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1. Introduction

The problem of hydrodynamic stability of combustion 
waves is a classical theoretical problem of fluid mechanics, 
which is still topical [1]. This is primarily due to the practical 
importance of studies of the stability for flames subjected to 
small perturbations: it is instability that is the main cause 
of flame autoturbulization [2, 3] and acceleration [4, 5].  
In turn, acceleration of the flame can cause its transition 
to detonation [6–8] or to deflagration explosion [9]. Thus, 
the problem of hydrodynamic flame stability is closely re-
lated to the general problem of explosion safety [9–11]. A 
detailed analysis of the evolution of small perturbations [9]  
for the case of unstable combustion enables us to esti-
mate the time of possible combustion-explosion transition 
and the length of the so-called detonation induction dis- 
tance [12]. In addition, studies of flame instability provide 
great opportunities for describing quasi-laminar and tur-
bulent combustion modes [2, 13]. By the way, the structure 
of turbulent flame traditionally is of considerable academic 
interest [14–16].

The relevance of studies of the hydrodynamic flame sta-
bility is connected with the emergence of new combustible 
substances and the development of equipment and tech-
nology for fuel burning. For this reason, new models of the 
stationary combustion process are constantly being created, 
and the stability of this process is subsequently investigated. 
In this regard, the study of the stability of solid fuel com-
bustion is of special interest, because, in particular, rocket 
engines use such kinds of fuel [17].

2. Literature review and problem statement

Initially, studies of combustion stability of liquid and solid 
fuels were carried out within one-dimensional models [18, 19]. 
Moreover, the main combustion model of these studies is a 
model in which solid fuel, as a result of decomposition, pass-
es directly into the gas phase and then instantly burns [19]. 
However, the multi-dimensionality of the solid-fuel combustion 
process is quite obvious and experimentally proved [20, 21],  
which makes it necessary to study the hydrodynamic sta-
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Theoretically, the combustion stability of solid fuel, 
which during the combustion process is decomposed accord-
ing to the “solid phase – liquid phase – gas” scheme, is 
investigated. The physical and mathematical models for the 
propagation of small perturbations of combustion are con-
structed. The medium in all areas of combustion and in com-
bustion products is assumed to be incompressible, and the 
viscosity of the fuel in the liquid phase is taken into account. 
Thus, perturbations of hydrodynamic parameters are con-
sidered not only in the two-phase gasification zone, but also 
in the combustion products area and the geometric pertur-
bation of the instantaneous combustion front (flame), dis-
torting the shape of its surface, is also specified. That is the 
characteristic feature of the presented physical model. The 
mathematical eigenvalue problem is set and solved. This 
problem is reduced to an algebraic characteristic equation 
for a dimensionless complex eigenvalue, which positivity 
determines the instability. It is proved that in the limiting 
case of the absence of a liquid phase, absolute instability 
takes place. At the other limiting case – for perturbations 
with infinite wavelength – a transition to stability takes 
place. The latter fact indicates that the presence of a vis-
cous liquid film and changes in the length of the gasification 
zone under the influence of perturbations have a significant 
stabilizing effect on solid fuel combustion. In the general 
case, a sufficient condition for the instability of the roots of 
the characteristic equation is analytically determined. The 
physical interpretation of the mathematical results explains 
the processes of autoturbulization of solid fuel combustion 
and the possible transition of combustion to deflagration 
explosion or detonation. The results of the study are in qual-
itative agreement with experimental data and can addition-
ally be used for theoretical analysis of the stability of the 
liquid fuel combustion process in the combustion chamber
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bility of the combustion front to small multi-dimensional 
perturbations.

In addition, in many cases, solid fuel during decomposi-
tion is not decomposed according to the “solid phase – gas” 
scheme [19], but according to the “solid phase – liquid  
phase – gas” scheme [22–24]. The presence of a thin liquid 
film located on the gasification surface of the fuel solid 
phase plays, for example, a significant role [24] in the study 
of so-called erosive combustion [25, 26]. It is the liquid film 
separating the solid and gas phases that causes the negative 
erosion effect or the Vilyunov – Dvoryashin effect [24–26]. 
This effect is that under certain conditions, the burning 
rate decreases when the burning surface of fuel is blown in 
a parallel flow. Various attempts to describe and explain the 
Vilyunov – Dvoryashin effect in more detail [26–28] led to 
the need of studying the problem of hydrodynamic stability 
in the zone of solid fuel gasification [24].  

The study [24] addresses fuel gasification during the 
combustion process under the “solid phase – liquid phase –  
gas” scheme. In this case, it is initially assumed that the 
length of the liquid phase zone is much less than the length 
of the gas phase zone. In solving the stability problem, only 
perturbations with the wave numbers that are inversely pro-
portional to the liquid phase zone extent, i. e., perturbations 
with the wavelengths of the same order as the thickness of 
the liquid film are considered. And finally, setting the stabil-
ity problem in the study [24] proposes that the combustion 
front is not perturbed: only the interface between the liquid 
and solid phases of the fuel is perturbed. These assumptions 
seem quite correct within the narrow problem considered  
in [24], namely, the analysis of the possibility of the process au-
toturbulization for the Gusachenko-Zarko mechanism [23, 26] 
of the occurrence of a negative erosion effect [25] during sol-
id fuel combustion. But in general, the stability study of the 
solid fuel combustion process with a two-phase gasification 
area – with liquid phase and gas phase – requires rejection 
of these assumptions.

In fact, there are no exact data on the thicknesses of the 
liquid phase zone [24]. It is only known that for some types of 
solid fuel (for example, containing ammonium perchlorate), 
the liquid film makes up less than 10 % of the total length of 
the combustion zone [22–24]. But for the other types of fuel, 
this ratio may not be fulfilled. However, the thickness of the 
liquid film should not be neglected, even if it is only 3 μm 
with a total length of the combustion zone of 40 μm. This 
is because the liquid film is in a qualitatively different state 
than the rest of the combustion zone (gas phase).

In addition, in the general case, perturbations of the 
flame front cannot be neglected also. Even assuming that the 
perturbations are so weak that they do not affect the burning 
rate, the shape of the front is distorted. Actually, both the 
phase boundary and the flame front generate disturbances 
that interact in the gas phase region of the fuel.

3. The aim and objectives of the study

The aim of the study is a theoretical solution for the prob-
lem of hydrodynamic stability of solid fuel combustion. In so 
doing, flame front perturbations must be taken into account, 
and the ratio between the lengths of the liquid and gas phase 
zones in the fuel gasification area is assumed to be arbitrary.

To achieve this aim, it is necessary to accomplish the 
following objectives:

– to develop physical and mathematical models for the 
process of solid fuel burning in the presence of small pertur-
bations; 

– to set and solve the corresponding eigenvalue problem 
by obtaining the characteristic equation; 

– to analyze the characteristic equation in terms of un-
stable roots existence; 

– to interpret the results physically. 

4. Physical and mathematical models of the process of 
solid fuel burning in the perturbed state

Let us consider a flat flame propagating through 
a solid fuel at a certain constant velocity. The initial 
model of the combustion process is a discontinuous 
scheme of flame, which is represented by a flat front of 
instantaneous combustion (Fig. 1). The flame front is 
separated from the solid phase of the fuel by the area with  
length L, and

1 2,L L L= +  		  (1)

where L1 and L2 are the lengths of the zones of liquid and gas 
phases, correspondingly. 

Fig. 1. Stationary solid fuel combustion complex

Moreover, in contrast to (24), no initial assumptions are 
made regarding the ratio L1/L2. In the moving coordinate 
system connected with the liquid-gas interface, there are the 
following flow areas (Fig. 1):

– “0”: x≤L1 – area of the solid phase of the fuel;
– “1”: –L1≤x≤0 – area of the liquid phase of the fuel;
– “2”: 0≤x≤L2 – area of the gas phase of the fuel;
– “3”: x≥L2 – area of gaseous combustion products.
In this case, x=0 is the unperturbed interface between 

the liquid and gas phases of the fuel, and x=L2 is the unper-
turbed surface of the flame front (instantaneous combustion 
front). The problem is considered as two-dimensional in the 
Oxy plane.

Parameters of the stationary flow in zones “1”, “2”  
and “3” are assumed to be constant and are indicated by the 
corresponding indices. These parameters satisfy the law of 
conservation of mass 

1 1 2 2 3 3u u ur = r = r  		  (2)

and the law of conservation of momentum

2 2 2
1 1 1 2 2 2 3 3 3 .p u p u p u+ r = + r = + r  		  (3)
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The medium (liquid, gas) is assumed to be incompressible 
in all three zones. This assumption is fully justified, since 
the propagation velocity of combustion is much less than the 
speed of sound. The fluid in the area “1” is assumed to be 
viscous, and the medium in the areas “2” and “3” is assumed 
to be ideal.

In the area “1”, the flow of a viscous fluid is described by 
the system of Navier-Stokes equations and incompressibility 
equation

2 2
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2 2
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 ∂∂ + =
 ∂ ∂

	 (4)

where ρ is the density, р is the pressure, ux, uy are the compo-
nents of the flow velocity along the coordinate axes Ox, Oy, 
ν is kinematic viscosity.

In the areas “2” and “3”, the flow is described by the sys-
tem of Euler equations and incompressibility equation
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Random perturbations result in small displacements  
εj(y, t) ( j=1, 2) of the surfaces x=0 and x=L2 along the Ox 
axis, i. e., both the liquid-gas interface and the flame front 
are distorted (Fig. 2). 

Fig. 2. Combustion complex in perturbed state

Displacements εj(y, t) are written in the form

( ) ( )( )1
0, exp 1,2 ,j jy t A h ihy i t j−ε = − ω =  	 (6)

where h=2π/λ(h>0) is the wave number, λ is the perturba-
tion wavelength, ω is some complex (generally speaking) 
number, i is the imaginary unit, A0j( j=1,2) are indefinite 
constants.

Thus, the equation of the perturbed liquid-gas interface 
is represented as 

( )1 , ,x y t= ε  		  (7)

and the equation of the perturbed flame front has the form

( )2 2 , .x L y t= + ε  		  (8)

There are regular medium flows, which are moving along 
the Ox axis with constant velocities uj ( j=1, 2, 3) and are fully 
defined by the values of constant parameters pj, ρj ( j=1, 2, 3) 
and ν1 (in the area of viscous liquid “1”). Let us put small 
perturbations on this main flow 

( ), , ,x j jxu u u x y t= + ′  ( ), , ,y jyu u x y t= ′  

( ), , ,j jp p p x y t= + ′  ( )1,2,3j =  		  (9)

and

( )1 1 , , .x y t′ν = ν + ν  		  (10)

It is assumed that ( ), , 0,j x y tr =′  i. e. the medium remains 
incompressible in the perturbed state also.

The quantities ,jxu′  ,jyu′  jp′  ( j=1, 2, 3) and 1
′ν  are as-

sumed to be small first-order quantities together with all 
their derivatives, i. e. they are of the same order of smallness 
as the quantities εj ( j=1, 2). 

Substituting expressions (9) and (10) into the system (4) 
and carrying out the linearization process, i. e., neglecting 
quantities of the second order of smallness and smaller ones, 
we get the following system of linear partial differential 
equations
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In turn, the substitution of expressions (9) into the sys-
tem (5) as a result of linearization leads to the systems 
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Particular solutions of the system (11) are
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where
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Thus, pressure perturbations and perturbations of the ve-
locity vector components in the fuel liquid phase area “1” are 
represented as a superposition of four types of perturbations 
corresponding to four indefinite constants A1l (l=1, 2, 3, 4). 
Perturbation of type “1” (corresponding to A11, k11=1) and 
perturbation of type “2” (corresponding to A12, k12=1) are 
acoustic (more precisely, quasi-acoustic) perturbations for 
which 1 0.p ≠′

Perturbation of type “3” 

1
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corresponds to 1 0p =′  and is the vortex perturbation, be-
cause for this type of perturbations the vorticity value  
 1 1

1
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 is different from zero. If the square root  

in (16) means the principal square root, then the vortex per-
turbation “3” moves with the flow downstream. In the limit 
case of ideal liquid 1 0α →  ( )1 0 ,ν →  i. e. with vanishing 
viscosity, this perturbation turns into a similar perturbation 
for an ideal liquid (see below).

Perturbation of type “4” 
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like perturbation of type “3”, corresponds to the absence of 
pressure perturbations ( 1 0p =′ ) and is the vortex perturba-
tion. If the square root in (17) means the principal square 
root, then the vortex perturbation “4” diffuses upstream due 
to viscosity. In the limit case of ideal liquid 1 0α →  ( 1 0ν → ),  
this perturbation vanishes, losing its physical meaning, since 

14k → ∞ .  
The interface between the solid and liquid phases of the 

fuel is the unperturbed surface x=–L1, which is modeled by a 
rigid wall. Suppose that this surface is not a source of vortex 
perturbations. But since this is the only possible source of 
vortex perturbations in the fuel liquid phase, the diffusion 
of the vortex down the stream in the area “1” is absent. Such 
an assumption seems quite justified, if initially the pertur-
bations are supposed to be so weak that they cannot cause 
deformation or, at least, vibrations of the surface of the fuel 
solid phase. In the absence of vortex diffusion down the 
stream, A13=0 and equations (13) and (14) correspondingly 
change to
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Finally, small perturbations in the viscous liquid phase 
area “1” are described by the equations (15), (19) and (20).

Particular solutions of two systems ( j=2, 3) of equa-
tions (12) are

1

2 3

1

1

,
1

1

j

hx
j

jjx ihy i t
z

hx
j hx

j j

j

A e
z

u
e

u
A e A e

z

− ω

−
δ−

 − + 
+ 

δ ′
=  

 + + 
 −

δ  

 		  (21)

11

12 13

1

,

1

j

hx

jjy ihy i t
z

hx
j hx

j

j

i
A e

z

u
e

u i z
A e i A e

z

− ω

−
δ−

 − − 
+ 

δ ′
=  

 − − δ −
δ  

 	 (22)

1 22 ,j hx hx ihy i t
j j

j j

p
A e A e e

u
− − ω′

 = + r
 		  (23)

where

( )1

1

2,3 .j
j

j

u
j

u
r

δ = = =
r

		   (24)

Thus, pressure perturbations and perturbations of the 
velocity vector components in the fuel gas phase area “2” and 
in the combustion products area “3” are represented as a su-
perposition of three types of perturbations. In each separate 
area ( j=2, 3), these three types of perturbations correspond 
to three indefinite constants Ajl (l=1, 2, 3). Perturbations of 
the type “1” (corresponding to Aj1, kj1=1) and perturbations 
of the type “2” (corresponding to Aj2, kj2=1) are acoustic 
(more precisely, quasi-acoustic) perturbations, for which 

0.jp ≠′  It is obvious that these perturbations coincide with 
the corresponding perturbations for a viscous liquid up to 
indefinite constants.

Perturbations of the type “3” correspond to indefinite 
constants Aj3( j=2, 3) and are vortex perturbations, for which 
there is no pressure perturbation ( )0 ,jp =′  and vorticities 

jy jx
j

u u

х у

∂ ∂′ ′
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are different from zero. These vortex perturbations move 
downstream, which is understandable physically, since ac-
cording to the Helmholtz theorem well known in hydrody-
namics, the velocity vortex is transferred together with the 
flow of the liquid itself in an ideal (inviscid) liquid. Vortex 
perturbations corresponding to indefinite constants Aj3( j=2, 3)  
are similar to vortex perturbations of the type “3” for a 
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viscous liquid and can be obtained from it by passing to the 
limit ( )1 10‒ 0 .α → ν →  Perturbations of the type “4” for a vis-
cous liquid (i. e., diffusing upstream vortex) has no analogue 
in the case of an ideal liquid precisely because diffusion of 
the vortex upstream in this case is impossible. 

Thus, in the area of gasified solid fuel “2”, the expressions 
for perturbations can finally be represented as

2
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In the unlimited area of gaseous combustion products “3”, 
the situation with perturbations differs from the situation in 
the limited area “2”. Since the problem of internal stability of 
solid fuel combustion is considered, the perturbations must 
satisfy the decay condition (or at least boundedness) under 
x→+∞. Obviously, an acoustic perturbation of the type “1” 
in the area “3” does not satisfy this condition, since it con-
tains the factor ehx (h>0). Therefore, in the area “3”, A31=0  
should be set.

Finally, small perturbations in the combustion products 
area “3” are described by the equations 
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We also note that the boundedness of all perturbations 
under |y|→+∞ is guaranteed by their form: all perturbations 
contain the factor exp(ihy-iωt).

The boundary conditions on the solid-liquid interface 
x=–L1 are the conditions of “adhesion” of the viscous liquid 
to the surface of the rigid wall. These conditions are 

1
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u
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and can be represented as 
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The boundary conditions on the perturbed liquid-gas 
interface x=ε1(y, t) are the fundamental physical laws of 
conservation of mass and momentum. In this case, the pe-
culiarity of applying these laws is that on the one side of the 
discontinuity surface (in the area of the liquid phase “1”), the 
medium is viscous, and on the other (in the region of already 
gasified solid fuel “2”) it is ideal. 

The linearized boundary condition expressing the law of 
conservation of mass is

1 1
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 		  (32)

The linearized boundary condition expressing the law 
of conservation of momentum in the projection onto the Ox 
axis, is represented as
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The linearized boundary condition, which expresses 
the law of conservation of momentum in the projection on  
the Oy axis, has the form
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An additional boundary condition on the perturbed 
liquid-gas interface is the condition

1
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u
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∂ε
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 			   (35)

Condition (35) is similar to the Landau condition [29] on 
the surface of a perturbed front of a laminar flame that is mod-
eled by a discontinuity surface propagating in an ideal incom-
pressible medium. Condition (35) means that the gasification 
process in the perturbed state proceeds at the same rate as in 
the unperturbed state, i. e., the perturbations are assumed to be 
so weak that they cannot affect the evaporation of the liquid. 

After simple transformations, the boundary condi- 
tions (35) and (33) can be represented as
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Conditions (33) and (34), respectively, can be trans-
formed to 
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and
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The boundary conditions on the perturbed surface of 
the flame front, i. e., the instantaneous combustion front 
x=ε2(y, t) are also the physical laws of conservation of mass 
and momentum.

The linearized boundary condition expressing the law of 
conservation of mass at the flame front is
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The linearized boundary condition expressing the law of 
conservation of momentum to the flame front in the projec-
tion onto the Ox axis is represented as
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The linearized boundary condition expressing the law of 
conservation of momentum at the flame front in the projec-
tion onto the Oy axis is
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An additional boundary condition on the perturbed sur-
face of the flame front is the condition

2
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∂
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Condition (43) is absolutely identical to the Landau con-
dition [29], and means the independence of the flame front 
propagation speed – i. e. combustion rate –of perturbations. 

After simple transformations, the boundary condi- 
tions (43) and (40) can be changed to
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Conditions (41) and (42), correspondingly, can be trans-
formed to 
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Thus, both physical and mathematical models of the 
perturbed state of solid fuel combustion are constructed. 

Explicit expressions are obtained for small perturbations 
of pressure and velocity components in all three flow ar-
eas, as well as expressions for perturbations of the phase 
interface and flame front. All these perturbations satisfy 
the boundary conditions at infinity (the boundedness con-
dition under |y|→+∞ and the decay condition under x→+∞. 
Linearized boundary conditions on the perturbed interface 
between the liquid and solid phases and on the combustion 
instantaneous front are written.

5. Eigenvalue problem

The expressions for small perturbations (6), (36)–(39) 
and (44)–(47) contain ten indefinite constants A01, A02, A11, 
A12, A14, A21, A22, A23, A32, A33. To determine these constants, 
let us substitute expressions (6), (36)–(39) and (44)–(47) 
into the boundary conditions (31), (36)–(39), (44)–(47). As a 
result, we obtain a system of ten linear homogeneous algebraic 
equations in the above mentioned indefinite constants. This 
system has nontrivial solutions if and only if its determinant 
is equal to zero. The fact that the determinant is equal to 
zero leads to the characteristic equation in the dimensionless 
eigenvalue 
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.
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z
hu
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If all the roots of the characteristic equation have 
negative real parts, then we can talk about the stability 
of the process to this type of perturbations (conditional 
stability).

If among the roots of the characteristic equation, there 
is at least one root with a positive real part, then absolute 
instability takes place.

The case when all the roots of the characteristic equation 
have real parts equal to zero is the neutral case. Such a case, 
as a rule, requires additional studies related to a change in 
the statement of the stability problem.

The characteristic equation is

0,rsa = 			    (48)

where r=1…10, s=1…10.
In the tenth-order determinant on the left side of the 

equation (48), only the following elements are nonzero:
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In addition, the following conventional signs are used 
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After a series of transformations, the characteristic equa-
tion (48) is reduced to the form

0,rsb =  		  (63)

where r=1…4, s=1…4.
The elements of the fourth-order determinant on the left 

side of the equation (63) are:
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Thus, a characteristic equation in the dimensionless ei-
genvalue z is obtained. 

6. Analysis of the characteristic equation

Equation (63) can be represented as

( )1 1 2 1 2; , , , , , 0,F z L Lξ α δ δ =   		  (73)

where z is the unknown eigenvalue, and, α, 1,L  2,L  δ1, δ2 are 
parameters.

Parameter α1 – as it follows from equation (17) – char-
acterizes the viscosity of the fuel in the liquid phase. The 
Reynolds number Reλ, determined by the perturbation 
wavelength λ, is represented as 
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As follows from (17) and (74), the following relationship 
takes place
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i. e. α1 is a quantity inversely proportional to the Reynolds 
number.

It is known from the combustion theory that the density 
of incandescent combustion products ρ3 is always lower than 
the density of a combustible medium ρ2 in front of the flame 
front [2]. On the other hand, the density of the fuel in the liq-
uid phase ρ1 is obviously higher than the density of the fuel 
in the gas phase ρ2. Thus, there is the inequality ρ1>ρ2>ρ3, 
which, taking into account conventional signs (24), takes 
the form

2 31 .< δ < δ  			   (76)

The values 1L  and 2L  are interdependent ( )2 11L L= −   and 
in total they express the ratio between the lengths of two 
zones of the fuel phases – liquid phase and gas phase. For the 
burning of solid fuel, the inequalities

1 2 1 2,‒‒L L L L< <  				    (77)

are true.
Following [24], let us consider the limiting case 1 0,L →  

corresponding to the decomposition of fuel during combus-
tion according to the widespread “solid phase –gas phase” 
scheme [19]. In so doing 2 1.L →  In this case, the function F  
on the left side of the characteristic equation (73) can be 
reduced to the form of a quasipolynomial without a principal 
term, which is always unstable by the well-known Pontry-
agin theorem. This result is in agreement with the result  
of [24], where the characteristic equation is much simpler 
and can be solved explicitly. But in [24], perturbations of 
the flame front and perturbations of hydrodynamic param-
eters in combustion products are not taken into account. 
Therefore, we can conclude that these perturbations do not 
impede the development of the instability generated in the 
gasification zone of the fuel and, possibly, even intensify 
this process. Furthermore, it is obvious that when L1<<L2 
( )1 2 ,L L 

  i. e. in the case of a very thin film, which is the most 
important from the viewpoint of erosive effect [22–28], the 
conclusion about the absolute instability of the combustion 
process remains valid.

Let us consider another limiting case ξ→0(λ→∞), i. e. 
the case of long-wave perturbations (as compared with the 
lengths of areas “1” and “2”). Moreover, it follows from (17) 
that α1→0. In this case, the characteristic equation changes to

2

2

2 2 2 2

1 1 1 1
1 2 2 0.z z
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 		  (78)

The roots of the quadratic equation (78) can be found 
directly, but in this case the Hurwitz criterion of stability of 
a polynomial with real coefficients can be used. According 
to this criterion, the quadratic trinomial on the left-hand 
side of (78) is stable, since the inequality (76) implies that 
all the coefficients of this trinomial are positive. The reasons 
for such stabilization at first glance are not entirely clear 
and are explained below, with a physical interpretation and 
discussion of the results. 

In the general case, the characteristic equation (73) 
should be solved only numerically, and separately for each 
set of parameters 1,α  1,L  2,L  1,δ  2.δ  For unstable perturba-
tions, it is possible to find – just as it is done in [30] – the 
wavelength λm with the maximum increment of the ampli-
tude growth. The physical realization of such perturbations 

should be expected primarily. The quantity λm may be adopt-
ed as the estimate for the mean dimension of irregularities on 
the flame front. The space-time structure of the combustion 
wave also can be calculated at the early stage of autoturbuli-
zation, but it is the subject of special research.

Let us calculate the value of the function ( )1 1 2 1 2; , , , , ,F z L Lξ α δ δ  
( )1 1 2 1 2; , , , , ,F z L Lξ α δ δ   under z=0 in the general case. There is

( ) ( )2221
0 1 0.

2
LF e ξ− δ

= − <

 		  (79)

The inequality in (79) holds for any non-zero (i. e., cor-
responding to multi-dimensional perturbations) values of ξ.

Let us consider the limit of the function F(z) under 
z→+∞. If this limit exists, then it belongs to the set of real 
numbers or is infinite, i. e., it can be considered that 

( ) ( ).F D D+∞ = −∞ ≤ ≤ +∞  			   (80)

It is obvious, that the inequality

0 ‒D≤ ≤ +∞  		  (81)

is a sufficient condition for the existence of unstable roots of 
the characteristic equation (73).

To avoid the numerical solution of equation (73), for each 
specific set of parameters 1,α  1,L  2,L  1,δ  2δ  the limit F(z) can 
be calculated under z→+∞. This limit exists for almost any 
set of parameters. This makes it possible to apply sufficient 
condition for instability (81). 

Thus, the characteristic equation (73) is analyzed in 
terms of unstable roots existence. It is proved that in the 
limiting case 1 0,L →  the characteristic equation always 
has roots with a positive real part. In the other limiting 
case ξ→0(λ→∞), the roots of the characteristic equation are 
stable. For the general case of the equation (73), a sufficient 
condition for instability is obtained. 

7. Physical interpretation of the results

Let us consider the obtained mathematical results from 
the point of view of physics of the solid fuel burning process.

The instability of the roots of the characteristic equation 
in the limiting case 1 0,L →  corresponding to the decompo-
sition of solid fuel during combustion according to the “solid 
phase – gas” scheme means that the combustion process be-
comes turbulent and can be accelerated. Such acceleration 
can lead to the development of explosive processes – deflagra-
tion explosion or detonation. The only factor stabilizing the 
combustion process is the compressibility of the medium [9], 
which was not taken into account in this problem. But the 
compressibility of the medium begins to play a significant 
role only from the moment when the turbulent flame reaches 
a sufficiently high velocity. If stabilization due to compress-
ibility is not possible at this stage, then the transition of 
combustion to explosion – deflagration or detonation – is 
inevitable. Actually, for this reason, only two combustion 
modes are observed, in which solid fuel passes directly into 
the gas phase (sublimates) [2, 19, 22]: developed turbulence 
(developed deflagration [19]) and explosion (usually detona-
tion). In this case, however, the following should be noted.  

Firstly, in the present study, the flow area is not limited 
along the Oy axis, while the real solid-fuel charge has a fi- 
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nite diameter. Therefore, the conclusion about distortion 
of the flame shape and autoturbulization of the combustion 
process can only be attributed to solid fuel charges of a 
sufficiently large diameter. If the diameter of the charge is 
less than the wavelengths of unstable perturbations, i. e., 
the charge is quite narrow, then two-dimensional instability 
does not occur at all, and the question of one-dimensional 
instability (without distorting the shape of the flame front) 
must be considered separately. In this case, a vibrational 
combustion regime may arise [17–19]. Secondly, in the 
present study, the flow area is not limited along the Ox axis. 
However, each charge of solid fuel has a certain finite extent, 
so the complete burnout of the charge can occur even before 
the combustion-explosion transition. This question is related 
to determining the explosive induction distance and the time 
of combustion-explosion transition [9].

The physical interpretation of the mathematical results 
obtained for the limiting case 1 0,L →  corresponding to 
the absence of a liquid film, naturally extends to the case 

1 2 1,L L < 

  when the liquid film is very narrow. This is in 
agreement with the results of the study [24], where the case 
of a narrow liquid film was analyzed in detail from the per-
spective of the erosive combustion theory for the physical 
explanation of the negative erosion effect (Vilyunov – Dvo-
ryashin effect). 

An interesting fact is the stability of the roots of the 
characteristic equation in the limiting case ξ→0(λ→∞). 
The result looks somewhat paradoxical, since the physical 
reasons for the stabilization of the process are not entirely 
clear. Viscosity is always a significant stabilizing factor for 
burning [24, 30]. But in this case, it should not directly 
influence the development of disturbances. In fact, α1→0, 
and in accordance with (17), α1 is a quantity that is pro-
portional to the viscosity of the liquid film. However, the 
fact of taking into account the diffusion of the vortex per-
turbations upstream in the area “1”, which occurs only in 
a viscous liquid, already represents a viscous effect. In ad-
dition, the perturbation of the liquid-gas interface ε1(y, t) 
and the perturbation of the instantaneous combustion  
front ε2(y, t) are perturbations of various amplitudes. 
Therefore, zone “2” of the gas phase of the fuel has a vari-
able thickness (Fig. 2) in a perturbed state (this factor was 
not taken into account in [24]). It is known that a change 
in the thickness of the flame zone under the action of per-
turbations is a stabilizing factor for the homogeneous gas 
mixtures combustion [30]. Obviously, this same effect –  
perhaps just a mechanical one – takes place in this case 
too. And finally, it should be noted that the passage to 
the limit h→∞ (λ→∞) corresponds not only to long-wave 
perturbations, but also, with some notes, to one-dimen-
sional perturbations. For such perturbations, there are no 
geometric distortions of the phase interface and the flame 
front. If initially to solve the problem of stability of station-
ary combustion of solid fuel (Fig. 1) with respect to small 
perturbations proportional to exp(–iωt), then the solution 
to this problem for an incompressible medium is ω=0. This 
is a neutral case, which requires a change in the problem 
statement. The problem should be set taking into account 
compressibility [31]. Thus, there is no instability of one-di-
mensional perturbations in an incompressible medium.

The above factors fully explain the stability of the char-
acteristic equation roots in the limit case ξ→0 (λ→∞). This 
fact alone indicates the stabilizing effect of the liquid phase 
on the combustion process for solid fuel. The latter is con-

sistent both with the results of theoretical studies [24], and 
with the experimental observations data [22, 23]. 

The sufficient instability condition (81) contains a quan-
tity D, which, generally speaking, depends on the parameters 
ξ, α1 1,L  2,L  δ1, δ2. For each specific case of combustion, the 
values 1,L  2,L  δ1, δ2 as well as the viscosity of the liquid film 
ν1, velocity u1, characterizing the rate of evaporation of the 
liquid film, and the total length L of the fuel gasification zone 
(consisting of areas “1” and “2”) are completely determined. 
Therefore, the inequality (81) becomes an inequality for the 
perturbation wavelength λ. The solution of this inequality 
allows us to calculate the wavelengths of unstable pertur-
bations, as well as the Reynolds numbers corresponding to 
them by the formula (74). 

Physical interpretation of the results indicates that they 
are in qualitative agreement with the results of experimental 
observations and other theoretical studies. 

8. Discussion of the results of the study of combustion 
stability of solid fuels with a two-phase gasification zone

The main results of this study include:
– theoretical confirmation of the well-known conclusion 

about the instability of combustion of solid fuel, decompos-
ing according to the “solid phase – gas” scheme; 

– mathematical proof of the instability of combustion 
of solid fuel with a two-phase gasification zone for the case 
when the length of the liquid phase layer is much less than 
the total length of the gasification zone;

– evidence of the stabilizing effect of the liquid film in 
the gasification area on the combustion process as a whole;

– a sufficient condition for the instability of solid fuel 
combustion obtained for the general case of combustion of 
solid fuel with a two-phase gasification zone.

Confirmation of the conclusion about the instability of 
solid fuel combustion [19, 24] was obtained under general 
assumptions. In contrast to [19, 31], in this study perturba-
tions are not assumed to be one-dimensional. In this case, 
two-dimensional perturbations that are generated by the 
distorted flame front are taken into account. This factor is 
not considered in [24]. However, when studying the stabil-
ity of gas combustion, the perturbation of the flame front 
(instantaneous combustion front) is taken into account 
in any statement of the problem [1, 3, 29, 30, 32, 33]. It is 
proved experimentally [34–36] that combustion acoustic 
perturbations generated by the flame affect the development 
of combustion instability.

The case when the length of the liquid phase layer is much 
less than the length of the gasification zone is considered par-
ticularly. For this case, the mathematical proof of the insta-
bility of solid fuel combustion was made taking into account 
variability of the width of the gas phase zone of the fuel. This 
significant factor was not taken into account in [24] along 
with the perturbations in the combustion products area.

The stabilizing effect of the liquid film in the gasifica-
tion area on the solid fuel combustion process is ultimately 
explained by the liquid viscosity and the variability of the 
width of the gas phase zone of the fuel. The stabilizing 
effect of viscosity upon combustion of liquids and gases is 
known [30]. Obviously, the same effect also occurs for solid 
fuels with a two-phase gasification zone.

The sufficient condition (81) for the instability of solid 
fuel combustion in many cases allows proving the instabil-
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ity of the process without solving the characteristic equa-
tion (73). This condition is not necessary and does not allow 
proving the stability of combustion.

This study does not take into account the size of the 
solid fuel charge. Initially, it is assumed that the charge has 
an infinite length in all directions. This assumption seems 
justified for charges of sufficiently large sizes and is typical 
for problems on combustion stability [1–3, 19, 29]. Taking 
into account the finite sizes of the charge significantly com-
plicates the problem by setting the boundary conditions on 
the charge surface.

Concluding the discussion of the obtained results, we 
can outline the following areas for further research.

First, a detailed numerical analysis of the characteristic 
equation (73) is possible. But in order for such an analysis to 
be of practical importance, it is necessary to collect a large 
amount of confirmed data on the parameters of the stationary 
combustion complex being studied for stability. These data 
should contain information on the combustion of different 
types of solid fuel under various physical conditions. Based 
on numerical analysis of the characteristic equation (73),  
it is possible to calculate the space-time structure of the 
combustion wave at an early stage of autoturbulization – the 
main ideas of this calculation are indicated in [30, 37].

Secondly, it is of certain interest to take into account the 
compressibility of the medium in the fuel gas phase area “2” 
and in the combustion products area “3”. The solution to this 
problem can be of fundamental importance for assessing the 
possibility of combustion-explosion transition [9]. In addi-
tion, the medium in the areas “2” and “3” is much more com-
pressible than in the liquid phase area “1”. It can be expected 
that compressibility will have a certain stabilizing effect on 
the development of perturbations [9, 37]. 

Third, the instantaneous combustion front x=L2 (Fig. 1), 
which models the flame as a discontinuity surface, can also 
be considered as some area of finite extent [30]. But in this 
case, viscous effects must be taken into account in all flow 
areas [30], which from a mathematical point of view signifi-
cantly complicates the problem and increases the order of the 
functional determinant on the left side of the characteristic 
equation.  

Fourth, it is possible to consider the stability of the sol-
id fuel combustion process in closed or half-open volumes 
(combustion chambers) taking into account the correspond-
ing boundary conditions. This should considerably increase 
the practical significance of the study.

And finally, the solution of the problem of the hydrody-
namic stability of solid fuel combustion in the two-phase 
(“liquid-gas”) gasification zone presented in this study can 
be applied to the problem of stability of liquid fuel combus-
tion in large-diameter chambers [18]. The possibility of such 

analogy was indicated in [31, 38]. In this case, the rigid wall 
x=–L1 (Fig. 1) models the end surface of the combustion 
chamber, and not the surface of the fuel in the solid phase (as 
in the present study). Then, the area “1” corresponds to the 
area of liquid fuel. Area “2” corresponds to the gasified state 
of the fuel. This area may be completely absent if there is no 
preliminary gasification of liquid fuel during its combustion. 
Area “3” remains the area of combustion products. In so do-
ing, it makes sense to consider only the limiting case 2 0L →  
(when the combustion of liquid fuel is carried out without its 
preliminary gasification) and the case 1 2.L L 



9. Conclusions

1. In this study, physical and mathematical models of the 
solid fuel combustion process in the presence of small per-
turbations are developed. As a scheme of solid fuel decompo-
sition during combustion, the “solid phase – liquid phase –  
gas” scheme is adopted. A characteristic feature of the sim-
ulation is consideration of the hydrodynamic parameters 
perturbations in the combustion products area and taking 
into account the geometrical distortion of the flame front.

2. The problem is formulated for finding a dimensionless 
complex eigenvalue, the positiveness of the real part of which 
means the instability of the combustion process. The char-
acteristic equation in the indicated eigenvalue is obtained. 
This equation is a multi-parameter algebraic equation, the 
left side of which is the tenth-order functional determinant 
(with the right-hand side equal to zero). The characteristic 
equation is greatly simplified – the order of the determinant 
before its direct calculation is reduced to the fourth.  

3. The characteristic equation is analyzed in terms of 
unstable roots existence. It is proved that in the limiting case 
of the absence of a liquid phase of the fuel, the characteristic 
equation always has unstable roots; the same conclusion can 
be made when the thickness of the liquid film is very small 
in comparison with the length of the entire gasification zone. 
In another limiting case – for perturbations with an infinite 
wavelength – a transition to stability is established, which 
indicates the stabilizing effects of a viscous liquid film and 
variability of the gasification zone length. A sufficient insta-
bility condition is obtained for the general case.

4. The physical interpretation of the results obtained 
mathematically makes it possible to explain the effects of 
autoturbulization of the combustion process and possible 
combustion-explosion transition. An explanation of the 
Vilyunov-Dvoryashin effect from the standpoint of stability 
theory is also confirmed. The results obtained are in quali-
tative agreement with the results of other theoretical studies 
and experimental data. 
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1. Introduction

The significant cost of natural gas, as well as the need to 
comply with stringent environmental safety requirements 
of industrial enterprises, causes the transition of the energy 
sector and other industries to an increase in the use of solid 
fuel with its preliminary gasification. Gasification is known 
to be a process that involves the use of heat and water vapor 
to convert carbon-containing materials to syngas, which in-

cludes combustible gases such as carbon monoxide, hydrogen 
and methane. 

This, in turn, led to the appearance of a large number 
of developments of reactor equipment for gasification and 
research of gasification of solid fuels and biomass, in partic-
ular, by numerical methods of computational hydrodynam-
ics [1–13]. These works do not consider the use of existing 
industrial furnace equipment for solid fuel gasification 
processes. Thus, the use of synthetic gas obtained from the 
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An assessment of the feasibility of using the existing 
equipment of a rotary kiln cooler drum for heat treatment 
of a carbon-containing filler to produce synthesis gas 
using production waste in the form of a dust fraction of 
heat-treated petroleum coke or anthracite is carried out. 
A mathematical model of the process of gasification of 
carbon particles is formulated in the continuous-discrete 
formulation, including thirteen global reactions, of which 
four are heterogeneous and nine are homogeneous. A 
numerical model of gasification of a dust fraction of a car-
bon-containing filler in the rotary kiln cooler drum in the 
axisymmetric formulation is developed. The convergence 
of the numerical solution of the gasification problem by 
the grid step is investigated. It is found that the computa-
tional grid, which includes 73,620 cells and 75,202 nodes, 
leads to an error in determining the main parameters of the 
model of no more than 1–2 %. Verification of the devel-
oped numerical model is performed. It is found that the 
difference between the molar fractions of CO and H2, the 
values of which were obtained by various software prod-
ucts (Fluent, NASA CEA), is in the range of (2.8...5.8) %.  
Using the developed numerical model of the process of 
gasification of a carbon-containing filler in the rota-
ry kiln cooler drum, the quantitative composition of the 
combustible components of the syngas for different initial 
parameters is determined. It is found that with the ratio 
О2/С=(42.7...51.6) %, the predicted quantitative com-
position of the combustible gases of synthesis gas in molar 
fractions is СО=(32.8...36.9) %, Н2=(17.1...18.4) %  
and CH4=(0.03...0.16) %. The possibility of using the 
NASA CEA program, intended for operational calcula-
tions of equilibrium chemistry, for engineering calcu-
lations of the material composition of synthesis gas of 
industrial furnace equipment, is shown

Keywords: rotary kiln, cooler drum, carbon-con-
taining material, heat treatment, gasification, syngas, 
numerical simulation
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