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1. Introduction

Over the past decade, as part of the creation of standards 
for the new generations of mobile telecommunications tech-
nologies, their physical interface has undergone significant 
changes, providing opportunities for the development and 
rapid distribution of these technologies around the world. 
The growing demands of mobile network users are due to 
their obtaining quality services and applications in the mo-
bility option.

In this regard, there is a multicriteria optimization issue 
to improve the quality of service provision together with 
the search for a free physical resource. At the same time, 
conditions for ensuring the electromagnetic compatibility 
of radio-electronic means in communication networks in 
a dynamic complex signal-interference environment must 
be met.

The main limitation of the air of mobile communication 
systems, in terms of its openness, is the issue of electromag-

netic compatibility (EMC). This problem also occurs due to 
the fact that other radio-electronic means (REM) operate in 
the compatible frequency ranges [1]. 

The electromagnetic situation in mobile communication 
systems (MCS), which is determined at the input of radio 
receiver devices of subscriber and base stations, is character-
ized by the totality of influences along all receiving channels 
(main, side, and off-band) formed from many sources of 
radiation [2].

The impact of these radiations, which are undesirable 
signals, although they are conflicting but not antagonistic, 
defines the specificity of EMC tasks. It should be noted 
that the emergence of unwanted interference also occurs 
in the radio communication systems, where the use of the 
radiofrequency resource is very well planned. The essence 
of unwanted interference is due to the fact that the REM 
radiation can lead to negative consequences and create an 
unwanted effect in systems for which this radiation was not 
intended [3]. 
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A methodology has been proposed for estimating the nonlin-
ear effects in radio tracts of receiving and transmitting devices in 
radio-electronic means of mobile communication systems, based on 
using the nonlinear transfer functions of the higher-order Volter- 
ra series. 

A procedure has been devised for obtaining the output responses 
from a nonlinear non-inertia circuit under the harmonious input action 
using a method for determining the transfer functions of higher orders 
obtained on the basis of the transfer functions of lower orders.

We have derived the analytical expressions for the output respons-
es from a nonlinear system of different orders for three inputs for the 
case of representing a nonlinear system in the form of a nonlinear 
non-inertia circuit. 

The values of the transfer functions of higher orders for a nonlinear 
non-inertia circuit were determined by using a state variable method. 

This paper demonstrates the derivation of analytical expressions to 
calculate a harmonic coefficient based on the second and third harmon-
ics using the nonlinear higher-orders transfer functions of a nonlinear 
non-inertia circuit.

It has been shown that the use of the nonlinear transfer functions to 
the fifth order inclusive allows a more accurate assessment of nonlinear 
effects in the form of the harmonious and intermodulation distortions in 
the radio tracts of radio-electronic means of mobile systems. 

The outlined technique for determining the nonlinear transfer 
functions is invariant to the topology of a nonlinear electrical circuit, 
as well as to the quantity and type of nonlinear elements. Existing 
estimation procedures of electromagnetic compatibility related to 
the problems of calculating intermodulation interference can be 
improved by the introduction of the determined magnitudes of influ-
ence products.

The proposed methodology makes it possible to evaluate the set of 
nonlinear effects in the problems related to electromagnetic compatibil-
ity in the groups of radio-electronic means with the accuracy required 
by users
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At individual facilities, offices, in a limited area, a large 
number of different radio means can be installed. This leads 
to the formation of multiple electromagnetic interactions 
between them and a sharp increase in the overall level of 
radiation, which leads to mutual interference.

The considerable destructive character is observed in 
the cases of the emergence of electromagnetic nonlinear 
influences that occur at different nodes in the receiving and 
transmitting equipment of a mobile communication system 
in general [4].

The manifestation of nonlinear properties implies the 
appearance of nonlinear effects such as blocking of useful 
signals, cross distortions, and intermodulation. Taking into 
consideration the high level of engineering solutions in the 
modern circuitry of radio equipment units in mobile com-
munication systems, it should be noted that the phenomena 
of blocking effects and cross distortions in radio receiving 
tracts account for no more than 15 % of such cases [5]. Thus, 
the remaining proportion of the cases of mutual interference 
is due to the effect of intermodulation, which is the result of 
nonlinear effects arising in the input cascades of radio re-
ceivers. Susceptibility to intermodulation interference (II) is 
an important indicator of the electromagnetic compatibility 
of RES groups.

Many methods, procedures, theoretical justifications 
related to improving the electromagnetic situation (EMS) 
in the radio lines of mobile communication systems have 
been developed within the framework of the task to ensure 
EMC. It can be considered that under stationary conditions, 
especially in the dual consideration (transmitter-receiver), 
the task of EMC can be solved. The situation and the EMS 
itself are greatly complicated by the fact that this situation 
is affected by various, often random, factors that are difficult 
to predict. In these circumstances, it is not always possible 
to calculate EMS in advance and solve the problem of EMC 
with sufficient accuracy, and often simply impossible, due to 
the a priori uncertainty in the parameters of a signal-inter-
ference situation.

Thus, as part of the solution to the EMC problem, the 
grouping of mobile communication systems’ REM can be 
represented as a complex nonlinear dynamic system, which 
can be described by generally adopted methods for studying 
the nonlinear dynamic systems. These methods include the 
direct integration of equations in the time domain, the equa-
tion of harmonious balance, as well as the functional series, 
each of which has its advantages and disadvantages [6]. 

It is possible to solve the problem of EMC in the non-
linear circuits of radio-electronic devices by approximating 
their characteristics using linearized methods.

Volterra series provides an opportunity for a thorough 
analysis of the physical phenomena of nonlinear distortions 
from the sources of different origins and to evaluate their 
contribution at the output from a nonlinear circuit. 

The functional Volterra series is the most fruitful area 
in the study of nonlinear inertial and non-inertial systems, 
originated in the works by Wiener and Van Tris.

It is obvious that existing procedures of EMC assess-
ment based on intermodulation do not make it possible to 
take into consideration the multiple characters of influ-
ences, so for a more accurate representation of the multiple 
nature of interactions, it is necessary to take into consider-
ation the II of higher orders. 

Therefore, it is an actual scientific task to develop a new 
approach to assess the manifestation of the nonlinear nature 

of electromagnetic interactions in the grouping of radio-elec-
tronic means in mobile communication systems. A given task 
aims to further clarify the parameters of output signals from 
radio receiving equipment with the typical nonlinearity and 
take into consideration the effects of interference of nonlin-
ear origin when analyzing the EMC conditions at different 
MCS objects.

2. Literature review and problem statement

The task of determining the spectral composition 
of voltage at the output from a non-inertial nonlinear 
element (NNE) under the influence exerted at its output 
by the sum of harmonic fluctuations dates back over forty 
years [7–9]. Paper [7] reported the results to determine the 
amplitude of harmonic at any combination frequency (CF) 
at the NNE output with the characteristic described by an 
arbitrary function. An analysis of the nonlinear dynamic 
systems of this type, given the high commonality of the 
model used, is widespread in solving a large number of radio 
electronics issues [10–12].

Even though there are constantly published scientific 
works about new or modified methods of the mathematical 
analysis of nonlinear systems, the task of calculating the 
multifrequency modes of nonlinear systems is extremely 
difficult.

Study [13] reports an effective method of rapid evalua-
tion of basic intermodulation products. The most accurate 
procedure for determining the products of intermodulation 
implies, first, finding a period of the stable signal, and, then, 
calculating its spectrum by using the rapid Fourier trans-
form. The method employs the Volterra series in a simple 
multi-step algorithm that is compatible with the typical 
structure of the frequency part of chain simulators. How-
ever, this method requires a multi-operational numerical 
integration over many periods of a faster signal, even for the 
improved methods for finding a stable state.

Non-ideal implementation schemes cause a significant 
deterioration in the performance of time-interleaved ana-
log-to-digital converters (TIADC) described in work [14]. 
The cited work gives a simulation model for TIADC based 
on the Volterra series and is offered for the simulation of 
dynamic nonlinearity in TIADC. The authors derived 
expressions of the pattern of behavior in the time and fre-
quency domains based on the hybrid Volterra series. The 
findings provide a theoretical basis for applying the Volter-
ra series with discrete-time to simulate the TIADC system 
in a mixed domain.

A distortion contribution analysis (DCA) is determined 
by the total contribution at the output of an analog elec-
tronic scheme as the sum of the contribution of distortions 
of its sub-schemes, reported in work [15]. DCA helps the 
designer define the actual source of distortion. Classically, 
DCA employs a Volterra theory to model the scheme and 
its sub-schemes. The DCA method considered was useful 
for simple circuits; however, for more complex schemes, the 
amount of contributions increases rapidly, making it difficult 
to interpret the results.

An analysis of nanoscale engine distortions (BD – 
bulk-driven) by the high-frequency amplifier CMOS, de-
scribed in [16], is based on the Volterra series. The first three 
cores of Volterra were calculated; the expressions for the 
second and third order of harmonic distortions were derived. 
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These expressions produce greater accuracy in comparison 
with the results of simulation and can provide an under-
standing of the nonlinearity of the nanoscale BD amplifier.

Paper [17] reports a new computational procedure for 
analyzing distortions in nonlinear circuits. The new pro-
cedure applies to the same class of circuits, namely to the 
weakly nonlinear and time-variable circuits, as the periodic 
Volterra series. However, unlike the Volterra series, it does 
not require calculating the second and third derivative of 
the responses from device models. The new method is effec-
tive in calculating compared to a full multitone nonlinear 
stationary analysis such as harmonic balance. Moreover, the 
new procedure naturally makes it possible to calculate and 
characterize the contribution of individual components of 
the chain to the overall distortion of the scheme.

A method of the analysis of Volterra series distortions in 
the analysis of the overall radiation scheme is described in 
work [18]. The authors gave a model of the integrated circuit 
and assessed its nonlinearity. Based on the provided equiv-
alent diagram and by using the Voltaire series method, the 
cores of the corresponding linear, square, and cube systems 
were developed. Changes in the IT operation mode in the 
frequency range affected by the input signal were deter-
mined considering the IT parameters and external elements.

As the general analysis of the reviewed works has re-
vealed, one can note that when analyzing electronic devices 
represented by equivalent schemes in works [13–18], the 
analysis is usually carried out in the frequency domain for the 
nonlinearities of the third or even the second order [19, 20]. 
In general, there are very few studies that consider the non-
linear interaction of at least the fifth order [10, 11]. At the 
same time, when concentrating wireless systems of different 
standards at short distances from each other and as a result 
of multiple influences there is an increase in the likelihood 
of the formation of intermodulation interference (II) caused 
by a large number of REM. Known classical procedures of 
group evaluation suggest the separation and accounting of 
only three main types of interference from a variety of input 
influences and make it possible to calculate the levels of II of 
not higher than the third order.

Therefore, when analyzing electromagnetic multiple in-
teractions in the REM grouping, as regards the accounting of 
nonlinear distortions, one should not be limited to consider-
ing the components of only the third order, as the significant 
level of influence is exerted by the components of higher 
orders. This primarily concerns the calculation of radio tract 
parameters, in particular the harmonic coefficient for individ-
ual harmonics. It is possible to obtain the nonlinear transfer 
characteristics of a radio tract, which links the input influence 
and a response from the nonlinear circuit in an apparent form, 
by using the apparatus of the functional Volterra series.

The experience in applying the method by researchers 
demonstrated its effectiveness and versatility for the analy-
sis and synthesis of a wide class of radio tracts with a small 
degree of nonlinearity. A given method is of great practical 
interest for the receiving and transmitting devices in ra-
dio-electronic means of mobile communication systems.

3. The aim and objectives of the study

The aim of this study is to devise a procedure for eval-
uating nonlinear effects in radio tracts of the receiving and 
transmitting devices of radio-electronic means in mobile 

communication systems based on the use of the nonlinear 
transfer functions of higher orders.

To accomplish the aim, the following tasks have been set:
– to obtain the output responses from a nonlinear system 

(a nonlinear non-inertia circuit) under the harmonic input 
action using a method for determining the higher-order 
transfer functions, which are derived on the basis of the low-
er-order transfer functions; 

– to obtain the expressions and determine the values for 
the higher-order transfer functions of a nonlinear non-inertia 
circuit; 

– to obtain the analytical expressions on calculating 
the harmonic coefficient for individual harmonics using 
the nonlinear higher-order transfer functions of a nonlinear 
non-inertia circuit.

4. Deriving the output response from a nonlinear system 
using the higher-order transfer functions

The result of the development of an NS analysis method 
based on the apparatus of the functional Volterra series, we 
created convenient ways to obtain a nonlinear transfer func-
tion for the characteristics of the tract, which links the input 
influence and response in an apparent form.

We shall use the representation of the functional Volt-
erra series in the form of the following expression [21, 22]:
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Let the response at the output from a nonlinear non-iner-
tia circuit be represented in a series
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Index n denotes the response’s order, for example, the 
first-order response
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The second-order response

( ) ( ) ( ) ( )

( )

2 2 1, 2 1 2

1 2 1 2

1
2

exp 2 d d ,

y t H f f X f X f

i f f t f f

+∞ +∞

−∞ −∞

= ×

 × π + 

∫ ∫
		  (5)

etc. 
Consider three input influences in the studied system 

represented by a nonlinear circuit:

( ) ( )0cos 2 ,x t A f t= π 				     (6)

( ) ( )2 2
0cos 2 ,x t A f t= π  				    (7)
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( ) ( )3 3
0cos 2 .x t A f t= π 				    (8)

Define the nonlinear circuit response expressions for the 
input actions (6) to (8). 

The most convenient representation of input action (6) is 
the Fourier transform that takes the following form:

( ) ( ) ( )0 0 ,
2
A

X f f f f f = δ − + δ +  			    (9)

where δ(f–f0) and δ(f+f0) are the delta functions.
As part of this study, it should be noted that the transfer 

functions Hn(f1,…, fn) are symmetrical, that is their value do 
not depend on the permutation of arguments, and are also 
even [8, 23], that is:



0,..., 0, 0,..., 0 0,..., 0, 0,..., 0, , .n n

mk m k

H f f f f H f f f f
   

− − = − −   
        

 	 (10)

Given the above, one can fit a Fourier transform (9) in 
expression (3) to obtain the first-order response:
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where n is the order of the response, which, in this case, is equal 
to unity, and the delta function filtering property is used:
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Considering the above, we obtain the result of the ana-
lytical expression for the first response:
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where 
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By analogy, represent in detail the second and third 
responses:

	

(15)

As the calculations become more time-consuming, we shall 
omit further calculations for a shorter accumulation of formulae 
and provide the result for the higher-order responses [24]:
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+ − × π +

+ − − ×

× π + ×

× − − − π 	 (19)

The first term of the series (2) to (13) contains the 
first harmonic of the frequency f0; the second term of 
the series – y2(t) (14) – the second harmonic of the fre-
quency f0 and a constant component; third – y3(t) (15) –  
the third harmonic of the frequency f0 and the first har-
monic f0. 

It is proposed to represent analytical expressions for the 
first, second, and third responses for the input actions in the 
form of (7) and (8). 

Before one calculates the responses to action (7), one 
must bring it to a more acceptable form:

( ) ( ) ( )

( )

2
02 2

0

22
0

(1 cos 4
cos 2

2
cos 4

.
2 2

A f t
x t A f t

A f tA

+ π
= π = =

π
= + 		  (20)

By reducing the degree of cosine, one can easily find the 
Fourier transform [24]:

( ) ( ) ( )2 2
0 0

0

2 2
cos 2 2 ,

2 2 2
A A

t
 δ ω − ω + δ ω + ω ω → π 	 (21)

( )
2 2

2 .
2 2

A A
→ πδ ω 				    (22)

Considering expressions (21) and (22), we can record the 
Fourier transform for action (20):

( ) ( ) ( ) ( )2
0 02

.
2 2 2

f f f fA
X f f

  δ − + δ +π  = δ + 
π   

	 (23)

To calculate the responses, consider that:

( ) ( ) ( )0 ,f x x fδ =∫ 		   (24)

0 02 ,fω = π 		   (25)

( ) ( )0 021
d d .

2
j t j f tx t e t x t e t− ω − π=

π∫ ∫  		  (26)

Thus, the first-order response (20):

	 (27)

The second-order response:

	 (28)

And the third-order response:

	 (29)

By analogy, we calculate the responses from action (8) 
by preliminarily reducing the degree of the following ex-
pression:

( ) ( ) ( ) ( )
3

3 3
0 0 0cos 2 3cos cos 3 .

4
A

x t A f t t t = π = ω + ω  	 (30)

Given expressions (25) and (26), one can record the 
Fourier transform:

( )
( ) ( )
( ) ( )

3
0 0

0 0

32
.

2 4 3 3

f f f fA
X f

f f f f

  δ − + δ + +π   =
π   + δ − + δ +  

 	 (31)
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2

exp 2 d d
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A
y t H f f

f

f f f f

f

f f f f

i f f t f f

A A
H f f f t H f f

+∞ +∞

−∞ −∞

 π
= × π 

 δ +
 × ×δ − + δ + +  
 δ +
 × ×δ − + δ + +  
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π π

∫ ∫
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1 2
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A
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n

f f f f
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A
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π
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π
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× δ + ⋅ = 

 
π
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π

∫
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3
2
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2
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A
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f f f f
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f f f f

i f f f t f f f

A
H f f f f

+∞ +∞ +∞
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 π
= × π 

 δ +
 × ×δ − + δ + +  
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π
= π

π

∫ ∫ ∫
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2
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t

A
H f f f f t

+

π
+ − π
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The first-order response for action (30) takes the follow-
ing form:

	 (32)

The second-order response for action (30) takes the fol-
lowing form:

The third-order response:

It may be noticed that the more the order of the response, 
the smaller the part of the contribution of its components 
into the overall product of nonlinearity, for example, the 
third-order harmonic in the response order of the third order  
 
to action (6) has the amplitude ( )

3

3 0 0 0, , ,
24
A

H f f f  and in the  

 response of the fifth order – ( )
5

5 0 0 0 0 0, , , , .
384
A

H f f f f f−

5. Obtaining expressions and determining the values for 
the higher-order transfer functions of a nonlinear  

non-inertia circuit

Based on expressions (1) and (9), write down the re-
sponse of the n-th order signal

( ) ( )
( )

( )
( )

( )

1,...,
1

1

2
1

1
...

!

... exp 2 d .

n n
n

n

i i
i

n

y t H f f
n

f f

f f i f t f

f f

+∞ +∞∞

= −∞ −∞

=

= ×

 δ − +
 

× +δ − + + π 
 
+δ −  

∑ ∫ ∫

∏ 	  (35)

The product of the sum of the delta functions produces 
the sum of all different terms in the following form

( )
( ) ( )

1

2 ...

k

k kn

f f

f f f f

δ − +

+δ − + + δ − 	 (36)

and each ki index accepts a value 
from 1 to n. If each is represented 
in the product (45) by mi times, 
we have

( )
1 2

1 2

!
! !... !

; , ,..., ,
n

n

n
m m m

n m m m

=

= 	 (37)

terms, which, if one does not take 
into consideration the permuta-
tions between them, are identical 
to each other. 

In ratio (37), the multiplica-
tive coefficient is marked as (n; 
m1, m2,…, mn). Act according to (35) 
and bring together the derived 
terms. Then the result can be rep-
resented in the following form:

( )

( )
( )

1 1 2

1,...,

1

1 !
! ! !... !

exp 2 ... ,

n m n

n n

k kn

y t

n
n m m m

H f f

i f f t

∞

=

=

= ×

× ×

 × π + + 

∑ ∑

	 (38)

where m under the sum sign shows 
that the sum includes all different 
sets {m}, such as

1i im m +<  and 
1

.
n

i
i

m n
=

=∑ 	 (39)

The inequality mi<mi+1 arranges the frequencies in {fmi} 
based on the index so that the frequency sets that differ only 
in permutations are not repeated. 

Thus, we obtain that in (38) the coefficient at 

exp[i2π(fk1+…+fkn)t] is n!Hn(f1,…, fn).
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Hence, we can conclude that there is a recurrent method 
for determining all nonlinear transfer functions based on the 
equation describing the system. 

A given method implies:
1) the system is initially “probed” by one exponential 

input action, resulting in finding H1(f).
2) then the sum of the two exponents is given to deter-

mine H2(f1, f2) via H1(f).
3) when this procedure is extended, one additional expo-

nent is added at each step, up to the n-the order at which the 
input signal is the sum of n exponents with frequencies (f1,…,fn).

Hence it follows that the nonlinear transfer function of 
the order n is built from all nonlinear transfer functions of 
lower orders (Fig. 1).

Fig. 1. A procedure for obtaining a nonlinear system 
response

Thus, knowing the parameters of the input signal x(t) 
and the transfer function of the n-th order Hn, one can ana-
lyze the parameters of the output reaction of the system y(t) 
and thereby solve the set problem. 

To develop a method for calculating the nonlinear trans-
fer functions of the higher orders for a nonlinear electric 
circuit, which makes it possible to calculate the coefficients 
for expanding into the Volterra series of function [y(t)]L. L is 
the degree indicator, via the coefficients for expanding into 
the Volterra series of function y(t).

As shown above, y(t) can be presented as a series (38), 
in which the coefficient at exp( j2π(f1+…+fn)) is Hn(f1,…,fn), 
then [y(t)]L can be expanded into a similar series. In this 
series, the coefficient at exp( j2π(f1+…+fn)) is ( )1

( ) , , ,L
n nH f f…  

where (L) denotes the order of the functions ( )1
( ) , , ,L
n nH f f…  

that are part of the Volterra series’ cores. 
Functions in the form ( )1

( ) , , ,L
n nH f f…  are expressed 

through the nonlinear lower-order transfer functions from 
the Volterra series for [y(t)]L, that is

( ) ( )

( )
( ) ( )

1

1 1 2

; ;
2 2 1 1 2

,...,

,...,
!

,..., ,..., .

L
n n

N

L n
L L n

H f f

H f f
L

H f f H f f

µ µ µ

µ
µ µ + µ +µ µ ν

=

×
=

×

∑
∑

 	 (40)

This formula expresses the n-multiple Fourier trans-
form of the kernel of the n-th order from the Volterra series  
for [y(t)]L. Here, L is a positive integer and 1≤L≤n. At L>n, 
the value ( )1

( ) , ,L
n nH f f…  is convoluted to zero, and, at L=n:

( ) ( ) ( ) ( ) ( )1 1 1 1 2 1,..., ! ... .L
n n nH f f n H f H f H f= 	  (41)

In ratio (40), ν=μ1+ μ2+…+μL-1 +1=n–μL+1, and (μ; L; n) 
under the sign of the first sum represents the sum of integers 
of μi, so that

1

,
L

i
i

n
=

µ =∑  
1 2 ... .Lµ ≤ µ ≤ ≤ µ 	 (42)

The second sum in ratio (40) captures N “non-identical” 
sets obtained by permuting indexes of different f. The con-
cept of “identity” is used in the sense that the combinations 
of f arguments are the same, that is, H2(f1, f2) matches 
H2(f2, f1), etc. 

The number of terms of the second amount is equal to 

1 2 1 2

!
,

! !... ! ! !... !L k

n
N

s s s
=

µ µ µ
		  (43)

where s1 is the number of inequalities in the first series of 
equal V from the group μ1≤μ2≤…≤μL, s2 is the number of 
equal μ in the second series of inequalities from the group 
μ1≤μ2≤…≤ μL, etc. 

When the μ values are not equal, s does not appear.
For example, it is required to calculate ( ) ( )2

2 1 2,H f f
  when n=2

2,L = 1 2 1,µ = µ =  1 2,s =  

2!
1.

1!1!2!
N = = 	

Thus,

( ) ( ) ( ) ( )2
2 1 2 1 1 1 2, 2! .H f f H f H f= 			   (44)

By analogy, at n=3 and 

2,L =  1 1,µ =  2 2,µ =  

3!
3.

1!2!
N = =  

Thus,

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1 2 2 3

3
3 1 2 3 1 2 2 1 3

1 3 2 1 2

,

, , 2! , .

,

H f H f f

H f f f H f H f f

H f H f f

 +
 

= + + 
 
+  

	  	 (45)

Therefore, based on the above transforms we have shown 
the possibility to obtain an analytical expression for the 
transfer function of any order. 

Fig. 2 shows the circuit of a nonlinear non-inertia circuit, 
which contains the linear resistant element RN and the non-
linear resistant element RNM.

Fig. 2. A diagram of the nonlinear non-inertia circuit

Input action (5) has the amplitude A=1, that is, the har-
monic signal generator has the function – e(t)=cos(2πf0t). A 
volt-ampere characteristic of the nonlinear resistant element 
is represented by the fifth-degree polynomial [23, 24]:

NM NM NM NM

NM NM

2 3

4 5

0.5 0.17

0.04 0.01 .

R R R R

R R

i u U U

U U

= + + +

+ + 		 (46)
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The current i(t) is similar to x(t), the voltage U ‒ to y(t).
Papers [7–9] show that the method of state variables can 

be used to define the nonlinear transfer functions for both 
the inertial and non-inertial nonlinear electric circuits.

Under this scenario, a mathematical model for the circuit 
in a state variable method takes the following form [7–9]:

( ) ( ) ( ) ( )
N 1 2 IS 3 N ,Ri t B X t B X t B X t= + +

     

		  (47)
				  

( ) ( ) ( ) ( )
NM 1 2 IS 3 N ,Ri t M X t M X t M X t= + +

     

		  (48)

where X


(t) is the state vector that contains information 
about the voltage on the linear capacitive elements, and cur-
rents through the linear inductive elements; ( )ISX t



 is the vec-
tor of voltage and current from independent sources; ( )NX t



 is 
the vector of voltage and current in the nonlinear elements. 

For the electric circuit shown in Fig. 2:

( ) [ ],X t =


 ( ) ( )IS ,X t e t =  


( ) ( )
NMN .RX t u t =  



	 (49)

Equation (47) is the equation of the resistive elements’ 
currents [23], where

[ ]1 ,B =


 2
N

1
B

R

 
=  

 



 and 3
N

1
.B

R

 
= − 

 



		  (50)

Equation (48) is the equation of current and voltage on 
the nonlinear elements, where

[ ]1M ,=


 2
N

1
M ,

R

 
=  

 



 3
N

1
M .

R

 
= − 

 



		  (51)

A nonlinear transfer function of the first order is the 
transfer function of the linearized circuit, which is obtained 
from the nonlinear circuit by replacing all nonlinear ele-
ments with their linear equivalents. This linear replacement 
scheme is shown in Fig. 3.

Fig. 3. A replacement scheme of the nonlinear circuit

It is known that the nonlinear transfer function of the 
first order H1(f) relative to the electrodes of the nonlinear 
element RNM is 0.5, and, relative to the electrodes of the lin-
ear resistive element RN, – ( )

N 1 0.5RH f =  [7–9].
Fit into (48), instead of the vector X



(t), an expression 
as the sum of the exponents: exp(i2πf1t)+exp(i2πf2t)+…+ 
+exp(i2πfnt), and, instead of the vectors 

( )ISX t


 and ( )N ,X t


 the nonlinear transfer 
functions that are determined relative 
to the electrodes of the corresponding 
elements in the nonlinear circuit. Next, 
by equating the coefficients to the exponents with the same 
arguments in the right and left sides of (48), we derive an 
equation to calculate the nonlinear transfer functions of 
higher orders [21–24]. That is, the nonlinear second-order 
transfer function relative to electrodes relative to the elec-
trodes of the nonlinear element RNM is calculated through 

the nonlinear transfer function of the first order according 
to expression (48):

( ) ( ) ( )(2)
2 1 2 2 1 2 2 1 2

N

1
, 0.5 , 0 , ,H f f H f f H f f

R
+ = − 	 (52)

where 

( ) ( )(2)
2 1 1 1 22! .H H f H f= 	

Thus

( ) ( ) ( ) ( )2 1 2 1 1 1 2 2 1 2, 0.5 2! , ,H f f H f H f H f f + = −  	 (53)

and,

( ) ( ) ( ) ( )2 1 2 1 1 1 2 2 1 2, , ,H f f H f H f H f f+ = −

( ) ( ) ( )2 1 2 1 1 1 22 , .H f f H f H f= − 	 (54)

Thus, 

( ) ( )2 1 2, 0.5 0.5 2 0.125.H f f = − ⋅ = −

The nonlinear third-order transfer function is calculated 
in a similar way through the nonlinear transfer functions of 
the first and second orders [7–9]:
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3 1 2 3 3 1 2 3
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where 
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( ) ( ) ( )(3)
3 1 1 1 2 1 33! .H H f H f H f=  	 (57)

Then
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H f H f H f H f f f

+ +

+ + +

+ = − 	 (58)

and, 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

3 1 2 3 1 1 2 1 2

1 2 3 1 3 1 3 2 1 2

1 1 1 2 1 3

2 , , ,

, ,

1.02 .

H f f f H f H f f

H f H f f H f H f f

H f H f H f

= − −

− − −

− 	 (59)

Thus,

Table 1 gives the results of calculating the nonlinear 
transfer functions of higher orders obtained by the above 
technique for a signal of frequency f0. Because there are no 
frequency-dependent elements in the circuit, the values of 
the nonlinear transfer functions do not depend either on the 
frequency value or their set. 

 

E

Rlin=1 Оhm

RN=1 Оhm

 

( ) ( ) ( ) ( )
3 1 2 3

0.5 0.125 0.5 0.125 0.5 0.125 1.02 0.5 0.5 0.5
, , 0.03.

2
H f f f

 − − − − − − − ⋅ ⋅ ⋅ = =
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The values of the nonlinear transfer functions in Table 1 
for the analyzed circuit relative to the electrodes of the linear 
resistant element RNM carry a negative sign according to 
equation (46).

Table 1 

Values of the nonlinear transfer functions of higher orders

Func-
tion 

order
Transfer function

Estimated 
value

Estimated value rel-
ative to the resistive 

element RNM

1 ( )1 0H f
. 0.5 0.5

2 ( )2 0 0,H f f
. –0.125 0.125

3 ( )3 0 0 0, ,H f f f−
. 0.03 –0.03

4 ( )4 0 0 0 0, , ,H f f f f−
. –0.0121875 0.0121875

5 ( )5 0 0 0 0 0, , , ,H f f f f f− –0.03825 0.03825

In a general case, the nonlinear transfer functions are 
complex quantities [4]. However, in this case, since the elec-
tric circuit lacks both the linear and nonlinear reactive ele-
ments, the nonlinear transfer functions are the real numbers.

6. Obtaining analytical expressions on calculating  
the harmonic coefficient for individual harmonics using 

the nonlinear higher-order transfer functions for  
a nonlinear non-inertia circuit

After fitting the harmonic amplitudes from (13) to (18) 
to the expression for calculating the coefficient of the i-th 
harmonic, the formulae for harmonic coefficients on the sec-
ond and third harmonics will take the following form:

Expressions (60) and (61) make it possible to obtain 
more accurate results than the results produced by the cor-
responding formulae in which the transfer functions in the 
nominator do not exceed the third order:

( )
( )2

2

2 0 0

1 0

,
4

,H

A
H f f

K
АH f

≈ 	 (62)

( )
( )3

3

3 0 0 0

1 0

, ,
24

.H

A
H f f f

K
АH f

≈ 	 (63)

Table 2 gives the results of calculating the harmonic 
coefficients of the studied electrical circuit based in expres-
sions (60) to (63) and by using the MicroCAP 9.0 circuit 
modeling package.

Table 2

Values of the harmonic coefficients based on expressions 
(60) to (63)

Harmonic 
coefficient

Expression for 
calculation

Estimated 
values

Simulation data in 
the MicroCAP 9.0 

package

KГ2
(60) 0.062452

0.062346
(62) 0.0625

KГ3
(61) 0.002396

0.002302
(63) 0.0025

Comparing the results of harmonic coefficients’ values 
given in Table 2, one can see that:

– the discrepancy between the harmonic coefficients ob-
tained from expressions (60), (61), compared to those ob-
tained from (62), (63), is about 0.07 % and 3.9 %, respectively; 

– the discrepancy between the harmonic coefficients’ 
values obtained from expressions (60), (61), compared to 
those from the MicroCAP 9.0 circuit modeling package, 
does not exceed 0.17 % and 4 %, respectively.

7. Discussion of results of the methodology for 
calculating the nonlinear transfer functions in  

the Volterra series

The use of the nonlinear transfer functions up to the 
seventh order inclusively makes it possible to obtain the 
responses from a nonlinear non-inertia circuit for different 

types of influences and 
calculate a harmonic co-
efficient with a greater 
degree of accuracy. 

The considered me- 
thodology makes it pos- 
sible to evaluate the set 
of nonlinear effects in the  
form of harmonic and 
intermodulation distor-
tions in the problems 
related to the electro-
magnetic compatibility 
of groups of radio-elec-
tronic means with the 
accuracy required by 
users.

A special feature of the procedure for calculating the 
transfer functions in the Volterra series is the recurrent 
method for determining the nonlinear transfer functions of 
any order n based on an equation describing the system and 
built from all nonlinear transfer functions of lower orders.

Once we determine the transfer function of the n-th or-
der and the input signal parameters x(t), one can obtain the 
output response function of the system y(t) and analyze the 
parameters of a radio tract.

To compute the nonlinear transfer functions of higher 
orders for a nonlinear electric circuit, we have derived formu- 
la (40), which makes it possible to calculate the coeffi-

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 4 6

42 0 0 0 0 0 0 6 0 0 0 0 0 0

3 5 7

31 0 0 0 0 5 0 0 0 0 0 7 0 0 0 0 0 0 0

, , , , , , , , ,
4 48 1,536

, (60)

, , , , , , , , , , ,
8 192 9,216

HK

A A A
H f f H f f f f H f f f f f f

A A A
АH f H f f f H f f f f f H f f f f f f f

≈

+ − + − −
≈

+ − + − − + − − −

( ) ( ) ( )

( ) ( ) ( ) ( )

3

3 5 7

3 0 0 0 5 0 0 0 0 0 7 0 0 0 0 0 0 0

3 5 7

1 0 3 0 0 0 5 0 0 0 0 0 7 0 0 0 0 0 0 0

, , , , , , , , , , , ,
24 384 1,536

. (61)

, , , , , , , , , , ,
8 192 9,216

HK

A A A
H f f f H f f f f f H f f f f f f f

A A A
АH f H f f f H f f f f f H f f f f f f f

≈

+ − + − − −
≈

+ − + − − + − − −
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cients for expanding the Volterra series of the response 
function [y(t)]L of the L-th order. 

The outlined technique of determining the nonlinear 
transfer functions is invariant to the topology of a nonlinear 
electrical circuit, as well as to the quantity and type of non-
linear elements.

The most common point of view is that calculating the 
Volterra kernels above the third order is a time-consuming 
procedure, so the analysis of highly nonlinear modes based on 
functional series becomes impractical. This can be denied by 
that all highly nonlinear problems, which are solved beyond 
the level of the third order, face the “curse of dimensionality”. 
No systematic study of factors limiting the use of the Volterra 
series in highly nonlinear modes was conducted [6]. This 
indicates that comprehensive in-depth research into the spe-
cific aspects of the Volterra series application for essentially 
nonlinear modes remains relevant.

The limitation of this study is that calculating the val-
ues of transfer functions becomes more time-consuming 
in proportion to the growth of their degree. According to 
expression (40), one can see that when trying to calculate 
the transfer functions exceeding the fifth order, the com-
plexity of computation increases significantly by adding 
the sum of the components’ coefficients of lower orders. 
In general, it also affects the response order of the entire 
system (1), which eventually leads to an increase in the 
components of the formulae to calculate harmonic coeffi-
cients (60) and (61).

A subsequent procedure for obtaining the expressions of 
the output responses of a nonlinear system and determining 
the transfer functions and their values requires the applica-
tion of the programmed implementation of the procedure in 
the form of software for mathematical modeling and circuit 
simulation. 

This study could be advanced by developing algorithmic 
maintenance for simulating the nonlinear non-inertial and 
inertial electrical circuits. When considering inertial electri-
cal circuits, it is worth noting that the electric circuit has the 
linear and nonlinear reactive frequency-dependent elements; 
the transfer functions are complex quantities, which would 
significantly complicate a procedure for determining system 
responses.

In order to cover more components that affect the accu-
racy of calculating the system output parameters, we argue 
about the prospect of combining a given method with the 
methods of differential equations. The methods of differen-
tial equations describe in detail the properties of a circuit 
from a time point of view.

9. Conclusions

1. By using the Volterra series, we have obtained the an-
alytical expressions for the output responses of the first-third 
orders for 3 types of harmonic input actions in a nonlinear 
system. It is noted that representing an output signal from a 
nonlinear electric circuit in the form of the functional Volterra 
series has several advantages such as the explicit connection 
between an input action and response, the invariability rela-
tive to the types of the input action. A Fourier transform was 
used to represent an input action. It is shown that the main 
difficulty in determining the nonlinear transfer functions of 
higher orders, included in the kernels of the Volterra series, 
is related to the increased volume of computation by adding 
the exponential components of the transfer functions of lower 
orders. It is shown that the order of the transfer functions in-
creases in proportion to the system’s response order.

2. We have demonstrated the possibility to determine 
the transfer functions up to the fifth order for a nonlinear 
inertia circuit, under a harmonic input action, which are de-
rived on the basis of the lower-order transfer functions. The 
use of the nonlinear transfer functions up to the fifth order 
inclusive allows a more accurate assessment of the nonlinear 
effects in the form of harmonic and intermodulation distor-
tions regarding radio-electronic means of mobile systems.

3. The derivation of the analytical expressions has been 
demonstrated regarding the calculation of a harmonic coeffi-
cient for the second and third harmonics using the nonlinear 
transfer functions of higher orders for a nonlinear non-inertia 
circuit. We have computed the harmonic coefficient based 
on the second and third harmonics according to the derived 
expressions containing the responses from a nonlinear system 
of higher orders. It is shown that the discrepancy between 
the harmonic coefficients’ values, obtained from expres- 
sions (60), (61), compared to those simplified from (62), (63), 
is about 0.07 % and 3.9 %, respectively, which increases the 
accuracy of the calculation. Thus, the proposed methodology 
makes it possible to evaluate the set of nonlinear effects in 
the EMC problems related to the groups of radio-electronic 
means with the accuracy required by users.
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