 
device 9 can be returned to the supply line of the locking water.

The accumulated experience of industrial operation 
shows that pulsed end seals meet the stringent requirements 
for reliability, durability and tightness, which are imposed 
on the seals of the rotors of NPP pumping equipment [1].

9. Discussion of the results of studying the characteristics 
of the pulse mechanical seal

The physical model of a pulse mechanical seal as 
a system for automatically controlling the mechanical 

clearance and leaks has been built. This made it possible 
to apply the methods of the theory of automatic control to 
derive analytical dependencies describing their operation.

The analysis of the static characteristics revealed the 
influence of the design parameters of pulse compaction on 
the size of the end clearance. It can be seen from formu-
la (19) that an increase in the steady-state value of the end 
clearance leads to an increase in the parameters of Δψ, Ω, 

рТ  and ni as well as a decrease in K, χ , cТ  and zn.
The characteristics obtained during the engineering 

calculations (Figs. 7, 8) show that in the given pressure 
range of the liquid being sealed, the end clearance differs 
little from the base value, which ensures optimal working 
conditions. An increase in the dimensionless compressive 
force of the elastic elements χ leads to a decrease in the gap.

The obtained expressions of the amplitude and 
phase frequency characteristics (32) make it pos-
sible to identify dangerous regions of rotational fre-
quencies and select the sealing parameters so that 
the amplitudes of the forced axial vibrations of the 
ring could not go beyond the permissible limits.

Factors affecting the dynamic stability of pulse com-
paction were identified. The resulting expression (33) 
shows that stabilization is facilitated by an increase in 
the displacement time constant τ2, a decrease in the com-
pression time constant T2 and the hydrostatic coefficient 
of rigidity .sk′

From formula (34) for determining the chamber vol-
ume that is acceptable for stability it follows that the sta-
bility region expands, first of all, due to a decrease in the 
chamber volume and a decrease in the hydrostatic stiffness 

coefficient. The obtained expres-
sions allow, due to the selection 
of the geometric parameters of 
compaction, to provide a stability 
boundary with a certain margin.

The restrictions adopted 
during the development of the 
methodology for calculating 
pulse seals were that the pres-
sure change in the end clearance 
section with a constant gap is 
linear in its radius, and the in-
ertia forces of the liquid in the 
mechanical gaps are small. The 
authors believe that the assump-
tions made do not distort the 
qualitative picture of the ongo-
ing processes, and taking into 
account calculations with a cer-
tain margin, they are quite ac-
ceptable for practical use. This 
is confirmed by the successful 

experience in the industrial operation of pulse seals 
developed and designed using the developed calcula-
tion methodology. One of the engineering calculations 
applied in practice is given in the work as an example.

It should be noted that the operation of pulse seals is 
accompanied by complex non-stationary, high-frequency 
hydrodynamic processes in the friction pair. This opens 
up a wide field for study, since a rather large number of 
questions remain regarding the features of the operation 
of seals of this type under various conditions that require 
further research.

Fig.	10.	The	MCP	shaft	seal
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10. Conclusion

1. A physical model of a pulse mechanical seal was con-
structed as a system for automatically controlling the mechani-
cal clearance and leaks. The dependencies of the size of the end 
clearance and flow rate were obtained for the liquid being sealed 
against the differential sealing pressure, the rotor speed, and the 
pre-compression forces of the elastic elements. The results of the 
study made it possible to evaluate the effect of the design pa-
rameters of the seal on the change in its performance. The study 
showed that the pulse seal design provides non-contact opera-
tion, automatically maintaining a gap in the range of 3–10 µm, 
while external leakage remains in the range of 5–10 l/hr.

2. The expressions were obtained for the amplitude and 
phase frequency characteristics, which made it possible to 
identify dangerous regions of rotational frequencies and 
select the sealing parameters so that the amplitudes of the 
forced axial vibrations of the ring could not go beyond the 
limits of dynamic stability. The stability region expands by 
reducing the volume of the chambers and by a decrease in the 
coefficient of hydrostatic stiffness. The tests showed that in 
pulse seals, with an increase in the rotation frequency, the 
end clearance increases slightly; as a result, the increase in 
the friction power is limited. Seals have virtually no speed 
limits, so their use is especially effective for high-speed 
machines.
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