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1. Introduction

The Hungarian method for solving the assignment prob-
lem was developed and published in 1955 [1]. It was named 
the Hungarian method because two theorems by two Hun-
garian mathematicians [2, 3] were used. In 1957 [4], it was 
noticed that this algorithm was strongly polynomial and 
has a complexity of order O(n4). This is the reason why the 
Hungarian method is also known as the Kuhn-Munkres al-
gorithm. Later on, in 1971 [5] and 1972 [6], it was improved 
to a complexity of order O(n3). A lot of work has been done 
on this algorithm after that but up to now this algorithm 
still has an obvious weakness. A smallest uncovered element 
is selected to create a single zero at every iteration. In this 
paper, this weakness is alleviated by selecting more than 
one smallest uncovered element thus creating more than one 
zero at every iteration to come up with what we now call the 
Accelerating Hungarian (AH) method.

Assignment model and the Hungarian method have appli-
cation in addressing the Weapon Target Assignment (WTA) 
problem. This is the problem of assigning weapons to targets 
while considering the maximum probability of kill. The as-
signment problem is also used in the scheduling problem of 
physicians and medical staff in the outpatient department 
of large hospitals with multi-branches. The mathematical 
modelling of these assignment problems results in complex 
problems. A hybrid meta-heuristic algorithm SCA-VNS 
combining a Sine Cosine Algorithm (SCA) and Variable 

Neighbourhood Search (VNS) based on the Iterated Hun-
garian algorithm is normally used.

2. Literature review and problem statement

A lot of work has been done on the Hungarian algorithm 
but up to now this algorithm still has an obvious weakness. 
A single smallest uncovered element is selected to create a 
single zero at every iteration. In this paper, this weakness 
is alleviated by selecting more than one smallest uncovered 
element thus creating more than one zero at every iteration 
to come up with what we now call the Accelerating Hun-
garian (AH) method.

The Accelerating Hungarian method is not a new idea. 
This idea has been applied to the Hungarian method be-
fore in [7]. In that paper, parallel versions of two different 
variants which are the classical and alternating tree of the 
Hungarian algorithm for solving the Linear Assignment 
Problem (LAP) were used. The main contribution of that 
paper noted was the efficient parallelization of the aug-
menting path search phase of the Hungarian algorithm. 
Computational experiments on problems with up to 25 mil-
lion variables reveal that the GPU-accelerated versions are 
extremely efficient in solving large assignment problems, as 
compared to their CPU counterparts. Tremendous parallel 
speedups were achieved for problems with up to 400 million 
variables.
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The Hungarian method has application in addressing 
the Weapon Target Assignment (WTA) problem. This is 
the problem of assigning weapons to targets while consid-
ering the maximum probability of kill. In [8], various model 
formulations, exact algorithms, and heuristic algorithms 
for the static and dynamic WTA were considered. The for-
mulations used in that paper were placed into a comparable 
form so as to provide an insight into the developments of 
the defence-related WTA problems. The available solution 
methods were compared.

The existing Hungarian method has the weakness of 
assigning some jobs to dummy or pseudo machines in those 
cases whereby the number of jobs is more than the machines. 
In real life, this does not make sense since those jobs as-
signed to dummy machines are not done. In real life, there 
is a need to execute all the jobs. This purpose can be served 
by assigning multiple jobs to a single machine. The paper [9] 
proposes a Modified Hungarian Method for solving unbal-
anced assignment problems which gives the optimal policy 
of assignment of several jobs to a single machine. 

The paper [10] investigated the scheduling problem of 
physicians and medical staff in the outpatient department 
of large hospitals with multi-branch. The mathematical 
modelling of this assignment problem resulted in a complex 
problem. A hybrid meta-heuristic algorithm SCA–VNS 
combining a Sine Cosine Algorithm (SCA) and variable 
neighbourhood search (VNS) based on the Iterated Hungar-
ian algorithm was used. The performance of the scheduling 
model obtained is better than in other compared algorithms.

The paper [11] focuses on an extension of the assign-
ment problem with additional conflict (pair) constraints 
in conjunction with the assignment constraints and binary 
restrictions. Unlike the well-known assignment problem, 
this problem is NP-hard. A branch-and-bound algorithm and 
a Russian Doll Search algorithm using the assignment prob-
lem relaxations for lower bound computations were used. 
From the computational experiments done, the proposed 
algorithm is efficient.

In [12], The Reviewer Assignment Problem (RAP) is 
presented. This is one of the most important and apparent 
processes that involves the process of assigning a review-
er to a paper. Of the factors studied, it was observed that 
‘unanimity’ is the most appropriate measure for the overall 
review process. The use of performance measures such as 
matching score, authority, coverage, and diversity is the 
most suitable for measuring the performance of phase one – 
matching paper and reviewer. It was also noticed that load 
balance, fairness and accuracy are suitable for measuring the 
performance of phase two that assigns a reviewer to a paper 
by satisfying constraints. The study concluded that a hybrid 
approach with the proper combination of these measures 
is the best for measuring the performance of the process of 
assigning a reviewer to a paper.

The paper [13] introduced the concept of the demand 
correlation pattern (DCP) to describe the correlation among 
items, based on which a new model is constructed to address 
the storage location assignment problem (SLAP). To solve 
the model, a heuristic and a simulated annealing method 
were developed. The proposed methods were examined and 
compared using both real data collected from an online re-
tailer and numerical instances that are randomly generated.

In [14], a new graph-theoretic proof of the tropical Jacobi 
identity is presented. This identity was applied to optimal 
assignments with supervisions. That is, optimally assigning 

multiple tasks to one team, or daily tasks to multiple teams, 
where each team has a supervisor task or a supervised task.

In general, the assignment problem is formulated as 
given in Section 4. The variants of the assignment problems 
presented in sources [7–14] are obtained by modifying the 
constraints and objective function of Table 1.

3. The aim and objectives of the study

The aim of the study is to improve the Hungarian meth-
od for linear assignment problems so that it becomes more 
efficient.

To achieve the aim, the following objectives have been set:
– to increase the number of the smallest uncovered ele-

ments;
– to create more than one zero elements at each iteration;
– to illustrate the proposed algorithm by an example.

4. Assignment problem

Let any assignment problem be given by Table 1.

Table 1

Assignment problem in general

Source

c11 c12 c13 … c1n 1

c21 c22 c23 … c2n 1

c31 c32 c33 … c3n 1

… … … … … …

c11 cm2 cm3 … cmn 1

Demand 1 1 1 1 1 D

Where cij is the cost of the assignment. This is a balanced 
problem, i. e. the number of rows (n) is equal to the number of 
columns (m), i. e. D=n=m. The objective is to minimize the 
total assignment cost.

4. 1. Kőnig’s theorem
In a bipartite graph G=(S, T; E), the minimum num-

ber of elements of S exposed by matching is equal to the 
maximum of the deficit h(X) over the subsets of S where 

(X) : ( )h X X= − Γ  and Γ(X) denotes the set of elements of 
T having a neighbour in X. In particular, there is a match-
ing covering S if and only if ( )X XΓ ≥

 holds for every 
subset .X S⊆

Proof.
There are two main ways of proving this theorem. 

These are the constructive proof and using the linear pro-
gramming primal-dual relationship. In this paper, we use 
the constructive proof. For any matching M, we orient the 
edges in M from T to S and all other edges from S to T. Let 
Rs and RT denote the set of nodes of S and of T, respectively 
that are exposed by M. Let Z denote the set of nodes of the 
resulting directed graph which can be reached from RT by 
a directed path. If the intersection of RT and Z is not empty 
(i. e. TR Z ≠ φ ) then there is a path from Rs to RT that alter-
nates in M and then the symmetric difference of M and P is 
a matching M 1with 1 1.M M= +  In addition, if TR Z ≠ φ

then : ( ) ( )L T Z S Z= −  is a set of nodes covering all edges 
and .M L=  This theorem was published in 1931 [1].
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4. 2. Egerváry’s theorem
In the same year of 1931, Kőnig’s theorem was extended 

to Egerváry’s theorem [2]. Let G=(S, T; E) be a complete 
bipartite graph with S T=  and let :c E Z+→  be a nonneg-
ative integer-valued weight function. The maximum weight 
of a perfect matching of G is equal to the minimum weight of 
a nonnegative, integer-valued, weighted-covering of c where 
a weighted-covering is a function : S T Z+π →  for which 
π(u)+π(v)≥c(uv) for every uv E∈  and the weight of π is de-
fined to be [ ]( ) : .v v SUTπ ∈∑

Proof.
Let π be a nonnegative integer-valued weighted-covering 

of c with minimum weight. If there is a perfect matching M 
in the subgraph Gπ of tight edges, where an edge uv is called 
tight if ( ) ( ) ( )u v c uvπ + π ∈  then M is a maximum weight per-
fect matching of G whose weight is equal to the weight of π.  
If there is no perfect matching in Gπ then Kőnig’s theorem 
implies that there is a deficient set X S⊆  in .Gπ  Increase 
the π-value of each node in ( )

xG XΓ by 1 and decrease the 
π-value in X by 1. Using this we obtain another weighted 
covering π1 of c whose weight is smaller than that of π. In that 
case where π1 is negative, increase π1-values on the elements 
of S by 1 and decrease the π1-values on the elements of T by 1.  
Since G is complete bipartite and c≥0. the resulting π11 is a 
nonnegative weighted-cover of c whose weight is smaller than 
that of π in a contradiction with the minimum choice of π.

4. 3. Hungarian method
Hungarian algorithm was developed and published in 

1955 [1]. It was named the Hungarian algorithm because it was  
based on the works of two Hungarian mathematicians. In 1957, it  
was shown that the Hungarian algorithm is strictly polynomial.

Step 1. Subtract the smallest entry in each row from all 
the other entries in the row. This will make the smallest en-
try in the row now equal to 0.

Step 2. Subtract the smallest entry in each column from 
all the other entries in the column. This will make the small-
est entry in the column now equal to 0.

Step 3. Draw lines through the row and columns that 
have 0 entries such that the fewest lines possible are drawn.

Step 4. If there are n lines drawn, an optimal assignment 
of zeros is possible and the algorithm is finished. If the num-
ber of lines is less than n, then the optimal number of zeroes 
is not yet reached. Go to the next Step 5.

Step 5. Find the smallest entry (es) not covered by any 
line. Subtract this entry from each row that isn’t crossed out, 
and then add it to each column that is covered by two lines. 
Then, go back to Step 3.

4. 3. 1. Numerical illustration of the Hungarian method
Solve the following assignment problem using the Hun-

garian method (Table 2).

Table 2
Given assignment problem

Worker
10 8 3 9 24 13 1
14 24 2 32 18 12 2
44 16 19 22 15 19 3
2 2 3 1 1 1 4

31 32 4 43 28 41 5
25 62 2 29 46 22 6

Job 1 2 3 4 5 6

The Hungarian algorithm steps are presented from  
Table 3 to Table 17.

Table 3
Row minima and column minima

10 8 3 9 24 13

14 24 2 32 18 12

44 16 2 22 15 19

2 2 3 1 1 1

31 32 4 43 28 41

25 62 2 29 46 22

Table 4
Subtracting the row minima

7 5 0 6 21 10

12 22 0 30 16 10

42 14 0 20 13 17

1 1 2 0 0 0

27 28 0 39 24 37

23 60 0 27 44 20

Table 5
Subtracting the column minima

6 4 0 6 21 10

11 21 0 30 16 10

41 13 0 20 13 17

0 0 2 0 0 0

26 27 0 39 24 37

22 59 0 27 44 20

Table 6
Covering zeros with minimum number of lines (iteration 1)

6 4 6 21 10 

11 21 30 16 10

41 13 20 13 17

26 27 39 24 37

22 59 27 44 20

The number of lines h1=2. This implies that the solution 
is not optimal. The smallest uncovered element is es=4. We 
then add 4 to the elements covered by two lines and subtract 4  
from all elements that are uncovered as given in Table 7.

Table 7

Adding 4 to the elements covered by two lines and subtract 
4 from the uncovered elements

2 0 0 3 17 6

7 17 0 26 12 6

37 9 0 16 9 13

0 0 6 0 0 0

22 23 0 35 20 33

28 55 0 23 40 16

Table 8

Covering zeros with minimum number of lines (iteration 2)

7 17 26 12 6

37 9 16 9 13

22 23 35 20 33

28 55 23 40 16
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The number of lines h2=3. This implies that the solution 
is not optimal. The smallest uncovered element is es=6. We 
then add 6 to the elements covered by two lines and subtract 6  
from all elements that are uncovered as given in Table 9.

Table 9

Adding 6 to the elements covered by two lines and 
subtracting 6 from the uncovered elements

2 0 6 3 17 6

1 11 0 20 6 0

31 3 0 10 3 7

0 0 12 0 0 0

16 17 0 29 14 27

22 49 0 17 34 10

Table 10

Covering zeros with minimum number of lines (iteration 3)

2 3 17

1 20 6

31 10 3

16 29 14

22 17 34

The number of lines h3=4. This implies that the solution 
is not optimal. The smallest uncovered element is es=1. We 
add 1 to all elements covered by two lines and subtract 1 
from all elements that are uncovered as given in Table 11.

Table 11

Adding 1 to the elements covered by two lines and 
subtracting 1 from the uncovered elements

1 0 6 3 17 6

0 11 0 19 5 0

30 3 0 9 2 7

0 1 13 0 0 1

15 17 0 28 13 27

21 49 0 16 33 10

Table 12

Covering zeros with minimum number of lines (iteration 4)

30 3 9 2 7

15 17 28 13 27

21 49 16 33 10

The number of lines h4=4. This implies that the solution 
is not optimal. The smallest uncovered element is es=2.  
We add 2 to all elements covered by two lines and sub-
tract 2 from all elements that are uncovered as given in 
Table 13.

Table 13
Adding 2 to the elements covered by two lines and 

subtracting 2 from the uncovered elements

1 0 8 3 17 6

0 11 2 19 5 0

28 1 0 7 0 5

0 1 15 0 0 1

13 15 0 26 11 25

19 47 0 14 31 8

Table 14

Covering zeros with minimum number of lines (iteration 5)

13 15 0 26 11 25

19 47 0 14 31 8

The number of lines h5=5. This implies that the solution 
is not optimal. The smallest uncovered element is es=8. We 
then add 8 to the elements covered by two lines and subtract 8  
from all elements that are uncovered as given in Table 15.

Table 15

Add 9 to the elements covered by two lines and subtract 8 
from the uncovered elements

1 0 16 3 17 6

0 11 10 19 5 0

28 1 8 7 0 5

0 1 23 0 0 1

5 7 0 8 3 17

11 39 0 6 23 0

Table 16

Covering zeros with minimum number of lines (iteration 6)

28 1 5

5 7 17

11 39 0

The number of lines h6=6. This implies that an optimal 
solution is available as given in Table 17.

Table 17

Optimal allocation

1 0 16 3 17 6

0 11 10 19 5 0

28 1 8 7 0 5

0 1 23 0 0 1

5 7 0 8 3 17

11 39 0 6 23 0

The Hungarian method has many versions and the orig-
inal algorithm had asymptotic complexity O(n4) as given 
in [4]. Then later on it was shown to have a complexity of 
order O(n3) as given in [5, 6].

Strengths of the Hungarian method.
This method is easier to apply than the transportation 

simplex method. It is made up of only addition and subtrac-
tion operations and application of the optimality test. It can 
handle degenerate transportation problems better than the 
transportation simplex method.

Weakness of the Hungarian method.
The Hungarian method has the obvious disadvantage of 

selecting the smallest uncovered element which may happen 
to be only one number. In this case, it implies one zero is cre-
ated. Creating a single zero at every iteration is a weakness 
when the problem is large.

4. 4. Accelerating Hungarian method
A way can be used to alleviate the weakness of creating 

a single zero at every iteration. This is done by creating more 
than one smallest uncovered element at every iteration. Cre-
ating more than one zero in an iteration is the same as the 
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accelerating Hungarian method. After covering all the zeros 
with the minimum number of lines it can be noticed that 
some rows and columns can be changed without necessarily 
changing the minimum number of lines. In this paper, we 
call such rows and columns flexible rows or columns. This 
important fact can be used to increase the number of the 
smallest uncovered elements to more than one. In order to do 
this, there is a need to identify the flexible rows and columns 
immediately after covering all the zeros. Sometimes a set of 
columns or rows can be flexible but cannot be changed at the 
same time. Such a set of rows or columns is called a flexible 
dependent set.

4. 4. 1. Numerical illustration 2 – flexible dependent set
Table 18 is a table of reduced cost entries with zeros cov-

ered by a minimum number of lines.

Table 18

Zeros covered with a minimum number of lines

12 35 27

31 28 23

22 49 20

c1 c2 c4

From the columns c1 to c4, it can be noted that three of 
these columns are flexible and dependent. The columns are 
c1, c2, c4 and these cannot all be changed at the same time. 
Only two columns can be changed at a time without chang-
ing the minimum number of lines covering the zeros.

4. 4. 2. Changing the flexible row or columns
Once the flexible rows and columns have been identified, 

then these can be changed to increase the number of the small-
est uncovered elements so as to make the Hungarian method 
efficient. As an illustration, we use Table 19 to Table 23.

Table 19

Identifying the smallest uncovered element

12 35 27

31 28 23

22 49 20

c1 c2 c4

In Table 19, the only smallest uncovered element is 12. 
There is a need to change the flexible columns so as to in-
crease the number of the smallest uncovered elements. To 
change the flexible columns, we select the smallest uncov-
ered elements in the other two columns as given in Table 20. 
These numbers are 28 and 20.

Table 20

Smallest uncovered elements in the other 2 columns

12 35 27

31 28 23

22 49 20

c1 c2 c4

In this case, these two numbers cannot all be changed at 
the same time. We have to fix the column of 28 and change 
the columns of 12 and 20. The smallest uncovered element 
is 12 and columns c1 and c4 are adjusted as (c1+16) and 

(c4+8), respectively. The resulting cost matrix is presented  
in Table 21. The number of the smallest uncovered elements 
has increased from 1 to 3.

Table 21

Adjusted cost matrix

28 35 35

47 28 41

38 49 28

This process of increasing the number of the smallest 
uncovered elements makes the proposed approach (AH) 
more powerful than the original Hungarian version. Sub-
tracting 28 from uncovered elements and adding 28 to all 
elements covered by two lines we have Table 22.

Table 22

Resulting cost matrix

0 7 8 7

19 0 6 13

0 0 31 0

10 21 0 0

In general, for any assignment cost matrix of the form 
given in Table 23, with columns c1, c2, c3,…, cn, integers  
λ1, λ2, λ3,…, λn≥0 can be used to change the columns to c1+λ1, 
c2+λ2, c3+λ3,…, cn+λn, such that the elements, (c21+λ1)= 
=(c12+λ2)=(c23+λ3)=…=(c3n+λn) as given in Table 23 and 
Table 24.

Table 23

Assignment cost matrix in general

c11 c12 c13 … c1n

c21 c22 c23 … c2n

c31 c32 c33 … c3n

… … … … …

cn1 cn2 cn3 … cnn

c1 c2 c3 … cn

Table 24

Cost matrix after adding integers to columns

(c11+λ1) (c12+λ2) (c13+λ3) … (c1n+λn)

(c21+λ1) (c22+λ2) (c23+λ3) … (c2n+λn)

(c31+λ1) (c32+λ2) (c33+λ3) … (c3n+λn)

… … … … …

(cn1+λ1) (cn2+λ2) (cn3+λ3) … (cnn+λn)

(c1+λ1) (c2+λ2) (c3+λ3) … (cn+λn)

A new cost matrix can be created by adding constants λ1, 
λ2,…, λn as given in Table 24 and the optimal solution does 
not change.

Columns of any balanced cost matrix can be changed 
by adding constants and this does not change the optimal 
solution.

4. 4. 3. Creating a column or row of only zeros
The costs in any column or any row of any balanced 

assignment problem can be made the same by adding con-
stants. Suppose we select column 1 and making all entries in 
this column the same we have Table 25.
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Table 25

First column of the same numbers

11c′ 12c′ 13c′ … 1nc′

11c′ 22c′ 23c′ … 2nc′

11c′ 32c′ 33c′ … 3nc′

… … … … …

11c′ 2nc′ 3nc′ … nnc′

Where ,ij ij ijc c k= +′ kij≥0 and constant. Subtracting 11c′  
from the first column of Table 25 we have Table 26.

Table 26

Subtracting 11c′
 
from the first column elements

0 12c′ 13c′ … 1nc′

0 22c′ 23c′ … 2nc′

0 32c′ 33c′ … 3nc′

… … … … …

0 2nc′ 3nc′ … nnc′

4. 4. 4. Subtracting or adding a constant to a row or 
column

In general, subtracting or adding a constant to a row or 
column does not change the optimal solution of any assign-
ment problem. The assignment problem can be represented 
as given in (1).

Minimize

1 1

,
n m

ij ij
i j

Z c x
= =

= ∑∑

1,
m

ij
j

x =∑ 			   (1)

1.
n

ji
i

x =∑

0.ijx ≥

Let pi be a constant subtracted from row i and qj be a con-
stant subtracted from column j. Thus, the constant element 
cij changes to ijc  as given in (2).

.ij ij i jc c p q= − − 		  (2)

( )
1 1 1 1

,
n m n m

ij ij ij i j
i j i j

c x c p p
= = = =

= − −∑∑ ∑∑ 		  (3)

1 1 1 1

,
n m n m

ij ij ij ij i ij j ij
i j i j i j j i

c x c x p x q x
= = = =

   
= − −     

∑∑ ∑∑ ∑ ∑ ∑ ∑  (4)

( )
1 1 1 1

,
n m n m

ij ij ij ij i j j
i j i j i j

c x c x p d q
= = = =

  
= − −      

∑∑ ∑∑ ∑ ∑ 	 (5)

1 1 1 1

constant.
n m n m

ij ij ij ij
i j i j

c x c x
= = = =

= −∑∑ ∑∑ 		  (6)

This important property can be exploited to solve the 
assignment problem. In solving assignment problems, zeros 
are created in rows and columns such that the total cost of 
the allocated cells is zero. Such a solution is optimal since all 
costs are nonnegative and there is no way the total cost can 
be less than zero.

4. 5. Accelerating Hungarian Method
Assuming a balanced assignment problem, the proposed 

Accelerating Hungarian (AH) method is summarized as 
follows:

Step 1. Create all zero row or column. Ensure that all 
other rows and columns have at least a zero.

Step 2. Cover all zeros with a minimum number of lines. 
If the number of lines is equal to n then an optimal solution 
is available. Else go to Step 3.

Step 3. Select the smallest uncovered element (es). Iden-
tify flexible rows and columns and their minima.

Step 4. From the flexible rows, select the largest smallest 
minimum (els). Adjust all other flexible rows and columns so 
that their smallest elements also become els.

Step 5. Subtract els from all uncovered adjusted ele-
ments. Add els to all elements covered by two lines and 
return to Step 2.

4. 5. 1. Illustration 3 – proposed Accelerating Hun-
garian method

Apply the AH method to the illustration given in Table 27.
Step 1.

Table 27

Creating the first column of same numbers

44 42 37 43 58 47

44 54 32 62 48 42

44 16 2 22 15 19

44 44 45 43 43 43

44 45 17 56 41 54

44 81 21 48 65 41

The first column of same numbers is created by (7).

1( 34),r + 2( 30),r + 3( 0),r +

4( 42),r + 5( 11),r + 6( 19).r + 		  (7)

Creating the first column of zeros we have Table 28.

Table 28

Creating the first column of zeros

0 42 37 43 58 47

0 54 32 62 48 42

0 16 2 22 15 19

0 44 45 43 43 43

0 45 17 56 41 54

0 81 21 48 65 41

The first column of zeros is created by (c1–44). Ensuring 
that we have a zero in every column, we have Table 29.
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Table 29

Ensuring at least a zero in all other columns

0 26 35 21 43 28

0 38 30 40 48 23

0 0 0 0 0 0

0 28 43 21 28 24

0 29 15 34 26 35

0 65 19 26 50 22

The other zeros in the other columns are created by (10).

2( 16),c −

3( 2),c −

4( 22),c −

5( 15),c −

5( 15),r −

6( 19).c − 			   (10)

Step 2.
Covering zeros with a minimum number of lines we have 

Table 30.

Table 30

Covering zeros with a minimum number of lines

26 35 21 43 28

38 30 40 48 23

28 43 21 28 24

29 15 34 26 35

65 19 26 50 22

The number of lines is h1=2 and is less than 6 which im-
plies an optimal solution is not available.

Step 3.
Columns c2 to c6 are flexible and dependent. The 

smallest uncovered element es=15 and the largest smallest 
minimum (els=26). The smallest uncovered number in the 
flexible columns is given in bold in Table 31.

Table 31

Smallest uncovered element and flexible columns

26 35 21 43 28

38 30 40 48 23

28 43 21 28 24

29 15 34 26 35

65 19 26 50 22

c2 c3 c4 c5 c6

Step 4
The flexible columns are adjusted as (c2+0), (c3+11), 

(c5+0) and (c6+4). The adjusted cost matrix is given in 
Table 32.

Table 32

Adjusted cost matrix

26 46 26 43 32

38 41 45 48 27

28 54 26 28 28

29 26 39 26 39

65 30 31 50 26

Step 5
Subtract (els=26) from all uncovered adjusted elements. 

Add 26 to all elements covered by two lines as given in 
Table 33.

Table 33

Subtracting 26 from uncovered elements and adding 26 to c31

0 0 20 0 17 6

0 12 15 19 7 1

26 0 11 5 0 4

0 2 28 0 2 2

0 3 0 13 0 13

0 39 4 5 24 0

The minimum number of lines h2=6, implying an optimal 
solution is available which is given in yellow.

6. Discussion of experimental results

From the numerical illustration of the known version of 
the Hungarian method given in Section 4. 3. 1, a single un-
covered element or cell is selected to create a single new zero 
element. As shown in this numerical illustration, 6 iterations 
are required to create new zeros so as to reach optimality. 

The Accelerating Hungarian method is illustrated in 
Section 4. 5. 1. In this illustration, the uncovered elements 
are slightly modified so that the number of the smallest 
elements increases to 6. As a result of this, 6 new zeros are 
created in just one iteration to reach optimality. The Accel-
erating Hungarian method has the obvious superiority of 
creating more zeros in one iteration than the conventional 
Hungarian method.

The limitation of the study is that there are no compu-
tational comparisons with other exact methods in terms of 
processing time to optimality. In this paper, this is consid-
ered as an area for further research.

The only disadvantage of the proposed Accelerating 
Hungarian method is that it requires more time in han-
dling the many uncovered elements. This challenge can 
be alleviated by adding additional parallel processors for 
those additional smallest uncovered elements. 
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7. Conclusions

1. After covering the zeros with the minimum number 
of lines, some flexible uncovered columns can be identi-
fied. These flexible columns can be used to generate more 
than one smallest uncovered element.

2. More than one smallest uncovered elements results 
in the creation of more zeros in one iteration. More zeros 
mean faster Hungarian steps toward the optimal solution.

3. The proposed Accelerating Hungarian method is il-
lustrated in Section 4.5.1. In this numerical illustration, it is 
shown that iterations are decreased from 6 to only one.

References 

1.	 Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2 (1-2), 83–97.  

doi: https://doi.org/10.1002/nav.3800020109 

2.	 Kőnig, D. (1931). Graphok ´es matrixok. Matematikai ´es Fizikai Lapok, 38, 116–119.

3.	 Egerváry, J. (1931). Matrixok kombinatorius tulajdons´agair´ol. Matematikai ´es Fizikai Lapok, 38, 16–28.

4.	 Munkres, J. (1957). Algorithms for the Assignment and Transportation Problems. Journal of the Society for Industrial and Applied 

Mathematics, 5 (1), 32–38. doi: https://doi.org/10.1137/0105003 

5.	 Edmonds, J., Karp, R. M. (1972). Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. Journal of the 

ACM (JACM), 19 (2), 248–264. doi: https://doi.org/10.1145/321694.321699 

6.	 Tomizawa, N. (1971). On some techniques useful for solution of transportation network problems. Networks, 1 (2), 173–194.  

doi: https://doi.org/10.1002/net.3230010206 

7.	 Date, K., Nagi, R. (2016). GPU-accelerated Hungarian algorithms for the Linear Assignment Problem. Parallel Computing, 57, 

52–72. doi: https://doi.org/10.1016/j.parco.2016.05.012 

8.	 Kline, A., Ahner, D., Hill, R. (2019). The Weapon-Target Assignment Problem. Computers & Operations Research, 105, 226–236. 

doi: https://doi.org/10.1016/j.cor.2018.10.015 

9.	 Rabbani, Q., Khan, A., Quddoos, A. (2019). Modified Hungarian method for unbalanced assignment problem with multiple jobs. 

Applied Mathematics and Computation, 361, 493–498. doi: https://doi.org/10.1016/j.amc.2019.05.041 

10.	 Lan, S., Fan, W., Liu, T., Yang, S. (2019). A hybrid SCA–VNS meta-heuristic based on Iterated Hungarian algorithm for physicians 

and medical staff scheduling problem in outpatient department of large hospitals with multiple branches. Applied Soft Computing, 

85, 105813. doi: https://doi.org/10.1016/j.asoc.2019.105813 

11.	 Öncan, T., Şuvak, Z., Akyüz, M. H., Altınel, İ. K. (2019). Assignment problem with conflicts. Computers & Operations Research, 111, 

214–229. doi: https://doi.org/10.1016/j.cor.2019.07.001 

12.	 Patil, A. H., Mahalle, P. N. (2020). Trends and Challenges in Measuring Performance of Reviewer Paper Assignment. Procedia 

Computer Science, 171, 709–718. doi: https://doi.org/10.1016/j.procs.2020.04.077 

13.	 Zhang, R.-Q., Wang, M., Pan, X. (2019). New model of the storage location assignment problem considering demand correlation 

pattern. Computers & Industrial Engineering, 129, 210–219. doi: https://doi.org/10.1016/j.cie.2019.01.027 

14.	 Niv, A., MacCaig, M., Sergeev, S. (2020). Optimal assignments with supervisions. Linear Algebra and Its Applications, 595, 72–100. 

doi: https://doi.org/10.1016/j.laa.2020.02.032 


