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1. Introduction

Compound shell structures are the force elements of 
construction structures, aircraft, and other systems of new 
equipment. During operation, shells may be subjected to 
external pressure and axial compression, which leads to a loss 
of stability of the original shape. The need to improve perfor-
mance of, for example, rocket and space equipment (RSE), as 
well as the reduced material consumption in structures, leads 
to the search for better shapes and the rational reinforcement 
by stiffeners, in particular, by a transverse force set (frames).

This work analyzes the geometric shapes of the median 
surface of shell structures, which, in some cases of loading, 
can lead to an increase in the stability of the compound sys-

tem under a combined external force impact. From this point 
of view, convex rotation shells are of interest, specifically, 
compound shell structures of the “barrel-ogive” type.

One of the requirements for engineering practice is to 
reduce the material consumption of a structure while main-
taining the stability of its original shape. This work focuses 
on solving the task of the equilibrium of a compound shell 
structure with respect to the local and overall buckling 
modes. In this case, we analyze the effect exerted by the 
character of change in the curvature of the meridian of com-
partments’ components on the rational rigidity characteris-
tics of the supporting frames. 

The relevance of this scientific issue is predetermined by 
the need to develop a method to study compound shell struc-
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This paper reports a study into the stability of a shell 
structure of the barrel-ogive type, supported by the dis-
cretely arranged intermediate frames, under the joint 
action of the uniform external pressure and axial com-
pressive efforts. 

A case of the sinusoidal approximation of the merid-
ian of the middle surface of shell compartments has been 
considered.

Governing differential equations have been built to 
study the stability of a compound shell structure taking 
into consideration the curvature radii of the "barrel" and 
"ogive" compartments under the joint action of axial com-
pression and uniform external pressure. A finite difference 
method has been used to integrate the fourth-order gov-
erning equations with variable coefficients. It is shown 
that an increase in the meridian curvature parameter 
exceeding 4 % leads, in some cases that involve the load-
ing by axial forces, to an increase in the critical external 
pressure by 1.5‒2 times.

The effect of stabilizing the growth of critical pres-
sure with an increase in the rigidity of the frames is illus-
trated for the different values of the meridian curvature 
and the number of supporting elements. A given effect 
makes it possible to draw conclusions about the possibil-
ity of determining the rational rigidity characteristics of 
the structure.

The effect of increasing critical pressure in the pres-
ence of a compressive force in the shells of the positive 
Gauss curvature, which is the result of internal stretch-
ing efforts in the circumference direction, has been inves-
tigated. In this case, a generatrix deviation from the ideal 
shape leads to an increase in wavenumbers in the cir-
cumferential direction while the stability is lost, which 
indicates an increase in the critical pressure. A further 
increase in the axial compression of the structure leads 
to the emergence of annular compressive efforts, which is 
a consequence of the reduction in the critical stresses of 
external pressure
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tures and analyze their stability under combined loading. The 
study results could be used to rationalize the RSE design.

2. Literature review and problem statement

A significant number of theoretical and experimental 
studies address the issue of the stability of thin shells, spe-
cifically rotation shells of the ideal geometric shape. Actual 
shell structures have imperfections in a geometric shape, 
which, in some cases, significantly affects their performance. 
In this case, there are the unresolved issues related to the 
stability of the components of geometrically imperfect shell 
structures, especially those supported by stiffeners.

In this body of research, one should note work [1], in 
which the analysis is limited to the effect of the axisymmetric 
initial imperfections on the stability of shells of the cylindrical 
shape under axial compression. The influence of the support-
ing annular stiffeners on the carrying capacity of cylindrical 
shells is studied in [2]. In this case, the researchers tackle 
certain types of external loading of the studied structures. 
Work [3] reports a numerical analysis into the performance of 
the geometrically imperfect composite cylindrical shells under 
combined loading by external efforts based on a non-linear 
method of finite elements. However, there are unresolved 
issues related to the influence exerted by supporting elements 
on the carrying capacity of the specified types of structures.

A study of the stability and rational design of the com-
bined “cone-cylinder” structure, taking into consideration 
its performance patterns when it is supported by the annular 
stiffeners, is reported in work [4], which could serve a basis 
to analyze the equal stability of the components of shell 
elements.

Worth noting is review [5] that reports the results of 
studies on the stability of smooth and supported shells of dif-
ferent geometric shapes and compound structures, including 
experimental research. It focuses on the possibility of using 
modern numerical algorithms and the role of experimental 
studies in the practice of designing actual structures. To a 
lesser extent, attention is paid to the interaction between the 
local and overall buckling modes of bulging in the analysis of 
carrying capacity.

Paper [6] outlines the results of an experimental study 
into the stability of a cylinder-cone structure under the action 
of internal pressure involving the analysis of axisymmetric 
and asymmetric forms of a stability loss based on the method 
of finite elements, which could be used to study the ribbed 
structures of complex configuration. Work [7] reports a study 
of the energy and deformed states of shells of the hemispheric 
and ogive shapes, taking into consideration the plastic defor-
mations of the material. The results of analyzing the effect 
exerted by an impact load on the behavior of certain types of 
shells are relevant for the compound shell structures.

A method to analyze the dynamic stability of cylindrical 
shells made from a composite material, taking into consider-
ation the geometric nonlinearity and shear deformations, is 
proposed in [8]; the issue of influence exerted by the force el-
ements supporting the structure remains relevant. An exper-
imental study and a finite-element analysis of the strength 
of a three-layer shell of a launch vehicle module are given 
in study [9] without taking into consideration the effect 
exerted by the discrete arrangement of intermediate frames.

As regards the application of the analytical-numerical 
methods for calculating the stability of compound struc-

tures, paper [10] proposed a hybrid asymptotic approach 
based on the WKB method for analyzing the cylinder-cone 
structure supported by frames under combined loading. The 
influence of geometric imperfections of the median surface of 
the compartments of a compound shell structure remains to 
be studied by researchers.

A new approach to solving the optimization problem in 
terms of the strength of the wafer shell sections of a launch 
vehicle is proposed in work [11], based on a finite-element 
method. However, the problem of optimal design reported in 
the work does not tackle the impact exerted by the meridian 
curvature of the median surface of the structure.

Paper [12] derived the governing equations of stability 
for a compound “barrel-ogive” structure under external pres-
sure. Of interest is the solution to the stability problem of the 
specified shell structure under the joint action of external 
pressure and axial compression efforts in order to analyze 
possible ways to increase critical loads and reduce material 
consumption of compound shell systems. The specified type 
of force shell system could be effective in terms of rational 
design, especially when building aerospace equipment. It 
is the approach outlined in work [12] that is applied in the 
current paper. In this case, the focus is on the analysis of 
compound shell structures under the joint action of exter-
nal loads that could cause a loss of stability. This allows us 
to argue about the relevance of the present study into the 
stability and rational design of the barrel-ogive-type struc-
tures under combined loading conditions. This relates to the 
fact that determining the rational rigidity characteristics 
of frames could significantly reduce the overall mass of a 
shell structure, while the effective choice of geometric char-
acteristics would significantly improve its stability under 
combined loading.

3. The aim and objectives of the study

The aim of this work is to study the elastic stability and 
rational design of the supported shell compartments of the 
positive curvature of the meridian of a compound structure 
under the action of static axial compression and uniform 
external pressure.

To achieve the set aim, the following tasks have been 
solved:

– to derive the governing differential equations of stabil-
ity of the thin-walled shells of the “barrel” and “ogive” shape, 
taking into consideration the curvature of the meridian of 
the middle surface; 

– to modify a finite-difference method to study the 
stability of the conjugated shells, considering the discrete 
arrangement of intermediate frames; 

– to propose an approach to choosing the rational param-
eters for a compound structure and to analyze the impact 
of the frame rigidity parameters on the effect of the equal 
stability of spans under combined loading; 

– to analyze the effect of a meridian curvature parameter 
on the magnitude of critical load and the character of a sta-
bility loss by the supported shells.

4. Governing equations of stability

We consider a compound shell rotation structure, ex-
posed to the influence of the normal external pressure q 
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and the axial compressive force T (Fig. 1). It is assumed that 
the structure has the following characteristics: thickness, h; 
elasticity module, E; a Poisson coefficient, v. The structure 
consists of two paired spans, the “barrel” and “ogive” types, 
whose axis of rotation is denoted through Oz. Compart-
ments could be supported by the discretely arranged frames, 
including docking ones. We solve both the problems on the 
local stability of individual sections and the overall stability 
of the structure in general.

Fig. 1. Schematic of a compound shell structure

It is assumed that the relative height of deviations from 
the cylinder and cone is less than one-fifth of its smallest 
linear size. This assumption makes it possible to choose, 
as the coordinate lines of the structures under study, 
the coordinate lines for the cylinder and cone. In this 
case, we introduce the following designations: s  and s ‒  
a linear meridional coordinate along the cylinder or cone 
generatrix, respectively, y ‒ the arc coordinate of the  
cylinder, φ ‒ the angular coordinate along the parallel circle 
of the conical shell.

A medium-length shell is considered, which is exposed 
to the combined effects of loads, provided the prevailing 
influence of external pressure, which makes it possible 
to use a “semi-moment-less” theory of thin shells. In this 
regard, such a combination of external loads is considered 
at which one half-wave is formed, when the stability is lost, 
along the meridian, and in the circumferential direction ‒  
n waves, and 

2 1.n
It is assumed that the “barrel-shaped” section, as a sur-

face of rotation, is approximated by the following function of 
the radius of a parallel circle in the cross-sections perpendic-
ular to the axis of rotation:

( ) π = +  
1 sin ,bar

z
r z R C

L
		  (1)

where L and R is the distance between the bases and the ra-
dius of the end cross-section of the barrel, respectively, barC  
is the relative elevation of the barrel lift.

For the “ogive” shell, the following designations are 
introduced (Fig. 1): l0 and l1 ‒ a distance along the Os 
axis to the smaller and larger bases, respectively, α ‒ the 
angle between the Os and Oz axes. It is assumed that the 
shell takes the following form of a parallel circle radius 
function in the cross-section perpendicular to the ro- 
tation axis:

( )  π  = a + −   − a 
1, 0

1 0

ctg sin ,
sinog og

z
r z z C R l

l l
	 (2)

where = asin ,z s  = a1, 1 cos ,ogR l  ogC  is the relative elevation 
of the “ogive” meridian. 

In accordance with the above assumptions, the following 
restrictions are imposed on the parameters of the “bar-
rel-shaped” and “ogive” shells [12]: 

≤ 1 5,ogC  ≤ ⋅ 0

1

1
,

5og

l
C

l
 

as well as 

≥
1

,
2

L
R

 0

1 0

1
cos .

l
l l

a ≤
− π

 

These inequalities make it possible to obtain the approx-
imate values of the curvature radii: 

‒ for a “barrel-shaped” compartment:

( )( )3/22
2

1
2

1
,

sinbar

r L
R

sr RC
L

+ ′
= − ≈ π′′ π



( )2

2 1 1 sin ;bar

s
R r r R C

L
π = + ≈ +′   

 	 (3)

‒ for an “ogive” compartment:

( )2

1 0
1 2

1

,
cos sin sinog

l l
R

C l

−
≈

π a a W




( )2 1ctg sin ,ogR s C l≈ a + W

 		  (4)

as well as the approximate distribution of stresses in the 
main state, described by a moment-less solution for the “bar-
rel-shaped” compartment

10 sin ,
2 in

bar

bar

s T
N qRC

sL R C
L

π
≈ − −

π π +  

 	 (5)

20 21 sin sin
2

bar
bar

RCs s
N qR C T

L L L
ππ π ≈ − + +  

 	 (6)

and the “ogive” compartment

( )
( )

( )

2 2
0

10 1

1

1

ctg
ctg sin

2 sin

,
2 sin cos sin

og

og

og

q s l
N qC l

s C l

T

s C l

− a
≈ − − a W −

+ W

−
π a a + W





	 (7)

( )
( )

( )

a + a × 
  π a −≈ − + 

× W +   −  
π

+ W
−





1

2 2 2 2
020

2

1 0

1
2

1 0

ctg ctg

cos
sin 1

2

sin ,
2

og

og

s C l

s lN q

l l

l C
T

l l
	 (8)

where 

( )0

1 0

.
s l

l l

π −
W =

−
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The circumferential and meridional efforts contain the 
terms that depend on an axial compressive force, with op-
posite signs. This is due to that for a convex shell the axial 
compression leads to an increase in the stretching circum-
ferential stresses. 

Based on curvature radii (3) and (4), the coefficients 
of the first quadratic surface forms and the differentia-
tion operators are calculated. The found characteristics, 
including (7), (8), are fitted to the system of basic equa-
tions as the particular derivatives from the theory of  
thin shells.

For a “barrel-shaped” shell, the following designations 
are introduced: 

1 ,
h
R

e =  
,

L
K

R
=  ( )212 1 ,w = − n  

the dimensionless coordinates ,x s L=  ,y Rj =  the di-

mensionless external normal pressure 
2

2bar

qR
Eh

χ =  and the   

axial compressive force 
2 .

2bar

T
Eh

h =
π

 In this case, the func- 
 
tion of radial movements and the function of efforts allow the 
following  representations

( ) ( ) ( ), cos ,bar barw x W x nj = ⋅ j

( ) ( ) ( )2, cos .bar barf x E h x nj = Φ ⋅ j 	 (9)

For the thin shells of a medium length, 2 1,K >  2 1,n   
therefore, it is possible to exclude the terms of the order 

above 
2 2

1
.

K n
 This makes it possible to exclude the function  

 
( )bar xΦ  from the system and derive a governing differential 

equation of the main stressed state relative to the deflection 
function of a “barrel-shaped” shell:

( ) ( ) ( )
( ) ( )

4 3 2

1 0 0,

IV
bar bar bar

bar bar

a W x a W x a W x

a W x a W x

+ + +′′′ ′′

+ + =′ 	 (10)

where 

( )
( )

( )
( )

( )

23 2 2
0 1

32 4 2 1
1 1

3 2 2 1 2 2
1

35 4

2

2 3 2
2

2

sin sin 1

sin 1

2 sin sin 2

sin 1

sin sin 1

9 sin 8 sin

6 sin

bar bar bar

bar bar

bar bar bar

bar bar

bar bar

bar bar

bar

a n C K x C x

n C x n

n C K C x x C

K C C x

C x C x

C x C x
n

C x

−

−

− −

−

−

= π e π π + h −

−π e π + χ + π e w +

+ π e w π − π − +

+π π + ×

π π + +

× π + π −
+

− π

;

sin 4 barx C

 
 

  
  + π −   

( )
( )

( )

( )
( )( )

2
1

32
1

22 2 4
1

2 2 1 2 4 2
1

2 1 2
1

3

2

cos sin 1

sin 1

sin sin 1

2 ;
1

2
3 sin 1 sin 1

bar

bar bar bar

bar bar bar

bar bar

bar

bar bar

a K x C x

C C x

K C x C x

n C K C

C

C x C x
n

−

−

− −

−

= π π + ×

 e π π + χ −
 
 − e π π π + h +
 
 + e w π + π ××  
  e w − −
  ×  − π + π +    

( )
( )

( )

( )
( )

( )

22
2

2

1

1

2 2 1 3 2
1

2 1 2
1

32

2
4

2

sin 1

sin sin 1

sin 1

2

sin 2sin

2 sin sin 1

3 sin
3 sin

sin 2

sin 1

bar

bar bar bar

bar bar

bar

bar bar

bar

bar

bar

bar

a K C x

C x C x

C x

n K C

C x x C

n x C x

C x
n x

x C

C x

−

− −

−

−

−

= π + ×

e π π π + χ +

+e π π + h −

− e w π + π ×

−e w π + π + −
×

− π π + −
×  π +

− π × + π − 

× π +

;

 
 
 
 
 
                   

( )
2

3

3 4 4

4 2
2 2 1

2
cos sin 1

3 sin 6 sin 3 ;

bar
bar

bar bar

C
a x C x

n K

n
C x C x

π
= π π + ×

 e
× π + π + + w 

( )
( )

44 4
4

2 2 2 1 4
1

sin 1

sin 2 sin 1 .

bar

bar bar

a n K C x

C x C x n

− −

−

= π π + ×

× π + π + e w +

At 0,=barC  we obtain a cylindrical shell, and 

( ) ( ),bar cylW x W x=  

with the equation taking the following form

( ) ( )

( )

2 22
1 1

4 2 2
1

2
4 1

21 1

0,

IV
cyl cyl cyl

cyl cyl

n nn
W x W x

K n K

n
n W x

   e e
+ + h − +′′   w e w  

 e
+ − χ = w 

	
	 (11)

which is an approximate equation to the one given in [5]. 
For an “ogive” shell, the following designations are in-

troduced: 

2

2 ,
cos

n
d =

a
 ,p = ed  

( )2
1

ctg
,

12 1

h

l

a
e =

− n

 0

1

,c

l
K

l
=  

the dimensionless coordinate 
1

s
x

l
=  and the efforts 

1
3 3 ,

tgog

q l
Eh

χ =
e a

2 3
1

cos
.

2 sinog

T
Eh l

a
h =

π e a
 

The functions of radial displacements and efforts are 
recorded in the following form

( ) ( ), ( ) tg cos ,og ogw x W x nj = a ⋅ j

( ) ( ) ( )2 2
1,  tg cos .og ogf x x l Eh nj = Φ e a ⋅ j 	 (12)

Since for the thin conical medium-length shells 1,e  
2 1,n   such terms are retained in the equations whose order 

does not exceed ε. The exclusion from system (12) of the 
function ( )og xΦ  yields a governing differential equation for 
the stability of an “ogive” shell:
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( ) ( )
( ) ( ) ( )

4 3

2 1 0 0,

IV
og og

og og og

b W x b W x

b W x bW x b W x

+ +′′′

+ + + =′′ ′ 	 (13)

where

( )
( )( )

( ) ( )

( )
( )

( )

2 2 2 2

2
0

2 2

2 23 2 2

2

3 2 2

3 3 2

2

0,5 cos sin

sin 1

sin cos

sin 1 cos

4

4 2 sin

sin 1 cos 9

sin 8 sin

sin 6

og c

og c

og og og

og c og

og

cone

og c og

og

C K x

b C x K

C

p C x K C

x C

C x

C x K C

x C

C

  π a W − −
   ×  = ×− W + −  
 ×χ + π W a h 

× W + − + d π a ×

− π −

− π W + ×

× W + × − W + π ×

× W + π W −

− W π ( ) ( )( )
( ) ( )

22 2

4 42 4 4 2 2 4

2 1

cos sin sin 1 ;

og c

og og c

x K

C C x p K

 
 
 
 
  + 
 
 
 − + −  

+d π a W W + + −

( ) ( )
( )

( )

32 2
1 cos sin 1

sin 1 cos

;2 sin 1,5
2 sin

sin 2 2sin cos

og og c

c og og

c og
og

b C C x K

p K C

K C
C x

x

= dπ a W + − ×

 e W − − π W h +
 

×  − W + π × 
+ W +  × W + W + π W   

( ) ( )
( ) ( )( )

( )
( )

( )
( )

3 2

2

2 2

2

22 2

sin 1

1 6 sin

3 sin

;2 3 sin sin

4cos 1

2 cos sin sin

og c

c og og

og og

og og

c

og og

b C x K

K p C x

C C x

C C x

K

C C x

= W + − ×

 − h + W + +
 
 + π W + × 
  × π − W − W + 

× −   + W −  
 
 − d π a W W + 

( ) ( ) ( )5 3

3 6 sin 1 cos 1 ;og c og cb C x K C K= W + − π W − +

( ) ( )6 4

4 sin 1 .og cb C x K= W + −

At 0,=ogC  we obtain ( ) ( ),og coneW x W x=  and the govern-
ing equation of stability (13) transforms into the equation for 
a conical shell given in work [5]:

( ) ( ) ( )

( )

2

2 3

3 4

3 6

6 6

0.

IV cone
cone cone cone

cone
cone

p
W x W x W x

x x x

p p
W x

x x

 h
+ + + −′′′ ′′  

 χ
− − =  

	 (14)

5. A modified finite-difference method to study the 
stability of conjugated shells

Initially, we introduce a designation for the “barrel” type 
structure in general [ ] [ ]0; ;1 ,a b x=  for an “ogive” structure ‒  
[ ] [ ]; 0;1 .a b =  A problem on the stability of a compound 
structure is solved by the finite-difference method. At each 

internal point ,kx a kH= +  1, 1k N= −  of the uniform split-

ting of the segment [ ];a b  at an increment ,−
=

b aH
N

 the de- 
 
rivatives from the W function in the governing equations are 
represented as the central finite differences of the second or-
der, for the boundary conditions ‒ the first-order differences.  

For the case when the side-ends rest on hinges, the cor-
responding equations could be written in the following form:

0 0,W =  1 1;W W− = −  0,NW =  1 1.N NW W+ −= − 	 (15)

Equalities (15) make it possible to exclude the W-1, WN+1, 
W0, WN variables from the system of difference equations. 
The characteristic equation of the connection between the 
critical efforts and the wave-forming parameters in the case 
of a stability loss / ,bar ogχ  / ,bar ogh  n, or / ,bar ogq  / ,bar ogT  n is the 
consequence of equating to zero of the determinant of the 
derived system. 

Conjugating the compartments of the “barrel” and “ogive” 
shapes. The study into the conjugation of shells of the exam-
ined types begins by determining values for the lift param-
eters barC  and ogC  based on the condition of harmonizing 
the angular coefficients of the generatrixes of the paired 
sections:

( )1 0

ctg .
sinbar ogC R C R

L l l
π π

= a −
− a

		  (16)

Condition (16) in the vicinity of the conjugation 
cross-section assigns the locally cone shape of the structure 
with an angle at the base

* arcctg .barRC
L

π
β = 		  (17)

Conditions for the shell’s sections conjugation through an 
intermediate frame. 

It is assumed that the supporting frame possesses stiff-
ness at bending, both in the plane and from the plane of the 
initial curvature. A change in the stresses-deformed state 
when crossing a frame on the cylinder and cone was studied 
in works [5, 12] where, specifically, the following dependenc-
es are used:

( ) ( )1 2 ,left rightW t W t=  

( ) ( )1 2 ,left rightW t W t=′ ′

( ) ( ) ( )1 2 1 2 ,left left rightW t G W t W t+ =′′ ′ ′′  

( ) ( ) ( )1 1 1 2 ,left left rightW t G W t W t− =′′′ ′′′ 	 (18)

where t1, 2 are the coordinates of a conjugation point corre-
sponding to the adjacent sections; 1G  and 2G  are the pa-
rameters of the dimensionless rigidities of the frames, which 
support a cylindrical or conical shell, represented by the 
following dependences:

3
*

,1 1 3 ,cyl
ring

R
G G

r
=

3
*

,2 2 3 ;cyl
ring

R
G G

r
= 		  (19)

3
*

,1 1 2 4 ,
cos

cone
cone

ring

R L
G G

r
=

β

3
*

,2 1 4 ;cone
cone

ring

R L
G G

r
= 	 (20)
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( )24 2
*
1 3

1 ( )
,

ring
xn n EJ

G
Eh R

−
=

( )
( )

22 2
*
2 3 2

1 ( )
.

1

ring
zn n EJ

G
EhR n

−
=

+
	 (21)

In formulae (19) to (21), ,ring
xJ  ring

zJ  are the momenta 
of inertia when bending the frame in the plane of the initial 
curvature and from the plane, respectively; ringr  is the radius 
of a frame; coneL  is the length of a “local cone” on which a 
frame is fixed, at an angle at the base of β.

In the specific conjugation cases, we obtain: 
1) for an intermediate frame on the “barrel-shaped” 

shell t1=t2 corresponds to the coordinate of the frame’s posi-
tion; in formula (19), one selects 

( )11 sin ;ring barr R C t= + π  

2) for an intermediate frame on the “ogive” shell, in for-
mula (20), the following be chosen:

1 2,t t= ( )
1

1 sin ,ring og x t
r R t C

=
= + Ω ,

cos
ring

cone

r
L =

β

1
1

1 0

cos
arcctg ctg 1 ;x t

og

l
C

l l
=

  π Ω
β = α +   −   

	 (22)

3) for a docking frame, the use of ratios (17), (19) to (21) 
leads to the following equalities:

1 1,t =  2 0,t =  ,ringr R=  ,
coscone

R
L =

β
 *.β = β 	 (23)

Let us consider the way in which a system of difference 
equations is modified when conjugating the “ogive” and 
“barrel-shaped” sections. The derivatives in equations (10) 
and (13) are represented by the central finite differences 
of the second order. In equation (10), for a structure of the 

“ogive” type, the natural numbering at step 0
1

1
.

x
H

N
−

=  is 	
	
retained. The boundary conditions are assigned by the first 
pair of equalities (15). In equation (13), for a barrel-type 
structure, the numbering of internal points is set from N+4 

to 2N+2 at step 2

1
.H

N
=

At the boundary (2N+3)-th point, the equalities are re-
corded that are similar to the second pair of equalities (15).

The finite differences for conjugation conditions (18) 
through a frame could be represented in the following form:

3;N NW W +=  

( )

( )

2 1 1
1

2 3 4 5
2

1
6 3 2

6

1
2 3 6 ;

6

N N N N

N N N N

W W W W
H

W W W W
H

− − +

+ + + +

− + + =

= − − + −

( )

( )

( )

1 12
1

2
2 1 1

1

2 3 42
2

1
2

6 3 2
6

1
2 ;

N N N

N N N N

N N N

W W W
H

G
W W W W

H

W W W
H

− +

− − +

+ + +

− + +

+ − + + =

= − +

( )

( )

2 1 1 13
1

2 3 4 52
2

1
3 3

1
3 3 .

N N N N N

N N N N

W W W W G W
H

W W W W
H

− − +

+ + + +

− + − + − =

= − + − + 	 (24)

The conjugation of frames’ spans with an increased 
number of the discretely arranged frames is carried out by 
using ratios (22), (23), or similar to (24). The characteris-
tic equation regarding the parameters of the / ,bar ogq  / ,bar ogT  	
n wave formation is derived in accordance with the above. 
For each axial compressive effort value / ,bar ogT  the character-
istic equation determines the number of waves of a stability 
loss in the circumferential direction that corresponds to the 
lowest value of the critical external pressure / .bar ogq

6. Choosing the rational parameters for a compound 
structure. Influence of the frames’ rigidity parameters on 

the spans’ equi-stability effect

A numerical analysis of stability was carried out for a 
compound shell structure with the following characteris-
tics: h=0.3 cm, Е=7∙105 kg/cm2, ν=0.32. A structure of the 
“ogive” section was chosen with the following parameters: 
l1=182 cm, l0=182 cm, α=75°; of the “barrel-shaped” section 
‒ L=2.5R. The calculations were performed for the case of 
the boundary conditions corresponding to the hinge-sup-
ported ends.

In accordance with the algorithm proposed in this 
paper, Fig. 2 illustrates the effect of the relative loft height 
of unsupported structures of the barrel barC  and “ogive” 	

ogC  types (denoted via the “C” axis) on the critical pressure 

/bar ogq  [kg/cm2] (denoted via “q”). In this case, we estab-
lished an increase in critical pressure with the growth of 
the meridian curvature of the middle surface of the exam-
ined structures.

The equi-stability of shell sections was investigated in 
accordance with the proposed algorithm. 

In the first stage of the calculation, the hinge-supported 
sections (a “barrel” and an “ogive”) were considered sepa-
rately. By using the diagrams in Fig. 2, we selected one of 
the possible pairs barC  and ,ogC  matched with equal critical 
pressure values. The pair found was then refined based on 
formula (16). For a shell with the following parameters

= 0.0626;ogC = 0.137barC 	 	 (25)

the “ogive” section had a critical pressure value of 2,98ogq =
2,98ogq =  kg/cm2, the “barrel-shaped” ‒ 2,97barq =  kg/cm2, 

the compound structure ‒ 2,3constrq =  kg/cm2.  
When arranging an intermediate frame in the “ogive” 

section of the compound structure, we initially determined 
its most rational position (in terms of local stability) on a 
conical (without lifting a meridian) shell. If the generatrix 
length is divided in the following ratio

: 1,809 :1,left rightL L = 	 	 (26)

counting from the smaller base of the cone, the critical pres-
sure of the “left” and “right” sides is equal to, respectively, 

3,13leftq =  kg/cm2 and 3,11rightq =  kg/cm2. In this case, 
the cone in general lost stability at the critical pressure of 

1,68coneq =  kg/cm2. 
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For the convenience of analysis, the following designa-
tions of the dimensionless efforts are introduced:

/
, /

,bar og
classic cyl cone

T
T

T
=



/
, /

,bar og
classic cyl cone

q
q

q
=

	 (27)

*
2
0

,
T

T
Eh

= * .
constr

q
q

q
= 		  (28)

In the designations (27), we accepted the classic critical 
effort values for the cylinder and cone in the form of the 
following ratios:

2
, 0,605 ,classic cylT E h=  

5/2

, 0,92 ,classic cyl

h R
q E

R L
 =   

 

( )
2 2

,
2

2 sin
,

3 1
classic cone

E h
T

π a
=

− n
 

( )
( )

5/2 3/2

, 1 3/42
1

tg
,

1
classic cone

h
q C E

l

  a
=    − n

 1 3.C ≈ 	 (29)

Graphic representation of the results of the impact of the 
frames’ rigidities on the stability of shells. 

Below are the results of numerical calculations for var-
ious cases of supporting the structures by the dependences 
of dimensionless normal critical pressures /bar ogq



 or q on the 
parameters of the frame rigidity *

1G  in the plane of the initial 
curvature at the fixed values *

2 0G =  or *
2 10G =  of rigidities 

from the plane of the initial curvature:
1) Fig. 3 ‒ for an “ogive” shell, supported by a single in-

termediate frame, arranged to satisfy ratio (26); in this case, 
the lift values were chosen that equal 0ogC =  (blue lines), 

0,06ogC =  (red lines), 0,09ogC =  (green lines); 
2) Fig. 4, a, b ‒ for a “barrel-shaped” shell, supported 

by one and two intermediate frames, dividing the length of 
the “barrel” into equal segments; in this case, the lift values 
are 0barC =  (blue lines), (red), 0,05barC =  (green lines), 

0,15barC =  (orange lines); 
3) Fig. 5 ‒ for a “barrel-ogive” structure with the param-

eters satisfying (25) and (26), supported by frames as shown 
in the figure.

In Fig. 3‒5, the wavenumbers n are denoted in the cir-
cumferential direction at a stability loss. 

The darker lines correspond to the value *
2 0,G =  the 

lighter ones ‒ *
2 10.G =  As the specified dependences indi-

cate, the critical loads that match the value of the rigidity 
parameter from the plane *

2 10,G =  are higher than the value 
*
2 0.G =  Solid blue lines in Fig. 3, 4 correspond to sections 

without curvature of the meridian of the median surface, 
that is, conical, or cylindrical shells.

Fig. 2. Critical pressure dependences on the relative 
curvature of the meridian of unsupported “barrel” and 

“ogive” structures

Fig. 3. The dependence of the critical pressure ogq


 of the 

“ogive” shell on the rigidity of the intermediate frame *
1G  at 

the assigned parameters *
2G

 
 
 
 
 
 
 
 
 
 
a  
 
 
 
 
 
 
 
 
 
 

b
 

 
Fig. 4. The dependence of the critical pressure barq



 on 

the rigidity of intermediate frames *
1G  at the assigned 

parameters *
2G : a – one frame; b – two frames

Fig. 5. The dependence of the critical pressure q* of  

a “barrel-ogive” structure on the frames’ rigidity parameter *
1G

The dependences in Fig. 2‒5 make it possible to assess 
the effect of the curvature of the median surface of the 
structure’s compartments and the rigidity characteristics of 
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intermediate frames on stability under the action of external 
pressure. This defines the rational parameters of the rigidity 
of frames, ensuring the stability of a structure with respect 
to the local and overall buckling modes.

7. Numerical analysis of the effect of the meridian 
curvature parameter on the magnitude of critical load and 

the character of a stability loss by the supported shells

Fig. 6‒8 show the dependences of the dimensionless 
parameters of the critical pressure /bar ogq



 on the axial com-
pressive force /bar ogT



 or T*:
1) Fig. 6, a, b ‒ for the unsupported “barrel-shaped” and 

“ogive” shells at different lift values barC  and ,ogC  respective-
ly, (in Fig. 6, their values are denoted via “C ”); 

2) Fig. 7 ‒ for the supported structures of the “barrel” 
and “ogive” types at different values of barC  and ,ogC  and at 
various rigidities of the frames in the *

1G  plane and from the 
*
2G  plane (in Fig. 7, they are denoted via “G1” and “G2”); 

3) Fig. 8 ‒ for a supported structure of the “barrel-ogive” 
type with the parameters satisfying (25) and (26), which is 
supported by frames as shown in Fig. 8.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
a  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b 
 

Fig. 6. The dependence of critical external pressure on  
the magnitude of the axial compressive force:  

a – “barrel” compartment; b – “ogive” compartment

It follows from Fig. 6‒8 that the presence of a positive 
curvature of the meridian of the median surface of the ex-
amined structures could lead to a significant increase in 
the critical external pressure at an overall positive effect of 
compression efforts in terms of carrying capacity.

a                                                      b 

c 
Fig. 7. The dependence of critical external pressure on the 

magnitude of the axial compressive force: a – “barrel, 

0,05;barC =  b – “barrel”, 0,1;barC =  c – “ogive”, 0,05ogC =

Fig. 8. The dependence of the critical pressure of  
a “barrel-ogive” structure on the axial compressive force for 

various supporting techniques

8. Discussion of results of studying the stability and 
rational design of the supported shell compartments of 

the barrel-ogive type

The presence of frames leads to an increase in the sta-
bility of shells under external pressure. In this case, with 
the growth of rigidity parameters in the plane of the initial 
curvature *

1 ,G  the critical pressure stabilizes. This effect 
suggests that it is possible to determine the rational rigid-
ity characteristics of supportive frames, which ensure the 
equi-stability with respect to the local and overall buckling 
modes. It should be noted (Fig. 3, 4) that it is possible to 
specify such a limit of the rigidity parameter *

1 ,G  depending 
on the number of the supporting elements and the curvature 
of the mid-surface meridian, at which, for >* *

1 1 ,G G  the mag-
nitude of the critical pressure ( )*

1q G  is not much different 
from ( )*

1 .q G  A similar situation is for the compound struc-
ture (Fig. 5). However, the magnitude of the critical pressure 
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depends on the location of the supporting elements along the 
axial coordinate. In addition, there is a question about the 
limits of the applicability of the orthotropic theory of shells 
for the case of compound structures.

As regards the curvature parameters of the median 
surface and the rigidity of the supporting elements from the 
plane of the initial curvature, in some of the examined cases 
their impact may be significant, evidenced by Fig. 3–5. 

When analyzing the compartments and a compound struc-
ture of the “barrel-ogive” type, it was found the difference in 
the form of a stability loss by convex shells compared to the 
shells of a zero Gaussian curvature. The character of the loss of 
stability is associated with an increase in the wave number in 
the circumferential direction and, accordingly, an increase in 
critical pressure at the initial stage of loading by axial compres-
sive efforts leading to the stretching internal annular efforts.

The identified effect for unsupported shells holds for the 
supported shells at the certain combinations of shell lift val-
ues and frame rigidity (Fig. 7, 8). Note that for the shells of 
a small curvature of the meridian the effect of the frames is 
more significant than the effect exerted by stretching efforts 
in the annular direction caused by axial compression.

The validity of the study results was tested by comparing 
numerical results with known data obtained by other meth-
ods and by comparing the results of the analysis of compart-
ments and a whole structure in the absence of supporting 
elements. Thus, at zero lift, in extreme cases, the character-
istic equations corresponding to the equations for cylindrical 
and conical shells were obtained. The agreement in critical 
pressure values with known results [5] amounted to 10 %. 
For a single section of the conjugation, the deviation was up 
to 4 %, for two ‒ up to 7 %. The error when the number of 
break points (according to a numerical calculation method) 
along the axial coordinate of each shell span was up to 4 %.

It should be noted that the results obtained are correct 
only for the medium-length shells with a deviation of the 
meridian curvature parameter from the ideal state not ex-
ceeding 15 % and 20 % for the “ogive” and “barrel-shaped” 
compartment, respectively.

The proposed approach to solving a given problem could 
be used in the future to study the stability of compound 
wafer, anisotropic, and multi-layered shells of a complex 
configuration, supported by the discretely arranged longitu-
dinal and transverse force kits under a combined static and 
static-dynamic loading.

9. Conclusions

1. We have built governing equations for the stability of 
the “barrel-shaped” and “ogive” compartments, taking into 

consideration the curvature of the median surface and the 
peculiarities of the influence of axial force on the circumfer-
ential stresses; an algorithm for calculating the compound 
structure has been proposed.

When deriving the governing equations for individual 
sections, it was noted that, in contrast to the shell of a zero 
Gaussian curvature, the convex shell has an axial compres-
sive effort resulting in the occurrence of internal stretching 
stresses in the circumferential direction.

The compound structure calculation algorithm uses the 
conditions for harmonizing the geometric characteristics of 
the compartments, the discretion, and the location of the 
intermediate frames.

2. The modified method of finite differences was 
proposed for the numerical analysis of the main govern-
ing equations, allowing the stability assessment of the 
conjugated shell compartments supported by frames. 
The specificity of modifying a given method [12] is in 
the construction of equations that correspond to the 
conjugation points of sections through an intermediate  
frame.

3. The stability of the compartments and the com-
pound structure “barrel-ogive” was investigated, taking 
into consideration the discrete arrangement of interme-
diate frames, under a joint action of axial compressive 
forces and external pressure. For the different values of 
the meridian curvature parameter and the number of 
supporting frames, the effect of stabilizing the increase 
in critical pressure with the increase in the rigidity of 
the frames in the plane of their initial curvature has been  
illustrated.

4. We have analyzed the effect of the curvature of the 
middle surface of the compartments and a compound shell 
structure of the “barrel-ogive” type on the magnitude of 
critical efforts and the character of a stability loss by the 
examined system under a joint action of external pressure 
and axial compressive forces.

For the shell sections with a relative deviation of the 
meridian curvature value exceeding 4 %, at the growth of 
the axial compressing force, the effect of increasing critical 
pressure by 1.5‒2 times in a certain range of change in the 
axial force has been detected.
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