
37

Mathematics and cybernetics – applied aspects

1. Introduction

Underlying many of the tasks related to processing 
information (processing and filtering of complex signals, 
identifying and managing objects, predicting time sequenc-
es, classification, etc.) is the task of building a model of the 
following form:

( ) ( ) ( ),Ty k x k k∗= θ + ξ
				  

(1)

where y(k) is the observed output signal; 

( ) ( ) ( ) ( )( )1 2, ,..
T

Nx k x k x k x k=

is the vector of input signals N×1; ( )1 2, ,..
T

N
∗ ∗ ∗ ∗θ = θ θ θ

 
is the 

vector of the desired parameters N×1; ξ(k) is the interference 
that implies minimizing some of the predefined quality func-
tional (identification criteria). A quadratic functional, the 
most widely used in practice, leads to various identification 

algorithms, making it possible to obtain the estimates of the 
desired vector θ* at the normal interference distributions, 
that is, ( ) ( )20, .k N ξξ σ

Based on this assumption, the LSM-solution is asymp-
totically optimal with minimal variance in the class of 
non-displaced grades. However, this assumption does not 
generally hold in real-world conditions as almost always 
the a priori information about distributions is typically 
inaccessible, or interference is clogged with non-Gaussian 
noise. This results in some measurements being signifi-
cantly removed from the core of the data. thereby forming 
so-called “tails”. The instability of the LSM evaluation 
in the presence of such interference was the basis for 
the development of an alternative, robust assessment in 
statistics, which was aimed at eliminating the effects of 
interference [1‒9].

If one has information about the interference ξ belonging 
to a certain class of distributions, the task is simplified. In 
this case, it is possible to obtain the maximum plausibility 
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This paper addresses the task of identifying the param-
eters of a linear object in the presence of non-Gaussian 
interference. The identification algorithm is a gradient 
procedure for minimizing the combined functional. The 
combined functional, in turn, consists of the fourth-de-
gree functional and a modular functional, whose weights 
are set using a mixing parameter. Such a combination 
of functionals makes it possible to obtain estimates that 
demonstrate robust properties. We have determined the 
conditions for the convergence of the applied procedure 
in the mean and root-mean-square measurements in 
the presence of non-Gaussian interference. In addition, 
expressions have been obtained to determine the opti-
mal values of the algorithm's parameters, which ensure 
its maximum convergence rate. Based on the estimates 
obtained, the asymptomatic and non-asymptotic values 
of errors in estimating the parameters and identification 
errors. Because the resulting expressions contain a series 
of unknown parameters (the values of signal and interfer-
ence variances), their practical application requires that 
the estimates of these parameters should be used.

We have investigated the issue of stability of the 
steady identification process and determined the condi-
tions for this stability. It has been shown that determin-
ing these conditions necessitates solving the third-degree 
equations, whose coefficients depend on the specificity of 
the problem to be solved. The resulting ratios are rather 
cumbersome but their simplification allows for a qualita-
tive analysis of stability issues. It should be noted that all 
the estimates reported in this work depend on the choice 
of a mixing parameter, the task of determining which 
remains to be explored.

The estimates obtained in this paper allow the 
researcher to pre-evaluate the capabilities of the identifi-
cation algorithm and the effectiveness of its use in solving 
practical problems
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(M-assessment) assessment by minimizing the optimal cri-
terion, which is the reverse logarithm of the interference 
distribution function. If such information is not available, a 
non-quadratic criterion must be applied to assess the vector 
of θ* parameters. This ensures that the estimate obtained is 
robust. One of these criteria is a modular one, whose mini-
mization leads to a symbolic algorithm.

2. Literature review and problem statement

Theoretical research into the properties of the symbolic 
evaluation algorithm was reported for the first time in [1]. 
The practical application of this criterion in the task of iden-
tifying an object in the presence of pulse interference was 
considered in [2‒6]. In particular, the effectiveness of the 
affinity projection symbolic algorithm was studied in [2, 3]; 
the affinity projection symbolic algorithm with a variable 
gain factor was used in [4]. It should be noted that the sym-
bolic algorithms, while ensuring the robustness of the result-
ing assessment, have a low convergence rate. Therefore, in 
order to speed up the evaluation process, a normalized sym-
bolic identification algorithm was proposed and examined  
in [5]. A simple-to-implement algorithm that uses a root 
mean square error and the estimated interference power to 
correct the length of the step is studied in [6].

The positive properties of the modular criterion are used 
in the so-called combined criteria, the most common of 
which is the combined functionals proposed in [7, 8]. They 
include a quadratic functional that provides optimal ratings 
for the Gauss distribution, as well as modular, producing 
an estimate that is more robust to the distributions with 
heavy “tails” (emissions). It should be noted, however, that 
the effectiveness of the robust estimates obtained depends 
significantly on the many parameters used in these criteria. 
The cited works provide some recommendations for choosing 
these parameters. In most cases, however, they are selected 
based on the experience of the researcher [9]. The task of ro-
bust neural network training based on the functionals [6, 7]  
by Huber and Hempel is considered in [10‒12]; some prac-
tical recommendations on the choice of the functionals’ 
parameters are devised. A more general issue of robust as-
sessment in the presence of interference with asymmetrical 
distributions was investigated in [13]. However, the task of 
choosing the functionals’ parameters remains to be resolved.

Works [14‒18] developed a simpler approach to building 
combined functionals, consisting of both quadric and modu-
lar, and without the specified flaw. 

Such a criterion was for the first time proposed in [14]. 
In [14‒18], this criterion was used to solve the problem of 
identification in the presence of pulse interference. The sta-
bility of the normalized algorithm was studied in [15]; the 
applied identification problem was solved in [16]. An adap-
tive combination of normalized filters was proposed in [17]; 
the convergence of the identification algorithm was studied 
in [18], where the task of selecting the optimal parameters’ 
values of the algorithm was addresses.

The minimum fourth-degree criterion was proposed  
in [19], the properties of which were studied in [19‒24]. 
Thus, the stability of the normalized algorithm in the 
presence of the non-Gaussian input signals was considered 
in [20]; the process of the algorithm normalization was de-
scribed in [21]; papers [22, 23] considered the global stabil-
ity of the appropriate algorithms; the problem of stochastic 

analysis of the stability of the adaptive algorithm was tack-
led in [24]. The task of increasing the convergence rate of a 
given algorithm by using the optimal setting step parameter 
was studied in [25, 26]. Paper [27], in order to ensure the 
robustness and stability of the algorithm, proposed using 
a variable step parameter that takes into consideration the 
energy of the error (in the terms of the least squares). Stu- 
dy [28] proposed a modification of the algorithm of the 
method of the least fourth degree based on a quasi-Newto-
nian procedure. Finally, work [29] addressed the implemen-
tation of a given algorithm using quantum computations.

A combined assessment criterion to speed up the identi-
fication process, which uses the combination of the quadratic 
criterion and the fourth-degree criterion, is proposed in [30]. 
In [31], a given approach was used to speed up the identifica-
tion process in the presence of pulse interference. The prop-
erties of the adaptive algorithm to minimize this combined 
criterion were studied in [32]. 

A combined criterion consisting of the fourth-degree and 
modular criteria was proposed in [33]; the specificity of its 
work was considered.

As revealed by an analysis of the above studies into the 
issue of the robust identification of control objects, the appli-
cation of the combined criterion is quite effective. In addition, 
such an approach is much easier than when using traditional 
criteria. However, available papers do not include the results of 
studying the features of the robust algorithms for evaluating 
a model’s parameters built by using the combined criterion.

All this allows us to argue that it is appropriate to conduct 
a study on the analysis of the properties of the robust identi-
fication algorithm, which minimizes a combined functional, 
allowing for the combination of the LSM and LMM benefits.

3. The aim and objectives of the study

The aim of this work is to investigate issues related to 
the convergence and stability of the gradient algorithms that 
identify the parameters of a linear object in the presence of 
non-Gaussian noise.

To accomplish the aim, the following tasks have been set:
‒ to investigate the convergence of the robust identi-

fication procedure (to obtain analytical estimates of the 
convergence in the mean and the mean square of the gradient 
algorithm for minimizing the combined functional);

‒ to determine the most achievable (asymptomatic) val-
ues of errors in estimating the parameters and identification 
errors in the conditions under consideration; 

‒ to define conditions for the stability of the steady iden-
tification process;

‒ to simulate the process of identification of a stationary 
linear object in the presence of non-Gaussian noise.

4. Studying the convergence of the robust identification 
procedure

The following combined functional is effective enough to 
ensure the robust properties of the estimates received.

( ) ( ) ( ) ( )41
1 ,

4
F e k e k e k  = l + − l   		  (2)

where 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ

ˆ 1 ,T

e k y k y k k

y k k x k k

= − + ξ =

= − θ − + ξ

( )ŷ k  ‒ a model’s output signal; 

( ) ( ) ( ) ( )( )1 2
ˆ ˆ ˆ ˆ1 1 , 1 ,.. 1

T

Nk k k kθ − = θ − θ − θ −

‒ a vector of the rated parameters o N×1; [ ]0,1l ∈  – a mixing 
parameter. 

When using criterion (2), the gradient minimization 
procedure takes the following form

( ) ( ) ( ) ( ) ( ) ( ) ( )31 1 sign ,k k k e k e k x k θ = θ − + γ l + − l 
 	

(3)

where γ(k) is some parameter that affects the speed of the 
algorithm’s convergence. 

A given procedure combines the properties of LSM with 
the properties of LMM as, at λ=1, we have, from (3) the LSM 
algorithm, and, at λ=0, the LMM algorithm; that makes it pos-
sible to eliminate the non-Gaussian interference. By varying 
the λ parameter, one can change the properties of the algorithm. 

Introduce an evaluation error

( ) ( ) ( )ˆ ,k k k∗θ = θ − θ

			   (4)

which makes it possible to write down an expression for e(k) 
in the following form:

( ) ( ) ( ) ( ) ( ) ( )1 ,T
ae k k x k k e k k= θ − + ξ = + ξ

 		
(5)

where 

( ) ( ) ( )1T
ae k k x k= θ −  

is the a priori identification error. 
Since it is assumed that ( ) ( )20, ,k N ξξ ∼ σ  we have

( ){ } ( ){ }22 2 2 ,xM e k M kξ= σ + σ θ

			 

(6)

where { }M •  is the symbol of mathematical expectation;  
•  is the Euclid norm. 

Record algorithm (3) relative the identification errors ( )iθ

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( )

3

3

1 1 sign

1
1 .

1 sign 1

k k e k e k x k

k x k k
k x k

k x k k

 θ = θ − − γ l + − l = 
 l θ − + ξ + = θ − − γ  + − l θ − + ξ 

 







   (7)

Considering (5), rewrite expression (7) in the following 
form:

( ) ( ) [ ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )

3 2

2 3

3
1

3

1 sign .

a a

a

a

e k e k k
k k

e k k k

e k k x k

 + ξ +
θ = θ − − γ l + 

+ ξ + ξ 

+ − l + ξ 

 

	  (8)

Consider the convergence of procedure (3) in the absence 
of interference, that is, ξ(k)=0. In this case, we shall use the 
approach applied in [25, 26]. 

Introduce the Lyapunov function ( ) ( ) 2
V k k= θ

 
and con-

sider its increment

( ) ( ) ( )2 2
1 .V k k k∆ = θ − θ − 

 			 
(9)

After multiplying (7) on the left by ( )T kθ  and consider-
ing that, in the case in question, 

( ) ( ) ( ) ( )1 ,T
ae k e k k x k= = θ −  

after simple transformations, we obtain the following condi-
tion of convergence of the algorithm ( )( )0 :V k∆ <

( )
( ) ( )

( )
( ) ( ) ( )

24 3
2
.

2 1 1

a a

a a

e k e k
x k

e k e k

   l + l +
> γ   

+ − l + − l     	
(10)

Thus, the algorithm convergence condition (3) is met if 
the γ parameter satisfies the following inequality

( )
( ) ( ) ( )( ) ( ) 23

2
0 .

1 sign

a

a a

e k

e k e k x k
< γ <

l + − l
	  (11)

An expression for the optimal value of the γ parameter, 
which provides the maximum convergence rate, is deter-
mined from the equation obtained by the differentiation  
of (8) for γ and equating the derivative to zero. Thus

( )
( ) ( ) ( )( ) ( )

опт
23

.
1 sign

e k

e k e k x k
γ =

l + − l
 		  (12)

Examine the statistical properties of evaluation proce-
dure (3) in the presence of measurement interference, that is, 

( ) ( ) ( )* * ,Ty k x k k= θ + ξ  ( ) ( )20, .k Nξ ∼ σ  

Suppose the interference is not correlated with usable 
signals. Having written down (3) relative to the errors of the 
assessment, we have (7). 

Consider the mathematical expectation ( ){ }.M kθ  Giv-
en (5), after averaging both sides of (7), we obtain

( ){ }
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

θ =

 θ − − γl θ − + ξ − =  
−γ − l θ −  



 



3
1 1

.
1 sign 1

T

T

M k

k k x k k x k
M

k x k x k
	 (13)

It is easy to see

( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ){ } ( ){ } ( ){ }

1 1

1 1 ;

T T

T
xx

M k x k x k M x k x k k

M x k x k M k R M k

θ − = θ − =

= θ − = θ −

 

 

( )( ) ( ){ }
( ) ( )( )
( ) ( ) ( )

( ){ } ( ) ( ){ } ( ){ }
( ){ }

3

2

2

2

( 1)

1

1

1

1 ,
a

T

T

T

T
a

e xx

M k x k x k

k x k
M

x k x k k

M e k M x k x k M k

R M k

θ − =

 θ − × = = 
× θ −  

= θ − =

= σ θ −









 	  (14)

where 2

aeσ  is the root mean square value of the ea(k) error; 
Rxx ‒ the correlation matrix of the input signal. 
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Let us take a closer look at the expression 

( ) ( ) ( )( ) ( ){ }sign 1 .TM x k k x k x kθ −  

For the case when the signal is 

( ) ( )20, ,xx k N∼ σ  

we obtain 

( ) ( )( ){ }
( ) ( ) ( )( ){ }{ }

( ) ( ) ( )( ){ }

( ) ( ) ( ){ }

( ) ( ) ( ){ }

( ){ }

2

2

2

sign 1 ( )

sign 1

2 1
1

2
1

2
1

2
1 .

a

a

a

a

T

T

T

e

T

e

T

e

xx
e

M x k k x k

M M x k k x k

M M x k k x k

M M x k x k k

M x k x k k

R M k

θ − =

= θ − =

  = θ − = π σ  
  = θ − = πσ  

= θ − =
πσ

= θ −
πσ





(15)

Expression (15) is derived from a 
Price’s theorem, whereby for two random 
Gaussian quantities x and y with zero 
mathematical expectations, the following 
form is true

{ } { }2 1
sign ,

y

M x y M xy=
π σ

where σy is the root mean square value of y. 
Taking into consideration the properties of interference

( ) ( ){ } 0,M k x kξ =  ( )( ) ( )( )3 0M k M kξ = ξ =  

and expressions (8), (9), we have

( ){ } ( ) ( ){ }
2

2

3
1 ,

1
ae xx

xx xx

I R
M k M k

R Rξ

 − γlσ − γl × θ = θ − 
×σ − γ − l β  

   	 (16)

hence, it follows that procedure (3) will converge on average 
if the γ parameter satisfies the following inequality

( ) ( )( )2 2

2
0 .

3 1
ae xxtrRξ

< γ <
l σ + σ + − l β

 		  (17)

Here, 
2

2
;

ae

β =
πσ

 xxtrR  is the trace of the Rxx matrix.

( ) ( )( )2 2 2

2
0 .

3 1
ae xNξ

< γ <
l σ + σ + − l β σ

	  (18)

To study the convergence of the algorithm in root mean 

square, let us consider the Lyapunov function ( ){ }2
.M kθ

Multiplying both sides of (7) on the left by ( )T kθ , con-
sidering (5), we obtain 

It is easy to obtain formulae to calculate the expressions 
included in (20). For example, for { }signa aM e e , we have

{ } { }{ }
( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ }

( ){ } ( ){ }2 22

sign sign | ( 1)

2
1 1 | 1

1 1

1 1 .

a a a a

T T

e

T
xx

xx x

M e e M M e e k

M k M x k x k k k

M k k R

trR M k M k

= θ − =

  = θ − θ − θ − ≈ πσ  
≈ θ − βθ − =

= β θ − = βσ θ −

  

 

 

The formulae below are derived similarly:

( ){ } ( ){ }22 2 1 ;a xM e k M k= σ θ −

( ) ( ){ } ( ) ( ){ }2 22 42 1 ;a xM e k x k N M k= + σ θ −

( ){ } ( ){ }24 43 1 ;a xM e k M k≈ σ θ −

( ) ( ){ } ( ) ( ){ }( )2
2 24 63 12 1 ;a xM e k x k N M k≈ + σ θ −

( ) ( ){ } ( ) ( ){ }( )3
2 26 815 90 1 ;a xM e k x k N M k≈ + σ θ −

( ) ( ) ( ){ } ( )

( ){ }( )
23 6

2
2

sign 3 12

1 ;

a a xM e k e k x k N

M k

≈ + βσ ×

× θ −

( ) ( ) ( ){ } ( ) ( ){ }2 24sign 2 1 ;a a xM e k e k x k N M k≈ + βσ θ −

{ } ( ){ } ( ){ } ( ){ }22 4 2 4 1 ;a xM e M k M k M kξ ≈ σ ξ θ −

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
{ ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ))( ( ) ( ) }
( ) ( )

2 2

4 3 2 2

3

2 2 6 5 4 2

23 3 2 4 5 6

23 2 2 3

222

1

3 3
2

1 sign

6 15

20 15 6

2 1 3 3 sign

1 .

a a a

a a a

a a a

a a a

a a a a

k k

e k e k k e k k

e k k e e k

e k e k k e k k

e k k e k k e k k x k

e k e k k e k k k e k x k

x k

θ = θ − −

  + ξ + ξ +
 − γ l + 

+ ξ + − l   
+γ l + ξ + ξ +

+ ξ + ξ + ξ + ξ +
  + l − l + ξ + ξ + ξ + 

+γ − l

 

(19)

{ } { }

{

2 2

4 3 2 2

3

2 2 6 5 4 2

23 3 2 4 5 6

( ) ( 1)

( ) 3 ( ) ( ) 3 ( ) ( )
2

( ) ( ) (1 ) ( )

{ ( ) 6 ( ) ( ) 15 ( ) ( )

20 ( ) ( ) 15 ( ) ( ) 6 ( ) ( ) ( )

a a a

a a a

a a a

a a a

M k M k

e k e k k e k k
M

e k k e signe k

M e k e k k e k k

e k k e k k e k k x k

θ = θ − −

   + ξ + ξ + − γ l +   + ξ + − l     
+γ l + ξ + ξ +

+ ξ + ξ + ξ + ξ 

 

)( }
{ }

23 2 2 3

22 2

}

2 (1 ) ( ) 3 ( ) ( ) 3 ( ) ( ) ( ) ( ) ( ) }

(1 ) ( ) .

a a a ae k e k k e k k k signe k x k

M x k

+

  + l − l + ξ + ξ + ξ + 

+γ − l (20)

Then
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( ){ } ( ){ } { } { }2 26 6 2 6 ;xM x k M x k M N Mξ = ξ = σ ξ

( ){ }2 2 .xM x k N= σ

Here, 

2

2
.

ae

β =
πσ

Substituting these expressions in (20) and taking into 
consideration the statistical properties of the signals and 
interference, in particular, 

( )( ) ( )( ) ( )( )3 5 0,M k M k M kξ = ξ = ξ =  

we obtain

( ){ }
( )

( ){ } ( ) ( ){ }
( )

( )
( ){ }

( ) ( ){ }
( ){ } ( )( )

2

2 2 2 2
2

4 4 2

2 2 6 2 2
2

2 4 4

3
22 2 8

22 2 2 6

1 6 15 2

2 1

15 3 12
1

6 1 6

15 90 1

1 .

x

x x

x

x x

x

x

M k

N
M k

M k

N
M k

N M k

N M k

ξ

ξ

θ =

 − γlσ σ + + γ l ×
θ +  ×σ ξ − γ − l βσ 

 + γ l σ σ +  + θ − +   + γ l − l σ β − γlσ 

 + + γ l σ θ − + 

+γ σ l ξ + − l









	 (21)

If the algorithm converges, the value of ( ){ }2
M kθ  will 

be small. Therefore, to analyze the steady state, expres-
sion (21) can be simplified by neglecting the quantities

( ){ } 2
2

1M k θ − 
  and ( ){ } 3

2
1M k θ − 

  and by confining our- 
 
selves to the consideration of the quantity

( ){ }

( ){ }
( )

( ){ }
( ) ( )

( ){ }
( )

( ){ }

( ){ } ( )( )

2 2

2 2

4 4
2 2

2

4 2

2

22 2 2 6

1 6

15 2

6 1 2
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	(22)

It follows from (22) that procedure (3) will converge in 
the root mean square (the increment of the Lyapunov func-
tion will be negative) when the following condition is met
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that is, if the γ parameter satisfies the following inequality

The optimal value of this parameter, which ensures the 
maximum convergence rate of the algorithm, which is ob-
tained by solving the following equation
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M k∂ θ

=
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

takes the following form:
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 (24)

As can be seen from (24), the γopt magnitude depends on 
the dimensionality of the object N under study, the statistical 
properties of the signals and interference, the magnitude σ2 ,

ae  
and the mixing parameter λ. Usually, the dimensionality of 
an object is known, the parameter λ can be chosen by the 
researcher. The statistical characteristics of the signals and 
interference (especially the moments of the fourth order) are 
often unknown. Therefore, a given formula makes it possible 
to determine the effect of other parameters on the properties 
of the algorithm.

5. Determining the asymptomatic values of assessment 
and identification errors

Ratio (23) can be used to obtain an expression for an 
asymptotic assessment error

( ){ } { } ( )
( ) { } ( )

22 6
2

4 2

1
M .

15 2 6 2 1

N M

N M ξ

 γ l ξ + − l θ ∞ =
γ + ξ − lσ − − l β

 	 (25)

It follows from (25) that ensuring 
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lim 0
k

M
→∞

θ ∞ =

 

requires that the parameter γ should be chosen as variable 
and, with the growth of k, to strive to zero, that is, to meet 
the Dvoretskiy conditions [35]. 

Fitting (24) to (6) produces an expression for the asymp-
tomatic identification error
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	 (26)

As it follows from (26), the magnitude of the asymptom-
atic error of identification depends on the dimensionality 
of the examined object N, the statistical properties of the 
signals and interference, the magnitude of the γ parameter 
and the mixing parameter λ. If the dimensionality of an ob-
ject is known, and the parameters γ and λ can be chosen by 
the researcher, the statistical characteristics of the signals 
and noise (especially the moments of the fourth and sixth 
orders) are often unknown. Therefore, a given formula is 
rather of theoretical interest as it characterizes the limits of 
the algorithm.
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6. Determining the stability of the steady evaluation 
process

When studying the stability of an evaluation process, we 
shall take the approach proposed in [24]. 

Write down expression (22) in the following form

( ) ( ) ( ) ( ) ( )2 31 1 ,y k a y k by k cy k d+ = − − + +  		  (27)

where 

( ) ( ){ }2
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2
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2
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( ){ } ( )6 21 .xD M k= l ξ + − l σ

Nonlinear differential equation (27) describes the dy-
namics of algorithm (3). Obviously, the convergence depends 
on the magnitude of the initial error 

( ) ( ){ }0 0 .y M= θ
 

To study the conditions of stability, one needs to find the 
equilibrium points. 

Consider the steady state of the evaluation process. As-
suming 

( ) ( ) ( )1 ,y k y k y+ = = ∞  

record (27) in the following form:

( ) ( ) ( ) ( ) ( )2 31 ,y a y by cy d∞ = − ∞ − ∞ + ∞ + 		  (28)

Since c>0, (28) can be rerecorded in the following 
form

( ) ( ) ( )3 2 0.
b a d

y y y
c c c

∞ − ∞ − ∞ + = 		  (29)

A given equation has three roots that define the equilib-
rium points and take the following form [36]
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Depending on the q and r values, three cases are possible

3 2 0;q r+ <  			   (30)

3 2 0;q r+ = 			    (31)

3 2 0.q r+ >  			   (32)

In the first case, as shown in paper [24], equation (29) has 
either three negative physical roots or one negative and two 
positive physical roots. Negative roots are of no interest as ( )y k  
is a square, that is, it must be non-negative. To study the pos-
itive roots, work [24] investigated the behavior of curve (27) 
y(k+1) and defined the condition for a stable equilibrium point.
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In particular, the convergence will be monotonous if
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And, since c>0, this condition is met at

( ) 23 1 .c a b− ≥ 		  (34)

To make sure under which parameters of the algo- 
rithm (34) holds, we shall substitute in this inequality the ex-
pressions for a, b, and c. After simple transformations, we obtain
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(35) shows that meeting the condition (34) depends 
on the dimensionality of the problem N, the magnitudes of 
γ and λ, as well as the statistical properties of the signals 
and interference 2 ,xσ  4 ,xσ  { }2 ,M ξ  { }4 .M ξ  Since N is defined 
by the problem being solved, the degree of robustness of 
the solution is determined by λ, the only freely chosen 
parameter is γ.  Inequality (35) can be used to obtain the 
conditions that this parameter must satisfy to ensure the 
stability of the estimation process.

To this end, rewrite inequality (35) in the following 
form:

2 0,P R Qγ + γ + ≥  				    (36)

where
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By solving inequality (36), we obtain a condition for 
choosing γ

2 4
0 .

2

R R PQ

P

− ± −
≤ γ ≤  		  (37)

Substituting in (37) the expressions for P, R and Q, 
one can obtain a rather cumbersome analytical expres-
sion for choosing γ. Even for a simple case corresponding 
to λ=1, studied in [24], the analysis is very complex and 
requires significant simplifications. A qualitative analysis 
of inequality (37) shows that the value of the parameter 
depends on all the quantities included in (36). 

In the second case, that is, when meeting (31), equa-
tion (29) has two valid positive and equal roots and one 
negative, which again is of no interest. This case defines 
the resistance limit for choosing the γ step length param-
eter. For this case, (q3+r2=0), we obtain 
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Hence, we obtain 

( ) ( )3 22 2 34 3 9 27 2 .ac b abc dc b+ = − + 		  (38)

By recording (38) in the form of a polynomial from γ and 
by substituting the expressions for a, b, c, and d as the func-
tions from A1, A2, B1, B2, C, and D, we obtain 

4 3 2
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where
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The lowest positive root γ0 (39) corresponds to the resis-
tance limit. At the same time, as noted in [24], the existence 
of interference, even when the parameters ( )ˆ 0θ  are initiated 
based on the values close to ,∗θ  leads to the instability of the 
evaluation process. 

Finally, for the third case, when (32) is met, equation (29)  
may have three physical negative roots, which is of no in-
terest, or one physical negative root, but two complex ones. 
This case corresponds to the lack of stability in the learning 
process.

7. Modeling the identification process

We have considered the problem of identifying a station-
ary linear object, which is described by equation (1), with the 
following parameters

( )110; 25; 19; 40; 68; 16; 32; 90; 120; 240 .
T∗θ =

The chosen input signal x(k) was the sequences of the 
normally distributed quantities x(k)~N(0; 1). When testing 
the robustness of the algorithms, independent noise was 
added to the output signal of the object, with the Laplace 
distribution (α=1.0) and clogging Gaussian noise with σ=48. 
The histogram of such interference is shown in Fig. 1. 

The results of the simulation at different values of the λ  
parameter are shown in Fig. 2, 3. Fig. 2, a, c shows the 
diagrams of setting the model parameters when selecting 
λ=1, λ=0.5, and λ=0, respectively; Fig. 3, a‒c ‒ the iden-
tification errors.

Fig. 1. Interference histogram

As the modeling results show, when using only the 
fourth-degree criterion (Fig. 3, a), it becomes impossible 
to evaluate the parameters of the model in the presence of 
mixed interference. When using only a modular criterion, 
an estimate is possible, but the convergence of the algorithm 
stretches over time (Fig. 3, b). The application of the mixed 
criterion (Fig. 3, c) is optimal.
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Fig. 3. Identification error: a – at λ=1; b – λ=0.5; c – λ=0

8. Discussion of results of studying the convergence of  
a gradient algorithm for the identification of a linear object

The issues of the convergence of the gradient algorithms 
to identify the parameters of a linear object in the presence of 
non-Gaussian noise have been investigated. We have deter-
mined the conditions of the convergence of algorithms in the 
absence of interference (11), on average (18), and root mean 
square (23), if the noise is present. 

The expressions have been derived to determine the 
optimal values of the algorithm’s parameters, ensuring its 
maximum convergence rate in the absence and presence of 
interference ‒ formulae (12) and (24), respectively.

Based on the estimates obtained, the most achievable 
(asymptomatic) values of identification errors (25) and 
parameters assessment errors (26) under the conditions 
under consideration have been determined. Even though the 
derived expressions contain a series of unknown parameters 
(the signals 2

xσ  and interference 2
ξσ  variances), they allow 

for qualitative analysis. These formulae are more of theoret-
ical interest as they characterize the limits of the algorithm.

A non-linear differential equation (27), describing the 
dynamics of the algorithm, was used to study the stability 
of the steady identification process. It has been shown that 
meeting stability condition (34) depends on the dimen-
sionality of the problem N, the quantities γ and λ, as well 
as the statistical properties of the signals and interference.  
Since N is defined by the problem being solved, λ character-
izes the degree of robustness of the solution derived, the only 
freely chosen parameter is γ. The condition for the choice  
of γ (37), which is rather cumbersome, has been obtained. 
Its simplification, however, allows for a qualitative analysis 
of stability issues.

In modeling the identification process, the non-Gaussian 
noise was added to the object’s output signal (with the La-
place distribution and the clogging Gaussian noise). If one 
uses the fourth-degree criterion only, it becomes impossible 
to evaluate the parameters of the model in the presence of 
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Fig. 2. Diagram of setting the model’s parameters: a – at λ=1; b – λ=0.5; c – λ=0
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mixed interference. The results of the simulation show that 
with only the fourth-degree criterion, studied in [19‒28], 
the evaluation of model parameters in the presence of mixed 
interference becomes ineffective. Using only a modular crite-
rion makes it possible to obtain an assessment of the parame-
ters but the identification process is delayed. In this case, the 
best option is to apply the combined criterion considered in 
the present work.

The limitations of this study include the need for infor-
mation on the statistical properties of the usable signals and 
interference. In addition, the effectiveness of solving the 
identification problem depends significantly on the choice 
of the mixing parameter λ that determines the robustness of 
the assessment. At present, there are no general recommen-
dations for the choice of λ. Since the algorithms considered 
are designed to solve the problem of real-time identification, 
it seems appropriate to further develop effective procedures 
for assessing the statistical characteristics of signals and 
interference and the rules for selecting the weighting param-
eter. This is even more important because a given approach 
can be applied to the identification of the dynamic objects, 
represented, for example, by a pseudolinear regression mod-
el. It is therefore appropriate to conduct research on the 
development of recommendations for the choice of the λ pa-
rameter for different types of distributions and their possible 
combinations.

The estimates obtained in this paper allow the research-
er to pre-evaluate the capabilities of a given algorithm and 
the effectiveness of its application when solving practical 
problems.

In conclusion, the study reported in this paper is a 
continuation and the advancement of earlier research, the 
results of which are described in [18, 33].

9. Conclusions

1. The convergence of the identification algorithm, 
which minimizes a combined functional, consisting of the 
fourth-degree and modular functionals, and ensuring the ro-
bustness of estimates has been investigated. The conditions 
for the convergence of algorithms have been determined, in 
the absence of interference, as well as on average and root 
mean square if it is present. Expressions have been obtained 

to determine the optimal values of the algorithm’s param-
eters, which ensure its maximum convergence rate in the 
absence and presence of interference.

2. Based on the estimates obtained, the most achievable 
(asymptomatic) values of identification errors and errors in 
the assessment of parameters in the conditions under con-
sideration have been determined. Although the expressions 
derived contain a series of unknown parameters (the signals 

2
xσ  and interference 2

ξσ  variance), they allow for qualitative 
analysis. The resulting formulae are more of theoretical in-
terest as they characterize the limits of the algorithm.

3. The stability of the steady identification process 
using a non-linear differential equation describing the dy-
namics of the algorithm has been investigated. It has been 
shown that meeting stability condition (34) depends on 
the dimensionality of the N problem, the quantities γ and 
λ, as well as the statistical properties of the signals and in-
terference. Since N is defined by the problem being solved, 
λ characterizes the degree of robustness of the solution, the 
only freely chosen parameter is γ. Its simplification, how-
ever, makes it possible to perform a qualitative analysis of 
stability issues.

4. The identification process was simulated when there 
was a non-Gaussian noise in the object’s output signal (with 
the Laplace distribution and the clogging Gaussian noise). 
The results of the simulation have confirmed the effective-
ness of the developed approach. However, this approach 
requires information on the statistical properties of the 
usable signals and interference. In addition, the effectiveness 
of solving an identification problem depends significantly 
on the choice of the mixing parameter γ that determines the 
robustness of the assessment.

The estimates obtained in this work allow the researcher 
to pre-evaluate the limits of the algorithm and the effective-
ness of its application when solving practical tasks.
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