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1. Introduction

Space Earth missions often use nearly circular orbits for 
which changes in radius per revolution do not exceed tenths 
of a percent. In particular, this applies to satellites of remote 
Earth sensing for which proximity of trajectories to a circu-
lar orbit is important for the observation quality [1–3].

The disturbed motion equations include knowledge of 
basic motion laws. These laws are incorporated into equa-
tions of disturbed motion by fixing expressions describing 
laws of undisturbed motion [4]. Simplicity and clarity of 
the equations which largely determine the simplicity and 
success of the study depend on the choice of the expressions 
of undisturbed motion being used. Formulas of elliptical 
motion in Keplerian orbits are conventionally used in ce-
lestial mechanics as the main expressions describing reg-
ularities of undisturbed motion [5, 6]. This leads to rather 

cumbersome and inconvenient calculations that determine 
the relationship between time and parameters of motion. As 
will be shown below, the use of a circular Keplerian orbit as 
a reference orbit and choice of “good” variables describing 
motion deviation from the circular orbit makes it possible to 
avoid these problems.

Derivation of the proposed equations in one or another 
form was previously described in [4, 7, 8]. In [4], this con-
clusion had rather the nature of theoretical reasoning about 
the possibility of using new approaches to constructing 
equations of disturbed Keplerian motion. A similar but 
somewhat different form of equations adapted to the problem 
was used in [7]. It is clear that equations, as a research tool, 
are desirable to be selected for a specific problem. Practical 
work related to calculations and analysis of the motion of 
low-orbit Earth satellites has shown the convenience of just 
such a system of equations that is presented in this article. 
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The use of simple physical reasoning instead of the method 
of varying constants has made it possible to elaborate a short 
scheme of deriving equations of disturbed motion of a satellite 
in nearly circular orbits. The use of a circular Keplerian orbit 
as a reference orbit has ensured the nondegeneracy of equa-
tions and their simple relation with time. All this taken togeth-
er has made it possible to propose a form of equations conve-
nient for carrying out numerical and analytical studies with 
its variables having a simple physical meaning.

A relationship between the introduced variables and the 
Keplerian elements of the orbits was described for undis-
turbed motion. It was shown that the variables describing 
the deviation of the orbit radius from the radius of the ref-
erence orbit are proportional to eccentricity and deviation 
of the focal parameter is proportional to the square of the 
eccentricity.

Relationships were constructed that describe the con-
nection between the introduced variables and the Cartesian 
coordinates of position and velocity in the inertial coordi-
nate system as well as arguments for choosing the radius of 
the reference orbit. From the condition of equality of ener-
gies of motion along circular reference orbit and in ellipti-
cal Keplerian orbit, it is expedient to take the radius of the 
reference orbit equal to the semi-major axis of the Keplerian 
ellipse.

Approaches to the possible development of the proposed 
equations were presented. They make it possible to describe 
changes in the argument of the orbit perigee. The proposed 
change of variables makes it possible to avoid degeneracy 
of equations at very small eccentricities when studying the 
change in the orbit perigee.

The advantages of using the proposed equations for 
numerical and analytical studies of satellite motion in near-
ly circular orbits were shown on concrete calculation exam-
ples. It was shown that the results of numerical integration in 
the proposed variables give almost five orders of magnitude 
less error than the results of the integration of equations in 
Cartesian coordinates

Keywords: osculating elements, nearly circular orbits, 
disturbed satellite motion, Keplerian elements

UDC 629.78
DOI: 10.15587/1729-4061.2020.207671

Received date 15.07.2020

Accepted date 13.08.2020

Published date  31.08.2020



Applied physics

71

Development of the proposed form of equations required 
derivation of formulas describing the relationship between 
the introduced variables and the vectors of position and 
velocity of the satellite, determination of connection of the 
introduced variables with the Keplerian elements of orbits. 
The problems of studying changes in the orbit ellipticity and 
changes in the perigee argument are associated with further 
development of the proposed form of equations.

To date, there are a large number of various forms of 
equations of satellite motion and methods of their study. De-
spite this, the development of forms of equations describing 
satellite motion continues so far. This is connected with new 
challenges emerging at the present stage of space explora-
tion. Derivation of planetary Lagrange equations and the 
Gaussian form of equations of disturbed motion which are 
most common among researchers is based on the method of 
variation of arbitrary constants. This conclusion is unneces-
sarily cumbersome and complicates the introduction of new 
variables. Therefore, it is urgent to develop an approach to 
deriving equations of disturbed motion which would make it 
possible to eliminate this drawback. For nearly circular sat-
ellite orbits, it is important to use circular orbits as reference 
orbits because they provide a simple relationship of variables 
with time. 

2. Literature review and problem statement

There are many sets of variables and their correspond-
ing systems of equations that describe satellite orbiting. 
Among their variety, the following groups can be distin-
guished [5, 9–11]:

‒ equations of change of Cartesian coordinates of a 
satellite (projections of the radius-vector R



 of the satellite 
and its velocity R



  on the selected Cartesian coordinate sys-
tem are considered as variables);

‒ equations in osculating elements (different sets of 
variables that describe the change in Keplerian orbital 
elements are used). For example, a, the semimajor axis of the 
orbit (focal parameter p is used sometimes); e, eccentricity; 
Ω, the longitude of the ascending node; ω, perigee argument; 
I, the orbit inclination; ν, the true anomaly (or another vari-
able determining the position of the satellite in the orbit at 
each moment of time) are considered as variables as well as 
their various combinations;

‒ equations of motion of the satellite in a canonical form 
with construction of various Hamilton functions.

In addition to these variables and equations of their 
change, there are also equations of motion in cylindrical co-
ordinates, spherical coordinates, polar Hansen coordinates, 
various canonical forms of equations [11], etc. Such a multi-
tude of possible forms of equations is apparently explained 
by complexity and variety of the problems the researchers 
are facing and attempts to find a form of equations suitable 
for a specific problem using a rich mathematical apparatus.

The need for practical application of equations of dis-
turbed motion encounters difficulties associated with the 
study of existing models of motion and the choice of suitable 
equations for specific studies of satellite dynamics [12].

Apparently, numerical integration of equations of motion 
in rectangular Cartesian coordinates is the simplest method 
for constructing a solution to the disturbed satellite motion. 
In celestial mechanics, this method is known as Cowell’s 
method [14]. However, a series of features of equations of mo-

tion in rectangular coordinates reduces the efficiency of this 
method. These features, in particular, include the Lyapunov 
instability of equations and the need to carry out computa-
tional operations with large quantities which are known to 
be burdened with large errors of rounding-off.

To improve the numerical construction of solutions in 
the problem of the disturbed motion of two bodies, vari-
ous methods were developed. They imply introducing new 
variables describing motion [15]. A new method based on 
the introduction of new variables of motion was developed 
in [12, 16, 17] for the numerical solution of the problem of 
the disturbed motion of two bodies. There is also a detailed 
review of the history of methods for solving the problem 
of the disturbed motion of two bodies. New variables were 
introduced in [12, 16, 17] according to the same scheme 
as suggested in [18]. Equations of change in orientation of 
the orbital coordinate system (OCS) were derived on the 
basis of the theorem on change in kinetic momentum. The 
expressions obtained for the projections of angular velocities 
make it possible to introduce arbitrary kinematic parameters 
describing the OCS orientation. The introduction of vari-
ables describing a change in the orbit radius is based on the 
scalar equation of change in the orbit radius and the integral 
of energy. As stated in these publications, variables intro-
duced in [12, 16, 17] significantly improve the efficiency of 
the numerical construction of problem solutions. However, 
the obtained equations of motion and their derivation are 
rather cumbersome and the variables themselves do not have 
physical clarity.

The applied form of equations of disturbed motion is 
largely determined by the problem. For example, in [19], the 
possibility of effective application of vector orbital elements 
of Milankovitch type for constructing a century-long motion 
of a satellite under the influence of solar pressure was shown.

In many problems of studying satellite motion, high 
accuracy of calculations is not required. For example, in 
the problems of developing systems for removal of objects 
of space debris [20–22], assessment of the effectiveness of 
the systems being developed involves assessment of the time 
of satellite removal. In problems of satellite attitude con-
trol [23–25], a high-precision long-term forecast of motion 
of its center of mass is not required as well. Understanding 
of physics of the process of orbital motion control is required 
above all in the problems of maintaining target orbits by a 
satellite [26, 27]. In such problems, simplicity of deriving 
equations of motion of the satellite itself including physical 
clarity (simplicity of physical interpretation) of the variables 
describing motion is an important factor. From this point 
of view, planetary Lagrange and Gaussian equations of dis-
turbed motion are the most common forms of equations [5]. 
However, classical derivation of these equations based on the 
variation of constants is very cumbersome. The application 
of the inference scheme proposed in [18] makes it possible to 
simplify it significantly.

The Lagrange and Gauss equations of disturbed motion 
of the satellite degenerate for orbits with an eccentricity 
close to zero. There are conventional methods of solving 
the problem of the singularity of these equations based on 
the change of variables but they lead to complications of 
equations. It is argued in [28] that since the inverse trans-
formation has never been carried out, the problem of the sin-
gularity of the Lagrange and Gauss equations has not been 
solved. A solution to this problem was proposed in [28]. At 
the same time, it is obvious from a physical point of view that 
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even a small perturbation can lead to a very rapid change in 
the perigee argument at a very small orbit eccentricity.

Another drawback of the Lagrange and Gauss equations 
for nearly circular orbits is the presence in them of a fast 
variable, the mean anomaly, and the need to calculate com-
plex expressions giving its connection with the true anomaly. 
These disadvantages are easily overcome when a circular 
Keplerian orbit is used as an undisturbed orbit.

Thus, it seems important to have a simple form of equa-
tions of motion for many problems of studying satellite mo-
tion in nearly circular orbits. This form of equations should 
enable a sufficiently efficient numerical construction of 
solutions on the one hand and have physically clear variables 
for analyzing the motion laws on the other hand. Taking into 
account the variety of problems in the study of satellite mo-
tion, the derivation of equations of disturbed motion should 
be simple and enable the introduction of new variables most 
suitable for the problem under study.

3. The aim and objectives of the study

The study objective is to develop a new form of equations 
of disturbed motion of a satellite in nearly circular orbits 
convenient for calculations and analytical motion studies.

To achieve the objective, the following tasks were set:
‒ to present a short scheme of the derivation of equations 

of disturbed motion with the introduction of the variables 
ensuring nondegeneracy of the equations and their simple 
relationship with time. The introduced variables should have 
a simple physical meaning and be convenient for numerical 
and analytical studies;

‒ to determine the relationship between the considered 
osculating elements and components of the radius-vector  R



 
and the satellite velocity R



 ;
‒ to describe the relationship of the introduced variables 

with the Keplerian elements of orbits;
‒ to show the ways of possible development 

(transformation) of equations depending on the study task;
‒ to evaluate the convenience of using the proposed 

equations for numerical and analytical studies of satellite 
motion using concrete examples.

4. Development of equations of disturbed motion of a 
satellite in nearly circular orbits

4. 1. Scheme of deriving the equations of disturbed 
motion

The proposed equations of disturbed motion of a satellite 
in nearly circular orbits are based on the theorem of change 
in angular momentum and fixing the Kepler circular orbit as 
an undisturbed reference orbit. Two right-hand coordinate 
systems are used:

‒ the inertial coordinate system (ICS) OXYZ (the OXY 
plane lies in the equatorial plane; the OX axis is directed to 
the spring point; the OZ axis is directed along the Earth’s 
rotation axis to the North Pole);

‒ the orbital coordinate system (OCS) Oxyz (the Ox 
axis is directed along R



; the Oy axis is in the plane of the 
instantaneous orbit and lying in the direction of the satellite 
motion; the Oz axis complements the system to the right 
rectangular one).

The orientation of Oxyz in OXYZ is described convention-
ally: by the Euler angles i, Ω, u, that is an inclination, longitude 
of the ascending node, and argument of latitude, respectively.

Derivation of equations follows the conclusion of [8] and 
is given here for completeness of presentation.

The following equation is original:

3 ,
R

R F
R
µ

= − +


 

 					     (1)

where R


 is the radius-vector of the satellite center of mass 
relative to the Earth center; μ is the gravitational parameter 
of the Earth; F



 is the disturbing acceleration; the dots de-
note time derivatives.

Multiply the equation of motion vectorially by R


 from 
the left and proceed to the differentiation of the vector of 
specific angular momentum L



 ( )L R R= ×
  

  in the OCS to 
obtain the following:

,L L M+ ω × =′
  



		  (2)

where the prime denotes the relative derivative L


 in the OCS; 
ω


 is the angular velocity of the OCS rotation relative to the 
ICS; M R F= ×

  

 is the specific moment of disturbing forces.
Since = = ω



 2
3 3 3,L Le R e  projection of equality (2) on the 

OCS axis gives the following:

2
1 ,

M
L

ω = −  1
2 0,

M
L

ω = =  
3 2 ,

L
R

ω =  3.L M=  	 (3)

Using the known kinematic relations for the Euler an-
gles, the following is obtained:

3

d
cos ,

d
i R

uF
t p

=   3

sin
 ,

sin
R u

F
p i

Ω = 

22 ,p RF= 

  32 sin ctg ,
p R

u u iF
R p

µ
= − 

 		  (4)

where  ,i i

p
F F=

µ
  (i=1, 2, 3), and the variable p (focal pa- 

 
rameter of the orbit) is introduced from equality = µ .L p

To construct a group of equations describing the change 
in the orbit shape, a circular orbit is fixed as an undisturbed 
motion, that is, deviations of R and p from a constant magni-
tude are considered in the disturbed motion (radius is a con-
stant value in the circular Keplerian orbit). To describe these 
deviations, three variables b1, b2, γ are introduced which are 
small in the disturbed motion along nearly circular orbits.

The variables b1, b2, γ are introduced by the following 
relations:

( )0 11 ,R R b= +  2 0 ,R b R= µ  ( )0 1 ,p R= + γ 	 (5)

where R0 is the radius of the undisturbed circular orbit; b1, 
γ are deviations of the current radius and focal parameter of 
the disturbed orbit from the radius of the undisturbed orbit, 
respectively, referred to R0; b2 is the radial velocity in the 
disturbed orbit referred to as the velocity of motion in the 
undisturbed circular orbit.

Differentiation of equalities (5) gives the following:

0 1,R R b= 
  2 0 ,R b R= µ

  0 .p R= γ 		  (6)
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Taking into account the equation of change in R ob-
tained by projecting (1) onto the axis Ox, it is easy to obtain 
from equalities (5), (6) the equations describing changes in 
b1, b2, γ in time. 

Passing to differentiation with respect to the argument 
of the latitude of the undisturbed orbit, u0 ( )3

0 0 ,u R= µ  
sought equations are obtained:

Ù

*
3

*
3

1/2

2

*
2

1 2

*1
2 13

cos ,   

sin
,

sin

1 cos ,

2 ,

,

,

i z uF

u
z F

i

s
u i

z

zsF

b b

b
b F

z

 =′

 =′
  ∆ = − − Ω′ ′   
γ =′
 =′


γ − = +′

		  (7)

where the following designations are introduced: z=1+b;  

s=1+γ; Δu=u–u0; 
12

* 0 2
2,3 2,3 ,

R
F s F

−
=

µ
 =

µ

2
* 0

1 1;
R

F F  the prime de- 
 

notes the derivative with respect to u0. Note that 
2
0R

µ
 is the  

acceleration of gravity for a given height (R0).
The quantity z is the dimensionless radius of the orbit 

equal to the ratio of the orbit radius to the radius of the refer-
ence orbit. The quantity s is a dimensionless focal parameter of 
the orbit equal to the ratio of the focal parameter of the orbit 
to the focal parameter of the reference orbit (since the refer-
ence orbit is circular, its focal parameter is equal to R0). Note  
 that 

2
0R

µ
 is the acceleration of gravity for a given height (R0).

The system of equations (7) for orbits close to circular b1, 

b2, γ<<1, and at small disturbing accelerations 
2
0

/ 1,jF
R
µ

<<   
 
j=1, 2, 3 contains only slowly varying variables which makes 
it possible to construct effective computational schemes. The 
transition from the independent variable u0 to time is set by  
 the relation ( ) ( )0 0 3

0

/ ,st stt t u u
R
µ

− = −  where tst and u0st are 

the values of t and u0 at the initial time point.

4. 2. Determination of the values of osculating ele-
ments from velocity and radius. Selection of the reference 
orbit radius

The numerical study includes verification of the results 
obtained by comparison with previously known results 
or the results of observation of satellites that are publicly 
available on the Internet. Return of satellite coordinates and 
velocities in the ICS is often the most widely used form of 
displaying results in such resources.

Let us consider the problem of determining the osculat-
ing elements of the orbit i, Ω, γ, u, b1, b2 from known R



 and 
,R


  given by projections in the ICS.
The vector L R R= ×

  

  and the unit vector 3 / , | |e L L L L= =
 



 
set the basis vectors of the orbital coordinate system:  
 

1 / ;e R R=




 2 3 1 /e e e V Vτ τ= × =


  

 τ

  
= − ⋅    

  

 

1 1where ,V R R e e  3.e


The following is found from kinematic relations (for ex-
ample, matrices of direction cosines):

‒
  3cos ,Zi e e= ⋅

 

 since 0 ,i≤ ≤ π  then ( )3arccos ;Zi e e= ⋅
 

‒
  1sin / sin ,Zu e e i= ⋅

 

 2cos / sin ,Zu e e i= ⋅
 

 therefore, u= 
( )1 1arctg /Z Zu e e e e= ⋅ ⋅
   

 taking into account signs of sinu, cosu, 
0≤u≤2π;

‒
  3sin / sin ,Xe e iΩ = ⋅

 

 3cos / sin ,Ye e iΩ = − ⋅
 

 therefore, Ω= 
( )3 3arctg /X Ye e e eΩ = − ⋅ ⋅
   

 taking into account signs of sinΩ, 
cosΩ, 0≤Ω≤2π.

The focal parameter p was introduced from equality 
,L p= µ  therefore, p=L2/μ. Then

0/ 1,p Rγ = −  1 0/ 1,b R R= −  ( )0
2 1 ,

R
b R e= ⋅

µ





 	 (8)

 
where ( )1 .R e R⋅ =









There remains arbitrariness with the choice of R0 as a 
radius of the circular reference orbit. Generally speaking, 
equations (7) are true for any R0 but the convenience of 
using these equations presupposes smallness of γ, b1, b2. 
Therefore, the only formal requirement for the choice of R0 
is the requirement that the initial values of γ, b1, b2 be small.

In the case when R


 and R


  are such that the correspond-
ing Keplerian orbit has a very small eccentricity (e<0.001). 
Then changes in motion in a low near-earth orbit caused by 
the difference between the Keplerian orbit from the circular 
one (eccentric oscillations) are comparable in magnitude 
with the changes caused by the disturbing effects of the 
second zonal harmonic of the Earth’s gravitational potential. 
In this case, the ellipticity of the disturbed orbit is of condi-
tional nature and R0 can (conveniently) be taken equal to the 
focal parameter of the undisturbed orbit, 2

0н / .R p L= = µ
When the eccentricity of the Keplerian orbit is signifi-

cant (e>0.001), it is advisable to take a value of the semi-ma-
jor axis a of the Keplerian ellipse as R0. In this case, average 
motion along a circular orbit of radius R0 will be equal to the 
average motion in the Kepler orbit. Another way to say: R0 
is chosen so that energy of motion in the circular reference 
orbit is equal to the energy of motion in an elliptical Keple-
rian orbit:

2

0

.
2 2

R
R R
µ µ

− = −




		  (9)

Hence, 0 2 .
2

R
R a

V R
µ

= =
µ −

The transition from osculating elements to R


 and R


  in 
the ICS presents no difficulties and is not presented here.

The relationship between the proposed variables and 
components of vectors ,R



 R


  makes it possible to compare 
the calculation results with the results obtained using 
known software products and sets of other variables describ-
ing the satellite orbiting dynamics.

4. 3. Relationship with Keplerian elements in undis-
turbed motion

Since ( )21 ,p a e= −  
1 cos

p
R

e
=

+ ν
 and sinR e

p
µ

= ν  in  
 
Keplerian motion, then, using the relations for introducing 
variables γ, b1, b2 for R0=a, it is easy to obtain

2,eγ = −  1

cos
,

1 cos
e

b e
e

+ ν
= −

+ ν
 2 2

sin
.

1

e
b

e

ν
=

−
		  (10)

Reverse expressions can be written as
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| |,e = γ  1

1

cos ,
1

b
e

b
γ −

ν =
+

 2sin 1 .e bν = + γ 		 (11)

In undisturbed motion, change in the elements is de-
scribed by equations:

Ù 0,i = =′ ′  
1/2

2 1 ,
s

u
z

 
∆ = −′   

0,γ =′  1 2,b b=′  1
2 3 .

b
b

z
γ −

=′ 		  (12)

Write the change b1 in the form

1
1 3 ,

b
b

z
γ −″ = 					     (13)

where γ=const.
Equation (13) has a first integral (energy integral).

2
1 2

1 1
,

2 2 b

s
b h

z z
− + =′ 		  (14)

where hb is a constant.
The following is found from the last equality:

2

1

2 2
.bh z z s

b
z

+ −′ = ± 		  (15)

For the considered motion, hb<0, z oscillates periodically 
between roots of the equation

22 2 0.bh z z s+ − = 	 	 (16)

There is a single root z=1 at hb=–1/2(s=1).
Equation (15) is solved in quadrature

2

1

0 0 2

d
,

2 2

z

i
z b

z z
u u

h z z s
− =

+ −∫ 		  (17)

where z1, z2 are the roots of equation (16), z1<z2. The integral 
in (17) is a tabular integral. It can be calculated but the result-
ing expression is too cumbersome and it seems very difficult 
to express z explicitly as a function of u0. But this does not 
really matter since b1<<1 for the considered case of motion 
and equation (13) is close to the equation of a linear oscillator.

4. 4. Development of forms of equations of disturbed 
motion

In a series of problems, it is necessary to monitor the 
position of the orbital perigee (apogee). The variables intro-
duced above do not directly describe the position of the orbit 
perigee. Approaches to the possible development of a system 
of equations (7) are proposed below. They make it possible 
to describe changes in the perigee argument.

Deviation of the orbit radius from the reference orbit 
radius R0 is described by the following equations

1 2,b b=′  *1
2 13

b
b F

z
γ −

= +′ 				   (18)

or the equation

*1
1 13 .

b
b F

z
γ −″ = + 		  (19)

Since, γ, b1, b2<<1, then the following is obtained by 
referring quantities of the second order of smallness to the 
disturbing accelerations:

*
1 1 1 1 ,otb b F F″ + = γ + + 			   	 (20)

 where ( )1 1 3

1
1 .otF b

z
 = γ − −  

Let us introduce variables A, α conventional for the averag-
ing method as follows: ( )1 0cos ,b A u= − α  ( )1 0sin .b A u= − − α′  
Here, roughly speaking, A is the eccentricity of the orbit and 
α is the apogee argument. Then

( ) ( )0 0sin ,A f u u= − − α′
	

	 (21)

( ) ( )0 0cos / ,f u u Aα = − α′
	

	 (22)

where ( ) *
0 1 1 .otf u F F= γ + +

Equations (21), (22) have a singularity when A is close 
to zero. To avoid this singularity, introduce variables τ1, 
τ2: τ1=Acosα, τ2=Asinα conventional for celestial mechanics. 
Then 1 1 0 2 0cos sin ,b u u= τ + τ  1 1 0 2 0sin cosb u u= −τ + τ′  and the 
equations for τ1, τ2 will take this form:

( )1 0 0sin ,f u uτ = −′  ( )2 0 0cos .f u uτ =′
	

	 (23)

The application of formulas (21) to (23) assumes that 
only the periodic component is retained in the changes of b1.

4. 5. Examples of calculations
Let us compare the results of calculations of the satel-

lite’s orbital elements obtained using the proposed equations 
and equations of motion in Cartesian coordinates. Fig. 1 
shows the change in radius of a nearly circular (e=0.0001) 
undisturbed orbit with an altitude of 300 km relative to the 
mean radius of the Earth in a time interval of 1 day calcu-
lated using equations of motion in Cartesian coordinates 
(Rxyz), the system of equations (7) (Roe) and analytical ex-

pression .
1 cosan

p
R

e
=

+ ν
 The change in the true anomaly ν  

 
over time was calculated as follows [5]:

( )

( )

( ) ( )

3 5

2 4

3 5 4

5
2 sin

4 96

5 11
sin 2

4 24

13 43 103
sin 2 sin 4 ,

12 64 96

e e
M e M

e e
M

e e e
M M

 
ν = + − + +  

 
+ − +  

   
+ − +      

	 (24)

where ( )н3 ,M t t
a
µ

= −  ( )21 .a p e= −

Fig. 2, 3 represent errors 100 %xyz xyz anR R R aδ = − ⋅
 

 
and δ = − ⋅

 

100 %,oe oe anR R R a  respectively. The calculations 
were carried out with a step of return equal to 1 second.

As seen in Fig. 1‒3, the solutions are very close. In such 
an integration interval (about 16 orbital turns), the error 
δRxyz does not exceed 1.8·10-5 %, however, the error δRoe is 
five orders of magnitude less and does not exceed 4.3·10-10 %. 
This difference in errors is explained by the fact that the 
right-hand sides of the equations in Cartesian coordinates 
contain quantities that are orders of magnitude larger than 
the right-hand sides of the proposed equations. The small-
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ness of the right-hand sides in (7) makes it possible to use 
larger values of the integration steps in comparison with the 
use of equations in Cartesian coordinates.

Fig. 4–6 show the results of calculations for initial con-
ditions the same as in the previous case taking into account 
the effect of the second zonal harmonic of decomposition of 
the geopotential among spherical functions [5]. Fig. 4, sim-
ilar to Fig. 1, shows the change in Rxyz and Roe and a linear 
approximation of the change in the radius Rlin obtained on 
the basis of (7). The solution of ( )0 11lin linR R b= +  was ob-
tained according to the procedure presented in [8]. In the 
case under consideration, the initial value of u0st=0, then, 
integrating the equation for the change in b1, the following 
is obtained:

2
1 1

2
2

sin cos
6

sin sin cos2 ,
6

lin st

st

b A b A i u

b u i u

ε = + − − +  
ε

+ +

where

21
sin 1 .

2stA i
 = γ + ε −  

  (25)

Fig. 5, 6 show errors in 100 %xyz oeR R R aδ = − ⋅  and 
 100 %lin lin oeR R R aδ = − ⋅ , respectively.

It can be seen from Fig. 5, 6 that the solutions are in good 
agreement and the line ar analytical approximation (25) in 
the integration interval of about 15 orbital turns gives an 
approximation no worse than 4·10-3 %.

5. Discussion of the results obtained in the development 
of equations of disturbed satellite motion in nearly 

circular orbits

The use of a circular Keplerian orbit as a reference orbit 
has made it possible to develop a simple and clear form of 
equations of motion of satellites in nearly circular orbits (7). 

Fig.	1.	Change	in	the	radius	of	the	undisturbed	orbit	
calculated	by	different	models
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Fig.	3.	Change	in	error	δRoe·1010
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Fig.	4.	Change	in	the	orbit	radius	taking	into	account	
the	second	zonal	harmonic	calculated	using	equations	in	

Cartesian	coordinates,	the	proposed	system	of	equations	
(7)	and	a	linear	approximation	of	the	change	in	radius	Rlin	

obtained	on	the	basis	of	(7)
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In contrast to the conventional equations of disturbed Ke-
plerian motion [5, 6], the proposed system of equations (7) 
contains only slow variables, and the relationship between 
their independent variable with time is described by the sim-
plest expression. The use of simple physical considerations, 
rather than the method of variation of constants, has made 
it possible to introduce physically clear variables describing 
the deviation of the trajectory from the reference orbit. The 
above derivation of equations of disturbed motion leaves 
many opportunities for introducing new variables conve-
nient for a concrete problem.

The proposed form of equations is also valid for orbits 
with large eccentricities. However, the efficiency of its use 
significantly decreases with an increase in orbit eccentric-
ity as soon as the right-hand sides in (7) cease to be small 
quantities.

The fixing of the circular reference orbit has allowed us 
to obtain the simplest relationship between the independent 
variable of the equations and time. However, this fixation of 
the radius of the circular reference orbit causes difficulties in 
studying the satellite motion in cases when the radius of its 
orbit changes significantly. For example, such a case occurs 
when solving problems of satellite removal. It seems that 
introduction of intermediate reference orbits will make it 
possible to avoid these difficulties without a significant loss 
of efficiency. However, the algorithms of introducing inter-
mediate reference orbits and algorithms of recalculating the 
initial data of motions require additional studies.

The proposed form of equations has shown the possibility 
of its effective use in elaboration of approximate analyti-
cal solutions for the disturbed motion of satellites in low 
near-earth orbits [8]. It seems promising to use it for con-
structing an approximate analytical model of such a motion 
of satellites. This will require the construction of a second 
approximation in terms of small parameters for solving the 
equations. Taking into account the aerodynamic resistance 
as an essential factor in the motion of satellites in low near-
earth orbits can cause a particular difficulty.

6. Conclusions

1. The use of simple physical reason instead of the meth-
od of variation of constants has made it possible to develop 
a short scheme of deriving equations of disturbed motion. 
The use of a circular Keplerian orbit as a reference orbit has 
ensured the nondegeneracy of equations and their simple 
connection with time. All this taken together has made it 
possible to propose a form of equations convenient for nu-

merical and analytical studies with its variables having a 
simple physical meaning.

2. The solution to the problem of introducing new vari-
ables presupposes a description of their connection with the 
known variables. Connections between the introduced vari-
ables and the Keplerian elements of the orbit was described 
for undisturbed motion. It was shown that the variables 
describing the deviation of the orbit radius from the radius 
of the reference orbit are proportional to eccentricity and 
deviations of the focal parameter are proportional to the 
square of eccentricity.

3. The use of new forms of equations presupposes the 
connection of their variables with the Cartesian coordinates 
of position and velocity in the inertial coordinate system. 
Relationships describing this connection are given and argu-
ments for choosing the radius of the reference orbit are given. 
Proceeding from the condition of equality of energies of mo-
tion in a circular reference orbit and the elliptical Keplerian 
orbit, it is expedient to take the radius of the reference orbit 
equal to the semi-major axis of the Keplerian ellipse.

4. The introduced new variables do not directly describe 
perigee position in the orbit. Approaches to the possible 
development of the proposed equations were presented. 
They make it possible to describe changes in the argument 
of the orbit perigee. The proposed change of variables makes 
it possible to avoid degeneracy of equations at very small 
eccentricities when studying the change in the orbit perigee.

5. The advantages of using the proposed equations for 
numerical studies were demonstrated on specific design ex-
amples in comparison with the integration of the equations 
of motion in Cartesian coordinates. It was shown that the 
results of numerical integration in the proposed variables 
give almost five orders of magnitude less error compared 
to the results of the integration of equations in Cartesian 
coordinates. The advantages of the proposed equations for 
analytical studies of satellite motion in nearly circular orbits 
were also shown. It has appeared that the linear analytical 
approximation gives an approximation no worse than 4·10-

3 % when taking into account the influence of the second 
zonal harmonic of geopotential in an integration interval of 
about 15 orbital turns.
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