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1. Introduction

Among such vibratory machines as sieves, vibratory 
tables, vibratory conveyors, vibratory mills, the promising ones 

are the multi-frequency, resonance, and multi-frequency- 
resonance machines. 

Multi-frequency vibratory machines demonstrate great-
er performance [1], resonance vibratory machines are the 
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The dynamics of a three-mass vibrato-
ry machine with the rectilinear translational 
motion of platforms and a vibration exciter in 
the form of a ball, roller, or pendulum auto-bal-
ancer have been analytically investigated.

The existence of steady state motion modes 
of a vibratory machine that are close to two-fre-
quency regimes has been established. At these 
motions, the loads in an auto-balancer cre-
ate constant imbalance, cannot catch up with 
the rotor, and get stuck at a certain frequency. 
These loads work as the first vibration exciter, 
thereby exciting vibrations in resonance with 
the frequency at which loads get stuck. The 
second vibration exciter is formed by an unbal-
anced mass on the body of the auto-balancer. 
The mass rotates at the rotor's rotation frequen-
cy and excites faster vibrations with this fre-
quency. The auto-balancer excites almost ideal 
two-frequency vibrations. Deviations from the 
two-frequency law are proportional to the ratio 
of the mass of the loads to the mass of the plat-
form, which hosts the auto-balancer, and do not 
exceed 5 %.

A three-mass vibratory machine has three 
resonant (natural) oscillation frequencies, q1, 
q2, q3 (q1<q2<q3), and three corresponding 
shapes of platform oscillations. Loads can only 
get stuck at speeds close to the resonance (nat-
ural) oscillation frequencies of the vibratory 
machine; and to the rotor rotation frequency. 

A vibratory machine always has only one 
frequency of load jam, slightly less than the 
rotor speed. 

For the case of small viscous resistance 
forces in the supports of a vibratory machine, an 
increase in the rotor speed leads to that the new 
frequencies of load jam:

– emerge in pairs in the vicinity of each nat-
ural frequency of the vibratory machine oscil-
lations; 

– one of the frequencies is slightly smaller, 
and the other is somewhat larger than the nat-
ural frequency of the vibratory machine oscil-
lations.

Arbitrary viscous resistance forces in the 
supports can prevent the occurrence of new fre-
quencies at which loads get stuck. Therefore, in 
the most general case, the number of such fre-
quencies can be 1, 3, 5, or 7, depending on the 
rotor speed and the magnitudes of the viscous 
resistance forces in the supports. 

The results obtained are applicable when 
designing new vibratory machines and for the 
numerical modeling of their dynamics
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most energy-efficient [2], and multi-frequency resonance vi-
bratory machines combine the advantages of both multi-fre-
quency and resonance vibratory machines [3]. Therefore, it 
is a relevant task to build multi-frequency-resonance vibra-
tory machines.

The most effective and easy way to excite resonance 
two-frequency oscillations is based on the use of a ball, a 
roller, or a pendulum auto-balancer as a vibration exciter [4]. 
In this regard, there is a general issue related to substanti-
ating the operability of the proposed technique for different 
vibratory machines. 

The proposed technique employs a Sommerfeld eff- 
ect [5‒9]. The feasibility of this technique for exciting 
two-frequency vibrations for three-mass vibratory machines 
has not been theoretically investigated up to now.

It should be noted that three-mass vibratory machines 
are widely used in various industries [10‒18].

The theoretical justification for the validity of the new 
method for exciting two-frequency vibrations for the case of 
three-mass vibratory machines is relevant both for designing 
such machines and for modeling their dynamics. Our previ-
ous findings [19‒22] have been applied to resolve this issue.

2. Literature review and problem statement

It is proposed in [4] to use a ball, a roller, or a pendulum 
auto-balancer to excite two-frequency resonance vibrations 
in vibratory machines with different kinematics of platform 
motion. This technique is supposed to be applicable for the 
single-, two-, and three-mass vibratory machines.

The technique employs a special motion mode of balls 
(rollers) [5] or pendulums [6], which occurs at the small 
forces of resistance to the motion of loads relative to the body 
of the auto-balancer. Under this mode, the loads get together, 
cannot catch up with the rotor, onto which the auto-balancer 
is mounted, and get stuck on one of the resonance frequen-
cies of the vibratory machine. Getting the loads stuck excites 
the slow resonance oscillations of platforms. In addition, 
the body of the auto-balancer hosts an unbalanced mass. 
The unbalanced mass rotates in sync with the rotor. That 
excites the rapid (non-resonance) platform oscillations. The 
parameters of two-frequency vibrations change by changing 
the rotor speed, the unbalanced mass, and the total mass of 
the loads.

It should be noted that under the proposed technique, 
the excitation of slow resonance oscillations of the platforms 
is based on a Sommerfeld effect [7]. The effect implies that 
the unbalanced mass rotor (a rotor with a pendulum mount-
ed onto it) cannot accelerate and gets stuck at one of the res-
onance frequencies of the platform oscillations, which hosts 
an electric motor [8]. In the vibratory machines with inertial 
vibration exciters, this effect interferes with the acceleration 
of the vibratory machine and leads to the overload of the 
electric motor [9]. However, this effect was used to design 
purely resonance vibratory machines with an aero-inertial 
excitation of vibrations [10].

Three-mass resonance vibratory machines are widely 
used in different industries. These machines include vibra-
tion polishing [11] and vibration lapping machines [12]; 
vibratory tables [13], vibratory conveyors [14], vibratory  
mills [15], vibratory transporters [16], etc. At the same time, 
the multi-mass vibratory machines possess a series of advan-
tages over single-mass machines:

‒ the platform oscillation frequencies are less dependent 
on the load mass [17];

‒ there is a likely excitation of anti-resonance oscilla-
tions, at which the oscillations of the platforms are not trans-
ferred to the foundation [18].

In [11‒18], resonance oscillations are excited by elec-
tromechanical vibration exciters. The oscillation frequency 
of vibration exciters is automatically selected. Therefore, 
the main task to be solved in the design of such vibratory 
machines is the selection of parameters for a three-mass os-
cillatory system, which would provide for the required laws 
of mass motion (platforms).

Under the technique proposed in [4], loads can get stuck 
at several speeds. Therefore, the main task of studying the 
dynamics of such vibratory machines is to find all possi-
ble steady state modes of motion. To address these issues,  
paper [19] reports the generalized models of the single-, two-,  
and three-mass vibratory machines with the progressive 
motion of vibratory platforms and a vibration exciter in the 
form of a ball, a roller, or a pendulum auto-balancer. Differ-
ential equations of the motion of vibratory machines were 
derived. Study [20] analytically examined the feasibility of 
the described technique for a single-mass machine; [21] ‒ for 
a two-mass vibratory machine with the rectilinear transla-
tional motion of the platform.

3. The aim and objectives of the study

The aim of this study is to find possible two-frequency 
modes of motion of the vibratory platforms of a three-mass 
vibratory machine with the rectilinear translational motion 
of the platforms, excited by a passive auto-balancer. This is 
necessary for the subsequent design of such machines, to 
study numerically the steady state modes of the motion of a 
vibratory machine.

To accomplish the aim, the following tasks have been set:
‒ under the condition of loads getting stuck in an au-

to-balancer, find the approximately two-frequency modes of 
the vibratory machine motion and estimate the magnitudes 
of unaccounted (discarded) components;

‒ to derive an equation to find the frequencies at which 
loads get stuck; to analyze it in general.

4. Description of the vibratory machine model,  
research methods

4. 1. Description of the generalized model of a vibra-
tory machine

The generalized model of a three-mass vibratory ma-
chine is depicted in Fig. 1 [19]. The vibratory machine 
consists of three platforms weighing M1, M2, and M3. 
Each platform is held by external elastic-viscous supports 
whose coefficients of rigidity and viscosity are, respec-
tively, ki, and bi, /i=1, 2, 3/. The platforms are connected 
by internal elastic-viscous supports whose coefficients of 
rigidity and viscosity are, respectively, k12, k13, k23, and 
b12, b13, b23.

Platforms can execute the rectilinear translational mo-
tion only due to the fixed guides. The direction of platform 
motion forms the a angle with a vertical. The platforms’ 
coordinates y1, y2, y3 are counted from the positions of the 
static equilibrium of the platforms. 
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a  

b 
Fig. 1. The generalized models of three-mass vibratory 

machines [19] (rotated at an angle a), in which:  
a – an auto-balancer is installed at the middle platform;  

b – at the extreme platform

The second platform hosts a passive auto-balancer ‒  
a ball, a roller (Fig. 2, a), or a pendulum (Fig. 2, b).

                          a                                               b

Fig. 2. The kinematics of motion [19]:  
a – the unbalanced mass and a ball or a roller;  

b – the unbalanced mass and a pendulum

The body of the auto-balancer rotates around the shaft, 
point K, at constant angular speed w.

The point unbalanced mass m is rigidly connected to the 
body of the auto-balancer. It is located at the distance P from 
the point K. Two mutually perpendicular axes X, Y originate 
at point K and form the right-hand coordinate system. The 
position of the unbalanced mass relative to the body deter-
mines the angle wt, where t is the time.

The auto-balancer consists of N identical loads. The 
mass of one load is m. The center of the load’s mass can 
move along the circumference of radius R with the center at 
point K (Fig. 2, a, b). The position of the load number j rela-

tive to the body determines the jj, / 1, / .j N=  The motion 
of the load relative to the auto-balancer’s body is hindered by 
the viscous resistance force whose module is 

( ) ,r
j W j W jF b v b R= = f − w′  / 1, / .j N=  

Here, bW is the viscous resistance force factor; 

( )r
j jv R= f − w′  

is the module of the speed of the motion of the center of mass 
of the load number j relative to the auto-balancer’s body; a 
bar by the magnitude denotes the time-derivative t.

4. 2. Differential equations of the motion of a three-
mass vibratory machine

For the examined models of vibratory machines 
(Fig. 1, a, b), the differential equations of motion take the 
following form [19]:

( )
( ) ( ) ( )

1 1 1 1 1 1 12 1 2

12 1 2 13 1 3 13 1 3 0,

M y b y k y b y y

k y y b y y k y y

+ + + − +′′ ′ ′ ′

+ − + − + − =′ ′

( )
( ) ( ) ( )

2 2 2 2 2 2 12 1 2

12 1 2 23 2 3 23 2 3

2 sin ,

y

d

M y b y k y b y y

k y y b y y k y y S

S t

Σ + + − − −′′ ′ ′ ′

− − + − + − + =′ ′ ′′

= w w

( ) ( )
( ) ( )

3 3 3 3 3 3 13 1 3 13 1 3

23 2 3 23 2 3 0,

M y b y k y b y y k y y

b y y k y y

+ + − − − − −′′ ′ ′ ′

− − − − =′ ′

( )
( )

2 2

2cos cos 0,

j W j

j j

m R b R

mgR mRy

κ f + f − w +′′ ′

+ f − a + f =′′  / 1, / .j N= 	 (1)

In (1):

2 2M M NmΣ = + + m  	 (2)

‒ for a ball, a roller, and a pendulum, respectively,

7
,

5
κ =  

3
,

2
κ =  ( )21 / ,CJ mRκ = +  	 (3)

where JC is the main central axial moment of pendulum 
inertia.

Models of particular three-mass vibratory machines can 
be obtained from the generalized model by discarding the 
part of elastic-viscous supports.

4. 3. Main assumptions
In order to find an approximate solution to the sys-

tem of differential equations of the motion and frequen-
cies at which loads get stuck, we apply the disturbance 
methods and the elements from the theory of non-linear  
oscillations. 

In accordance with the results reported in [20, 21], the 
following assumptions are accepted:

‒ among all possible modes of load jams, only those 
modes are stable under which the loads are tightly pressed 
against each other;

‒ the stability of the jam mode can change to instability 
(and vice versa) only at the bifurcation points.
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The total unbalanced mass of the balls or rollers, when 
they are pressed together, is the largest, and is determined 
from formula [22]

( )
2

max .
sin arcsin /

AB mR
S

r N r R
=

  
	 (4)

For the case of pendulums, additional information about 
the design of the pendulums is needed to determine the larg-
est unbalanced mass.

5. The results of searching for the two-frequency motion 
modes of a vibratory machine

5. 1. Search for the two-frequency motion mode of a 
vibratory machine under the condition of loads getting 
stuck

5. 1. 1. Reducing the motion equations to a dimension-
less form

Introduce the dimensionless variables and time

( )1 1 1/ ,v y y= r   2 2 / ,v y y=   ( )3 3 3/ ,v y y= r 

/ ,x xs S s=   / ,y ys S s=   ,tt = w  	 (5)

where ,y  1,r  3,r  ,s  w  are the characteristic scales that will 
be chosen later.

Then

d d d d
,

d d d dt t
⋅ ⋅ t ⋅

= = w
t t

  

2 2
2

2 2

d d
.

d dt
⋅ ⋅

= w
t

 	  (6)

Divide in (1) the first, second, and third equations by 
2

2 ,M yΣw   and the fourth ‒ by 2 2,mRκ w  we obtain

( )

( )

( ) ( )

1 1 1 12
1 1 1 1 1 1 22

2 1 1 2

12
1 1 22

2

13 13
1 1 3 3 1 1 3 32

2 2

0,

M b k b
v v v v v

M M M M

k
v v

M

b k
v v v v

M M

Σ Σ

Σ

Σ Σ

 
r + + + r − + w w w 

+ r − +
w

+ r − r + r − r =
w w

   

  



 

 

( )

( ) ( )

( )

2 2 12
2 2 2 1 1 22

2 2 2

12 23
1 1 2 2 3 32

2 2

2
23

2 3 32 2
2 2 2

sin ,d
y

b k b
v v v v v

M M M

k b
v v v v

M M

Sk s
v v s

M M y M y

Σ Σ Σ

Σ Σ

Σ Σ Σ

+ + − r − −
w w w

− r − + − r +
w w

w w
+ − r + = t

w w w

   

  

 

 





   

( ) ( )

( ) ( )

3 3 3
3 3 3 32

2 3 3

13 13
1 1 3 3 1 1 3 32

2 2

23 23
2 1 1 2 1 12

2 2

0,

M b k
v v v

M M M

b k
v v v v

M M

b k
v v v v

M M

Σ

Σ Σ

Σ Σ

 
r + + − w w 

− r − r − r − r −
w w

− − r − − r =
w w

 

 

 

 

 

 

( ) 22 cos cos 0,

W
j j

j j

b
m

g y
v

R R

w f + f − +  κ w w

+ f − a + f =
κ w κ

 

 







 / 1, /,j N= 	 (7)

where a point above the value denotes a derivative for t.
Introduce the new dimensionless parameters and a char-

acteristic scale:

1
1

1

,
2

b
h

M
=

w
 2

2
2

,
2

b
h

M Σ

=
w

 3
3

3

,
2

b
h

M
=

w

12
12

2

,
2

b
h

M Σ

=
w

 13
13

2

,
2

b
h

M Σ

=
w

 23
23

2

,
2

b
h

M Σ

=
w

2
1

1

,
M
M

Σr =  2
3

3

,
M
M

Σr =  ,n
w

=
w

2

,
s

y
M Σ

=


  
2

,
y s
R RM Σ

e = =
κ κ
 

2 1
1 2

1

,
k

n
M

=
w

 2 2
2 2

2

,
k

n
M Σ

=
w

 2 3
3 2

3

,
k

n
M

=
w

2 12
12 2

2

,
k

n
M Σ

=
w

 2 13
13 2

2

,
k

n
M Σ

=
w

 2 23
23 2

2

,
k

n
M Σ

=
w

,Wb
m

eβ =
κ w

 2 ,W Wb b RM
m sm

Σβ = =
eκ w w 

,dS
s

d =


 2 .
g

R
s =

κ w
		  (8)

Then equations (7) take the following form:

( ) ( )
( ) ( )

2 2
1 1 1 1 1 12 1 1 2 12 1 1 2

2
13 1 1 3 3 13 1 1 3 3

2 2

2 0,

v h v n v h v v n v v

h v v n v v

+ + + r − + r − +

+ r − r + r − r =

   

 

( ) ( )
( ) ( )

2 2
2 2 2 2 2 12 1 1 2 12 1 1 2

2 2
23 2 3 3 23 2 3 3

2 2

2 sin ,y

v h v n v h v v n v v

h v v n v v s n n

+ + − r − − r − +

+ − r + − r + = d t

   

  

( ) ( )
( ) ( )

2 2
3 3 3 3 3 13 1 1 3 3 13 1 1 3 3

2
23 2 3 3 23 2 1 1

2 2

2 0,

v h v n v h v v n v v

h v v n v v

+ + − r − r − r − r −

− − r − − r =

   

 

( )
( ) 2cos cos 0,

j j

j j

n

v

f + eβ f − +

+s f − a + e f =

 

  / 1, / .j N= 		  (9)

Assume

.s NmR= 	  	 (10)

Then

1

1
cos ,

N

x j
j

s
N =

= f∑  
1

1
sin ,

N

y j
j

s
N =

= f∑

2

,
NmR

y
M Σ

= .
2

,
Nm
M Σ

e =
κ

 

2
2 ,Wb M

Nm
Σβ =

w
 .dS P

NmR NmR
m

d = = 		  (11)
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In this case, the form of equations (9) is preserved.

5. 1. 2. Transforming the load motion equations
Construct the equations of load motion from (9), we 

obtain

( )
( )

1 1

21 1
cos cos 0.

N N

j jj j

N N

j jj j

n

v

= =

= =

φ + eβ φ − +

+s φ − α + e φ =

∑ ∑
∑ ∑

 

 		  (12)

Introduce the middle angle into consideration:

1

1
.

N

j
jN =

φ = φ∑ 	 (13)

Perform the following transformations

( ) ( )
( )

1 1

1 1

cos cos cos sin sin

cos cos sin sin cos sin .

N N

j j jj j

N N

j j x yj j
N s s

= =

= =

φ − α = φ α − φ α =

= α φ − α φ = α − α

∑ ∑
∑ ∑

Then equation (12) takes the following form

( ) ( ) 2cos sin 0.x y xn s s v sφ + eβ φ − + s α − α + e = 

  	 (14)

We shall use this equation to find the frequencies at 
which loads get stuck. 

In further studies, the influence of the gravity force is not 
taken into consideration (s=0).

5. 1. 3. The two-frequency mode of motion in a zero 
approximation

At e=0, the last N equations in system (9) take the fol-
lowing form:

0,jφ =  / 1, / .j N= 	  	 (15)

We derive from these equations:

(0) ,j jφ = Ωt + ψ  , const,jΩ ψ −  / 1, / .j N= 	 (16)

Then

(0) ,φ = Ωt + ψ  	 (17)

where

1

1
.

N

j
jN =

ψ = ψ∑ 	  (18)

Transform:

( )
1 1

1 1

1 1
cos cos

cos sin
cos sin ;

N N

x j j
j j

N N

j j
j j

s
N N

N N

= =

= =

= φ = Ωt + ψ =

Ωt Ωt
= ψ − ψ

∑ ∑

∑ ∑

( )
1 1

1 1

1 1
sin sin

sin cos
cos sin .

N N

y j j
j j

N N

j j
j j

s
N N

N N

= =

= =

= φ = Ωt + ψ =

Ωt Ωt
= ψ + ψ

∑ ∑

∑ ∑ 		  (19)

Assume

( )0cos ,xs A= Ωt + γ  ( )0sin .ys A= Ωt + γ 	 (20)

Then

2 2

2
2

1 1

1
cos sin ,

N N

j j
j j

A
N = =

    
 = ψ + ψ        

∑ ∑

0
1 1

tg sin cos .
N N

j j
j j= =

γ = ψ ψ∑ ∑ 		  (21)

Note that in the case when the loads are tightly pressed 
together, max .ABA S=

Apply (20) to find ( )2 sin .ys A= − Ω Ωt + γ  Then the first 
three equations in system (9) take the following form

( ) ( )
( ) ( )

2 2
1 1 1 1 1 12 1 1 2 12 1 1 2

2
13 1 1 3 3 13 1 1 3 3

2 2

2 0,

v h v n v h v v n v v

h v v n v v

+ + + ρ − + ρ − +

+ ρ − ρ + ρ − ρ =

   

 

( ) ( )
( ) ( )

( )

2 2
2 2 2 2 2 12 1 1 2 12 1 1 2

2
23 2 3 3 23 2 3 3

2 2
0

2 2

2

sin sin ,

v h v n v h v v n v v

h v v n v v

A n n

+ + − ρ − − ρ − +

+ − ρ + − ρ =

= Ω Ωt + γ + δ t

   

 

( ) ( )
( ) ( )

2 2
3 3 3 3 3 13 1 1 3 3 13 1 1 3 3

2
23 2 3 3 23 2 3 3

2 2

2 0.

v h v n v h v v n v v

h v v n v v

+ + − ρ − ρ − ρ − ρ −

− − ρ − − ρ =

   

  	(22)

Find a particular solution to system (22). Introduce a 
supporting system into consideration

( ) ( )
( ) ( )

2 2
1 1 1 1 1 12 1 1 2 12 1 1 2

2
13 1 1 3 3 13 1 1 3 3

2 2

2 0,

v h v n v h v v n v v

h v v n v v

+ + + ρ − + ρ − +

+ ρ − ρ + ρ − ρ =

   

 

( ) ( )
( ) ( ) ( )

2 2
2 2 2 2 2 12 1 1 2 12 1 1 2

2 2
23 2 3 3 23 2 3 3

2 2

2 sin ,

v h v n v h v v n v v

h v v n v v Fq q

+ + − ρ − − ρ − +

+ − ρ + − ρ = t

   

 

( ) ( )
( ) ( )

2 2
3 3 3 3 3 13 1 1 3 3 13 1 1 3 3

2
23 2 3 3 23 2 3 3

2 2

2 0.

v h v n v h v v n v v

h v v n v v

+ + − ρ − ρ − ρ − ρ −

− − ρ − − ρ =

   

  	(23)

Find a particular solution to this system in the form

( ) ( ) ( )
( ) ( )

2 1

2

, , sin

, cos ,
i i

i

v q X q F q

X q F q
−t = t +

+ t  / 1,3 / .i = 	 (24)

Fit (24) to (23) and collect the coefficients before 
sin(qt), cos(qt). 

We obtain the following system of equations to search 
for ,iX  / 1,6/ :i =

( ) ( ) ( ), , .q q F q F=A X B 	 (25)

In (25)

( ) ( ) 6

1
,ijq a q=A  ( ) 6

1
, ,iq F X=X  

( ) ( )T2, 0 0 0 0 0 ,q F Fq=B 	 (26)
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where, in turn,

( ) ( )2 2 2 2
11 1 1 12 13 ,a q n n n q= + r + −

( ) ( )12 1 1 12 132 ,a q q h h h = − + r + 

( ) 2
13 12,a q n= −  ( )14 122 ,a q qh=

2
15 13 3,a n= − r  ( )16 13 32 ;a q qh= r

( ) ( )21 12 ,a q a q= −  ( ) ( )22 11 ,a q a q=  ( ) ( )23 14 ,a q a q= −

( ) ( )24 13 ,a q a q=  ( ) ( )25 16 ,a q a q= −  ( )26 15 ;a a q=

2
31 1 12,a n= −r  ( )32 1 122 ,a q q h= r

( ) 2 2 2 2
33 2 12 23 ,a q n n n q= + + −

( ) ( )34 2 12 232 ,a q q h h h= − + +

( )2
25 23 3 26 23 3, 2 ;a n a q qh= − r = r

( ) ( )41 32 ,a q a q= −  ( ) ( )42 31 ,a q a q=  

( ) ( )43 34 ,a q a q= −  ( ) ( )44 33 ,a q a q=  

( ) ( )45 36 ,a q a q= −  ( )46 35 ;a a q=

( ) 2
51 1 13,a q n= −r  ( )52 1 132 ,a q q h= r

( ) 2
53 23,a q n= −  ( )54 232 ,a q qh=

( ) ( )2 2 2 2
55 3 13 23 3 ,a q n n n q= + + r −

( ) ( )56 3 13 23 32 ;a q q h h h = − + + r 

( ) ( )61 52 ,a q a q= −  ( ) ( )62 51 ,a q a q=  ( ) ( )63 54 ,a q a q= −

( ) ( )64 53 ,a q a q=  ( ) ( )65 56 ,a q a q= −  ( )66 55 .a a q= 	 (27)

The coefficients in motion laws (24) are determined from 
the following formula

( ) ( ) ( )1, , .q F q q F−=X A B  		  (28)

The two-frequency platform motion mode in a zero ap-
proximation (e=0) takes the following form

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

2 1 0

2 0

2 1 2

, sin

, cos

, sin , cos ,

i i

i

i i

v X A

X A

X n n X n n

−

−

t = W Wt + g +

+ W Wt + g +

+ d t + d t  / 1,3 / .i = 	 (29)

It does not define the value of the permanent parameter 
W that determines the frequency at which loads get stuck.

The amplitudes of slow platform oscillations:

( ) ( )2 2
2 1 2( , ) , , ,i i iA S X S X S−W = W + W  / 1,3 / .i = 	 (30)

Introduce the following determinant into consideration

( ) ( ) 0.q A q∆ = =  		  (31)

In the absence of resistance forces

( )
2

11 33 55 11 35 53 13 31 55
0

13 51 35 31 15 53 15 33 51

.
a a a a a a a a a

q
a a a a a a a a a

− − + 
∆ =  + + − 

		 (32)

This equation determines the system’s natural (reso-
nance) oscillation frequencies. The three-mass vibratory 
machine has three resonance (natural) oscillation frequen-
cies, q1, q2, q3 (q1<q2<q3), and three corresponding shapes 
of platform oscillations. When designing a three-mass vi-
bratory machine, its parameters are selected to provide the 
required shape of resonance oscillations of the platforms at a 
certain resonance frequency.

Note that in a first approximation, the corrections to v1, 
v2, v3 would be of order e. For actual vibratory machines, 
e<1/20, which is why the correction would not exceed 5 % of 
the already-defined two-frequency mode of motion. There-
fore, this correction is not determined below.

Evaluation of the values of discarded (unaccounted) 
components shows that, despite the strong asymmetry of the 
supports, the platforms execute almost ideal two-frequency 
oscillations.

5. 2. Deriving an equation to find the frequencies at 
which loads get stuck, its general analysis

5. 2. 1. Condition of the existence of two-frequency 
modes of motion

Find the middle angle at the steady state motion in a first 
approximation. We assume that

0 1,f = Wt + g + eg 		  (33)

where W=const, and g1 is the periodic function. Then, with 
an accuracy to the magnitudes of the first order of smallness 
inclusive

1,f = W + eg

  1,f = eg



( ) ( )0 1 0cos sin .xs A≈ Wt + g − eg Wt + g

At the same accuracy, equation (14) takes the follow-
ing form

( ) ( )1 2 0cos 0,n v Aeg + eβ W − + e Wt + g = 

hence

( ) ( )1 2 0cos .n v Ag = −β W − − Wt + g  		 (34)

In a zero approximation, v2 takes the form (29). Find the 
second derivative

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

3 02
2

4 0

2
3 4

, sin

, cos

, sin , cos .

X A
v

X A

n X n n X n n

 W Wt + g +
t = −W − 

+ W Wt + g  
 − d t + d t 



Fitting it to (34) yields

( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( )

1

3 02

4 0

0

32

4

, sin

, cos
cos 0.

, sin

, cos

n

X A

X A

X n n
n

X n n

g = −β W − +

  W Wt + g +
 W + 

+ W Wt + g    + Wt + g = 
 d t + 

+   + d t    



	 (35)
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The right-hand side of this equation contains the follow-
ing constant, generating the lateral component:

( ) ( )2
4 , / 2 0.n X A−β W − + W W = 	 (36)

If this constant is zero, then g1 is the periodic function.
Introduce a determinant

( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

4

11 12 13 15 16

21 22 23 25 26
2

41 42 43 45 46

51 52 53 55 56

61 62 63 65 66

,

.

q A

a q a q a q a q a q

a q a q a q a q a q

Aq a q a q a q a q a q

a q a q a q a q a q

a q a q a q a q a q

∆ =

= − 	 (37)

Then

( ) ( ) ( )4 4, , .X A AW = ∆ W ∆ W 	 (38)

Considering (38), equation (36) takes the following form

( ) ( ) ( ) ( )2
4, 2 , 0.P n n AW = β − W ∆ W + W ∆ W = 	 (39)

The valid roots of equation (39) determine the frequen-
cies at which loads can get stuck.

5. 2. 2. A general analysis of the equation to find the 
frequencies at which loads get stuck

In the absence of resistance forces in the supports, 

4( , ) 0A∆ W =  

and equation (39) takes the form

( ) ( ) ( )0, 2 0.P n nW = β − W ∆ W = 	 (40)

Equation (40) has seven valid positive roots:

q1, q1, q2, q2, q3, q3,

n (0<q1<q2<q3<n).	 (41)

At the same time, the roots q1, q2, q3 are two-fold.
If there are viscous resistance forces in the supports, 

other frequencies at which loads get stuck:
‒ are close to the vibratory machine’s natural oscillation 

frequencies;
‒ occur in pairs in the vicinity of each natural frequency;
‒ one frequency of getting stuck out of a pair is slightly 

less than the corresponding natural oscillation frequency of 
the vibratory machine, and the other is slightly higher.

Therefore, at small viscous resistance forces in the supports, 
a vibratory machine, depending on the rotor speed, could have 
1, 3, 5, or 7 frequencies at which loads get stuck. In this case, at 
small or high rotor speeds, there is only one frequency at which 
loads get stuck, which is slightly less than the rotor’s speed.

6. Discussion of the results of studying the two-frequency 
modes of motion of two-mass vibratory machines

Our theoretical studies have made it possible to establish 
that a three-mass vibratory machine with the rectilinear 

translational motion of platforms and a vibration exciter in 
the form of a passive auto-balancer always has the steady 
state modes of motion (29) that are close to the two-fre-
quency ones. At these motions, the loads in an auto-balancer 
create constant imbalance A from (21), cannot catch up with 
the rotor, and get stuck at a certain frequency. In so doing, 
loads operate as the first (resonance) vibration exciter, 
thereby exciting vibrations at the frequencies at which loads 
get stuck. The second vibration exciter is formed by an un-
balanced mass, on the body of the auto-balancer. The mass 
rotates at the rotor rotation frequency and excites faster 
vibrations.

Despite the strong asymmetry of the supports, the au-
to-balancer excites almost ideal two-frequency vibrations 
of the platforms. Deviations from the two-frequency law are 
proportional to e from (10) and, for actual machines, do not 
exceed 5 %. 

The three-mass vibratory machine has three resonance 
(natural) oscillation frequencies, q1, q2, q3 (q1<q2<q3), and 
three corresponding shapes of platform oscillations. Loads 
can only get stuck at speeds close to: the resonance (natu-
ral) frequencies of vibratory machine oscillations; the rotor 
rotation frequency.

A vibratory machine always has only one frequency at 
which loads get stuck, a little less than the rotor speed. 

For the case of small viscous resistance forces in the 
supports, then in the vibratory machine, with an increase in 
the rotor speed, the new frequencies at which loads get stuck:

‒ emerge in pairs in the vicinity of each natural frequen-
cy of a vibratory machine’s oscillations;

‒ one of the frequencies is slightly smaller, and the other 
is a little larger than the natural oscillation frequencies of a 
vibratory machine.

Depending on the rotation speed of the rotor and the 
viscous resistance forces in the supports, the number of fre-
quencies at which loads get stuck can be 1, 3, 5, or 7. 

Note that there are issues to be explored: the stability of 
different two-frequency modes of motion; the dynamic prop-
erties of a vibratory machine at these motions. 

Our results (the platforms’ motion laws, the equation for 
finding the frequencies at which loads get stuck, etc.) could 
be used both when designing a vibratory machine and for 
a computational experiment. In the future, it is planned to 
investigate the dynamic properties of a three-mass vibratory 
machine under the two-frequency modes of motion by a com-
putational experiment.

7. Conclusions

1. A three-mass vibratory machine with the rectilinear 
translational motion of platforms and a vibration exciter in 
the form of a passive auto-balancer always has the steady 
state modes of motion that are close to the two-frequency 
ones. At these motions, loads in the auto-balancer create 
constant imbalance, cannot catch up with the rotor, and get 
stuck at a certain frequency. In doing so, loads operate as 
the first vibration exciter, thereby exciting vibrations at the 
frequencies at which loads get stuck. The second vibration 
exciter is formed by an unbalanced mass on the body of the 
auto-balancer. The mass rotates at the rotor’s speed and ex-
cites faster vibrations at this frequency.

Despite the strong asymmetry of the supports, the au-
to-balancer excites almost ideal two-frequency vibrations 
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of the platforms. Deviations from the two-frequency law do 
not exceed 5 %.

2. A three-mass vibratory machine has three natural 
oscillation frequencies. Loads can only get stuck at speeds 
close to the natural frequencies of a vibratory machine’s 
oscillations or the rotor rotation frequency.

A vibratory machine always has only one frequency at 
which loads get stuck, a little less than the rotor speed. 

For the case of small viscous resistance forces in the sup-
ports, in a vibratory machine, with an increase in the rotor 
speed, the new frequencies at which loads get stuck:

‒ occur in pairs in the vicinity of each natural oscillation 
frequency of a vibratory machine;

‒ one of the frequencies is slightly smaller, and the other 
is a little larger than the natural oscillation frequency of a 
vibratory machine.

The arbitrary viscous resistance forces in the supports 
could prevent the emergence of new frequencies at which loads 
get stuck. Therefore, in the most general case, there may be 1, 
3, 5, or 7 such frequencies, depending on the rotor speed and 
the magnitudes of viscous resistance forces in the supports.
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