У роботі проведена оцінка динамічного діапазону імітансних логічних елементів (ІЛЕ). Обгрунтовано параметри, що характеризують динамічний діапазон роботи і розроблено математичний апарат для розрахунку. Дана чисельна оцінка динамічного діапазону імітансних логічних елементів «НЕ» R- і LC-типів, на основі біполярного транзистора

Ключові слова: імітансний логічний елемент, динамічний діапазон, коефіцієнта шуму, потужність сигналу

В работе проведена оценка динамического диапазона иммитансных логических элементов (ИЛЭ). Обоснованы параметры, характеризующие динамический диапазон работы, и разработан математический аппарат для расчета. Дана численная оценка динамического диапазона иммитансных логических элементов «НЕ» R- и LC-типов, на основе биполярного транзистора

Ключевые слова: иммитансный логический элемент, динамический диапазон, коэффициента шума, мощность сигнала

1. Введение

Иммитансные логические элементы (ИЛЭ) относятся к радиочастотным логическим элементам, работающим в диапазоне сверхвысоких частот (СВЧ). В известных радиочастотных логических элементах в качестве информационного параметра используется параметры гармонического сигнала (частота, амплитуда, фазовая задержка) или параметры радиочастотных импульсов (амплитуда, длительность, частота следования, кодоимпульсная последовательность). Иммитансные логические элементы в качестве информационного параметра используют характер иммитансного параметра – дифференциальное положительное или отрицательное активное сопротивление $(R^{(+)}, R^{(-)}),$ емкость ($C^{(+)}$, $C^{(-)}$), или индуктивность ($L^{(+)}$, $L^{(-)}$). Соответствующий логический уровень задается не количественной величиной иммитансного параметра, а только его характером или знаком.

2. Литературный обзор

Большинство видов логических элементов принято оценивать системой параметров, включающих: время задержки сигнала, коэффициент объединения по входу, коэффициент разветвления по выходу, помехоустойчивость, порог переключения схемы, фактор «качества», уровень логического нуля и единицы и

УДК 621.38

ОЦЕНКА ДИНАМИЧЕСКОГО ДИАПАЗОНА РАБОТЫ ИММИТАНСНЫХ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ

Н. А. Филинюк

Доктор технических наук, профессор* E-mail: n_fil_45@mail.ru

Л. Б. Лищинская

Кандидат технических наук* E-mail: L_fil_45@mail.ru

Р. Ю. Чехместрук

Аспирант*

E-mail: chehroma@yandex.ru

С. Е. Фурса

Кандидат технических наук, доцент* E-mail: pip 1@mail.ru

*Кафедра проектирования компьютерной и телекоммуникационной аппаратуры

Винницкий национальный технический университет ул. Хмельницкое шоссе, 95, г. Винница, Украина, 21021

др. [1]. Данный набор параметров характерный и для современных логических элементов [2, 3]. Для радиочастотных логических элементов к этой системе еще добавляется ряд специфических параметров: рабочая частота, коэффициент шума, волновое сопротивление и др., которые можно найти в [4]. Это относится и к иммитансным логическим элементам (ИЛЭ) [5]. Учитывая, что они работают в малосигнальном режиме, для них, кроме перечисленных параметров, важна величина динамического диапазона входного сигнала, при котором обеспечивается их работоспособность. Этот параметр широко используют при сравнительной оценке усилительных устройств и характеризуется уровнем шумов и зависимостью коэффициента усиления от уровня входного сигнала [6]. Однако учитывая, что в качестве информационного параметра в ИЛЭ используется иммитанс, аналитические выражения, используемые для оценки динамического диапазона усилителей, не могут быть применены к ИЛЭ.

Целью работы является оценка динамического диапазона работы иммитансного логического элемента. Для достижения этой цели решаются следующие залачи:

- обоснование параметра, характеризующего динамический диапазон работы ИЛЭ;
- разработка математического аппарата для расчета динамического диапазона ИЛЭ;
- количественная оценка динамического диапазона ИЛЭ.

3. Обоснование динамического диапазона иммитансного логического элемента (ИЛЭ)

В общем случае ИЛЭ представляет многопараметрический заземленный обобщенный преобразователь иммитанса ОПИN [7], имеющий (N-2) входов и один выход, где N — число полюсов многополюсника на основе которого реализуется ОПИN. В простейшем случае реализации логической функции «HE», имеет N=3 (рис. 1) [5].

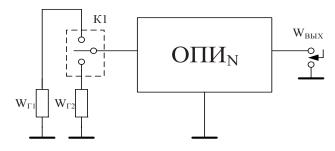


Рис. 1. Обобщенная схема иммитансного логического элемента «HE»

На схеме (рис. 1) коммутатор К1 эмитирует изменение характера иммитанса, подключаемого ко входу ОПИN в диапазоне изменения логического состояния от W_{Γ_1} до W_{Γ_2} . При этом возможны два характерные варианта. Для иммитансного R-логического элемента «HE» - $|\text{Re}\,W_\Gamma| \gg |\text{Im}\,W_\Gamma|$. Для иммитансного LC логического элемента «HE» - $|\text{Re}\,W_\Gamma| \ll |\text{Im}\,W_\Gamma|$. Таблицы истинности такого логического элемента для рассматриваемых вариантов представлены в виде табл. 1 и табл. 2.

Таблица 1
Таблица истинности для иммитансного R-логического элемента «НЕ»

Логический уровень	Re W	Логический уровень	${ m Re}{ m W}_{ m BMX}$
1	>0	0	<0
0	<0	1	>0

Таблица 2 Таблица истинности для иммитансного LC-логического элемента «НЕ»

Логический уровень	Im W	Логический уровень	${ m Im} W_{ m BHX}$
1	>0	0	<0
0	<0	1	>0

Учитывая, что W не зависит от состояния логического элемента, из табл. 1 и 2 следует, что рабочее состояние рассматриваемого логического элемента сохраняется до тех пор, пока выполняются условия независимости $W_{\rm BMX}$ от уровня сигнала. Учитывая, что ОПИN, как правило, реализуется на основе транзистора, работающего в квазилинейном режиме [8], верхняя граница динамического диапазона ИЛЭ будет определяться значением максимальной мощности сигнала $P_{\rm MAX}$, при превышении которой наблюдается изменение $W_{\rm BMX}$.

Нижнее теоретическое значение мощности сигнала, также как и для усилителей электрических сигналов, будет определяться мощностью шумов ИЛЭ $P_{\rm III}$, приведенных к его входу. С практической точки зрения целесообразно превысить минимальный уровень сигнала $P_{\rm min}$ над уровнем шумов, примерно на 10 %, т. е. $P_{\rm Cmin}=1,1P_{\rm III}$. Аналогично, уровень максимальной мощности входного сигнала может быть увеличен на 10 %, т. к. в ИЛЭ логический уровень характеризует не количественное значения иммитанса, а только его качественную оценку (ёмкость, индуктивность, сопротивление).

В результате, рекомендуется динамический диапазон ИЛЭ характеризовать коэффициентом:

$$I = 1.1P_{\text{max}} / 1.1P_{\text{III}} = P_{\text{max}} / P_{\text{III}}.$$
 (1)

У ИЛЭ Д > 1 и чем он больше, тем более эффективным будет анализируемый логический элемент.

4. Аналитическая оценка динамического диапазона иммитансного логического элемента (ИЛЭ)

Для аналитической оценки динамического диапазона ИЛЭ, как следует из (1), необходимо определить уровень мощности шумов P_{III} и максимально-допустимый уровень сигнала P_{max} .

Мощность шумов, приведенных ко входу ИЛЭ, определяется коэффициентом шума ОПИN и равна [9]

$$P_{III} = kT_0 \Pi_{III} q_{BX} (F_{III} - 1),$$
 (2)

где k - постоянная Больцмана; T_0 - абсолютная температура; $\Pi_{\rm III}$ - шумовая частота; $q_{\rm вx}$ - коэффициент рассогласования входной цепи.

Учитывая, что работа ОПИN предусматривает выполнение условия $W_{12} \neq 0$, т.е. невозможность пренебрежения внутренней обратной связью в ОПИN, для оценки коэффициента шума используем формулу К. А. Смогилева предусматривающую учет выше указанного условия [10]:

$$\begin{split} F_{III} &= 1 + \frac{R_{III}Re^{2}(Y_{_{BX}} + Y_{_{\Gamma}}) + G_{_{M}} + 2\gamma_{III}Re(Y_{_{BX}} + Y_{_{\Gamma}})}{Re\,Y_{_{\Gamma}}} + \\ &+ \alpha_{_{\Gamma}}^{2}\frac{R_{III0}\,Re^{2}(Y_{_{BX}} + Y_{_{\Gamma}})}{Re\,Y} + \\ &+ 2\alpha_{_{\Gamma}}\frac{\gamma_{III0}\,Re(Y_{_{BX}} + Y_{_{\Gamma}}) + R_{III0\alpha}\,Re(Y_{_{BX}} + Y_{_{\Gamma}})}{Re\,Y_{_{\Gamma}}}, \end{split} \tag{3}$$

где α - обобщенная расстройка входной цепи,

 $\alpha_\Gamma = {\rm Im}(Y_{\rm BX} + Y_\Gamma' + Y_{\rm RLC}) / {\rm Re}(Y_{\rm BX} + Y_\Gamma' + Y_{\rm RLC}); {\rm Re}Y_\Gamma, {\rm Re}Y_\Gamma'$ действительная составляющая проводимости генератора в плоскости клемм генератора и входа ОПИN, соответственно;

 $Y_{\text{RLC}}\,$ - проводимость входной цепи;

 $R_{\text{III}},G_{\text{III}},R_{\text{III}\alpha},R_{\text{III}\alpha},R_{\text{III}0\alpha},\gamma_{\text{III}\alpha}$ - шумовые параметры, определенные в [10], которые зависят только от параметров ИЛЭ.

Для иммитансного R-логического элемента «НЕ» $\alpha_{\Gamma} \to 0$. С учетом этого, (3) преобразуется к виду:

$$F_{_{III}}\!(\alpha_{_{\Gamma}}\!\to\!0)\!=\!1\!+\!\frac{R_{_{III}}Re^{2}(Y_{_{BX}}\!+\!Y_{_{\Gamma}})\!+\!G_{_{III}}\!+\!2\gamma_{_{III}}Re(Y_{_{BX}}\!+\!Y_{_{\Gamma}})}{Re\,Y_{_{\Gamma}}}.\eqno(4)$$

Решая уравнение вида $\partial F_{III}(\alpha_\Gamma \to 0) / \partial \text{Re}\, Y_{BX} = 0$, находим оптимальные значения:

$$\operatorname{Re} Y_{\text{BX,OPT}}(\alpha_{\Gamma} \to 0) = -\operatorname{Re} Y_{\Gamma} - \gamma_{\text{III}} / R_{\text{III}}, \tag{5}$$

при котором имеем минимально-достижимое значение коэффициента шума:

$$F_{\text{IIImin}}(\alpha_{\Gamma} \to 0) \approx 1 + \frac{G_{\text{III}}}{\text{Re} Y_{\Gamma}} - \frac{\gamma_{\text{III}}^2}{R_{\text{M}} \text{Re} Y_{\Gamma}}.$$
 (6)

Для иммитансного LC-логического элемента «HE» $\alpha_\Gamma \neq 0$. Решая уравнение вида $\partial F_{III}(\alpha_\Gamma \neq 0)/\partial \alpha_\Gamma = 0$, находим оптимальное значение расстройки входной цепи:

$$\alpha_{\Gamma.\mathrm{OPT}} = -(\gamma_{III\alpha} + \gamma_{III0\alpha} \operatorname{Re}(Y_{BX} + Y_{\Gamma})) / R_{III\alpha} \operatorname{Re}(Y_{BX} + Y_{\Gamma}), (7)$$

при котором достигается минимальное значение коэффициента шума ИЛЭ:

$$F_{III}(\alpha_{\Gamma,OPT}) = 1 + (G'_{III} + 2\gamma'_{III} Re(Y_{BX} + Y_{\Gamma}) + R'_{III} Re^{2}(Y_{BX} + Y_{\Gamma})) / Re(Y_{\Gamma}),$$
(8)

где $R'_{III} = R_{III} - \gamma^2_{III0\alpha} / R_{III\alpha}$;

$$G'_{III} = G_{III} - \gamma^2_{III\alpha} / R_{III\alpha}$$
;

$$\gamma'_{III} = \gamma_{III} - \gamma_{III\alpha} R_{III0\alpha} / R_{III\alpha}$$
.

Решая уравнение вида $\partial F_{III}(\alpha_{\Gamma OPT})/\partial Re\,Y_{BX}=0$ относительно $Re\,Y_{BX}$ и подставляя его в (8), находим минимально-достижимое значение коэффициента шума ИЛЭ при $\alpha_{\Gamma}\neq 0$:

$$F_{\text{IIImin}}(\text{Re}\,Y_{\text{BXOPT}}) = 1 + \frac{G'_{\text{III}}}{\text{Re}\,Y_{\Gamma}} - \frac{{\gamma'}_{\text{III}}^2}{R'_{\text{III}}\text{Re}\,Y_{\Gamma}}.$$
 (9)

Для нахождения максимально-допустимой мощности сигнала на входе ИЛЭ, опишем его в малосигнальном режиме уравнением:

$$\begin{bmatrix} i_{BX} \\ i_{BbIX} \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} U_{BX} \\ U_{BbIX} \end{bmatrix}, \tag{10}$$

где $i_{\rm BX}$, $i_{\rm BMX}$ $U_{\rm BX}$, $U_{\rm BMX}$ - высокочастотные составляющие токов и напряжений на входе и выходе ОПИN; $Y_{11}, Y_{12}, Y_{21}, Y_{22}$ - элементы матрицы проводимости ОПИN.

Используя (10), находим выходную проводимость ИЛЭ в малосигнальном режиме [11]:

$$Y_{\text{BMX.M}} = Y_{22} - \frac{Y_{12}Y_{21}}{Y_{11} + Y_{\Gamma}},\tag{11}$$

где $\, Y_{\Gamma} \,$ - проводимость электрической цепи подключенной ко входу ИЛЭ.

Зависимость проводимости $Y_{\text{вых.м}}$ от амплитуды напряжения сигнала U_{Γ} описывается выражением [12]:

$$Y_{BbIX.B} = a_1 + 3U_{\Gamma}^2 a_3 / 4, \tag{12}$$

где a_1 и a_3 - коэффициенты разложения ряда Тейлора.

При $U_\Gamma=0$ имеем $Y_{\text{ВЫХ.М}}=a_1$. Используя малосигнальные значения добротности выходной цепи ИЛЭ $Q_{\text{ВЫХ.М}}=\text{Im}\,Y_{\text{ВЫХ.М}}/\,\text{Re}\,Y_{\text{ВЫХ.М}}=\text{Im}\,a_1/\,\text{Re}\,a_1$ и значение добротности этой цепи в режиме большого сигнала $Q_{\text{ВЫХ.Б}}=\text{Im}\,Y_{\text{ВЫХ.Б}}/\,\text{Re}\,Y_{\text{ВЫХ.Б}}$, используя (12), нахолим:

$$\frac{Q_{\text{BbIX.M}}}{Q_{\text{BbIX.B}}} = \frac{\text{Im}a_{1}(\text{Re}a_{1} + 3U_{\Gamma}^{2}\text{Re}a_{3}/4)}{\text{Re}a_{1}(\text{Re}a_{1} + 3U_{\Gamma}^{2}\text{Im}a_{3}/4)}.$$
(13)

Допуская 10 % снижение добротности выходной цепи в режиме большого сигнала, решая (13), находим граничные значения амплитуды сигнала для рассматриваемого условия:

$$U_{\text{TMAX}} = \left(\frac{\text{Re } a_1 \text{Im } a_1}{7,5 \text{Re } a_3 \text{Im } a_1 - 8,253 \text{Im } a_3 \text{Re } a_1}\right)^{1/2}.$$
 (14)

Используя (14), находим допустимое значение мощности сигнала, подаваемого на ИЛЭ

$$P_{\text{MAX}} = \frac{U_{\Gamma.\text{MAX}}^2 \, \text{Re} \, Y_{\text{BbIX}.5}}{2} = \frac{U_{\Gamma.\text{MAX}}^2 (\text{Re} \, a_1 + 3 \, U_{\Gamma}^2 \, a_3 \, / \, 4)}{2} \cdot (15)$$

С учетом (2), (6), (9), и (15) находим коэффициенты, определяющие динамический диапазон: иммитансного R-логического элемента «НЕ»

$$\mathcal{A}_{R} = P_{MAX} / kT_{0}\Pi_{III}q_{RX}(F_{III.min}(\alpha_{\Gamma} \to 0)), \tag{16}$$

иммитансного LC-логического элемента «HE»

$$\mathcal{I}_{LC} = P_{MAX} / kT_0 \Pi_{II} q_{BX} (F_{III.min} (Re Y_{BX.OPT})). \tag{17}$$

Анализ (16) и (17) показал, что для нахождения коэффициентов \mathcal{A}_R и \mathcal{A}_{LC} , необходимо рассчитать (или измерить) коэффициенты разложения a_1 и a_3 , а также шумовые коэффициенты R_{III} , G_{III} , Y_{III} , $R_{III\alpha}$, $Y_{III0\alpha}$, $Y_{III\alpha}$.

5. Количественная оценка динамического диапазона иммитансного логического элемента (ИЛЭ)

Для количественной оценки динамического диапазона ИЛЭ используем упрощённую высокочастотную схему иммитансного LC логического элемента на основе биполярного транзистора, включённого по схеме с общим эмиттером (рис. 2).

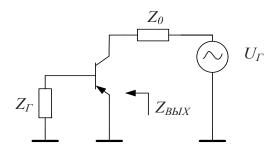


Рис. 2. Высокочастотная схема иммитансного LC логического элемента

Зависимость $Z_{\rm BЫX}$ этой схемы от мощности сигнала в основном определяется изменением полного сопротивления $Z_{\rm Э}$ эмиттерного перехода транзистора, как и в схеме с общим коллектором, поэтому в первом приближении коэффициенты a_1 и a_3 , необходимые для расчета $P_{\rm MAX}$ (15), определяем с использованием модифицированных выражений, полученных в [10] для схемы с общим коллектором:

$$a_1 = [Z_0 + Z_0 + (1 - \dot{\alpha})Z_\Gamma]^{-1};$$
(18)

$$a_{3} = \left(-\frac{Z_{9}}{6I_{9}^{2}}\right) \left(\frac{2[Z_{9} + Z_{0} + (1 - \dot{\alpha})(Z_{\Gamma} + r_{6})] - 3Z_{9}}{Z_{9} + Z_{0} + (1 - \dot{\alpha})(Z_{\Gamma} + r_{6})^{5}}\right), \tag{19}$$

где $Z_{\ni}=r_{\ni}/(1+j\omega C_{\ni}r_{\ni});\ r_{\ni},\ C_{\ni}$ - дифференциальное сопротивление и эмкость эмиттерного перехода, ω - кутовая частота; I_{\ni} - постоянный ток эмиттера; Z_{0} - сопротивление источника сигнала; Z_{Γ} - преобразуемое сопротивление; $\dot{\alpha}=\alpha_{0}/(1+j\omega/\omega_{T})$; α_{0} - низкочастотное значение коэффициента передачи транзистора по току в схеме с общей базой; $\omega_{T}=2\pi f_{T}$; f_{T} - предельная частота транзистора; r_{6} - омическое сопротивление базы.

Для транзистора КТЗ115 на частоте f=1 ГГц при: $I_{\Im}=3$ мА; $f_{\mathrm{T}}=7$ ГГц; $C_{\Im}=0.56$ п Φ ; $r_{\Im}=10$ Ом; $r_{6}=8$ Ом; $\alpha_{0}=0.985$; $Z_{0}=50$ Ом находим:

$$\begin{split} &a_1=0,013-j5,216\cdot 10^{-3}~\text{[Om$^{-1}$]},\\ &a_3=-1.176\cdot 10^{-3}+8.324\cdot 10^{-3}~\text{[Om2/A]},\\ &U_{\Gamma MAX}=0.287~\text{[B]},\\ &P_{MAX}=5,23\cdot 10^{-4}~\text{[Bt]}. \end{split}$$

Рассчитанные шумовые коэффициенты ОЛЭ с использованием методики, описанной в [9], равны:

$$\begin{split} \gamma_{\rm III} &= -0.144, \gamma_{\rm III\alpha} = -0.355, \\ R_{\rm III} &= 59.3, \quad G_{\rm III} = 296 \cdot 10^{-5}, \end{split}$$

$$G'_{III} = 10^{-3}$$
.

Используя их, на основании (4, 6, 9) находим значения коэффициента шума: $F_{IIImin}(\alpha_{\Gamma} \to 0) = 1.131$, $F_{IIImin}(\text{Re}\,Y_{\text{BXOPT}}) = 0.018$.

Подставляя которые в (16) и (17) рассчитываем динамический диапазон ИЛЭ в различных режимах работы: $Д_R = 92,138$ Д6; $J_{LC} = 110,223$ Д6.

Полученные значения показывают, что динамический диапазон рассматриваемого LC-иммитансного логического элемента «НЕ» на 20 % больше чем R-иммитансного логического элемента. Дальнейшее увеличение динамического диапазона возможно путем сужения шумовой полосы частот. В рассматриваемом варианте, изменение шумовой полосы частот на 10 % приводит к увеличению динамического диапазона на 4,97 % для R-иммитансного логического элемента и 4,15 % для LC-иммитансного логического элемента «НЕ».

6. Выводы

В работе проведена оценка динамического диапазона ИЛЭ: обоснованы параметры, разработан математический аппарат для расчета, дана количественная оценка. В работе получены следующие результаты:

- 1. Динамический диапазон ИЛЭ определяется зависимостью выходного иммитанса ИЛЭ от мощности сигнала и уровнем шумов, приведенных к его входу.
- 2. Для аналитической оценки динамического диапазона ИЛЭ предложен коэффициент равный отношению максимальной мощности сигнала, при которой величина преобразованного иммитанса на выходе ИЛЭ изменяется не более чем на 10 %, к минимальной мощности шумов, приведенных ко входу ИЛЭ.
- 3. Численная оценка динамического диапазона иммитансных логических элементов «НЕ» R- и LC-типов, на основе биполярного транзистора, показала, что их динамический диапазон равен соответственно 92 и 110 Дб и может быть увеличен путем сужения шумовой полосы частот.

Литература

- 1. Микушин, А. В. Цифровые устройства и микропроцессоры [Текст] / А. В. Микушин, А. М. Сажнев, В. И. Сединин. БХВ-Петербург, Москва, 2010. 832 с.
- 2. Huang, Yu Logic Gates and Computation from Assembled Nanowire Building Blocks [Text] / Yu Huang, Xiangfeng Duan, Yi Cui, Lincoln J. Lauhon, Kyoung-Ha Kim, M. Charles // Science. 2001. Vol. 294, No. 5545. P. 1313-1317. DOI: 10.1126/science.1066192.
- 3. Кичак, В. М. Радіоімпульсні логічні НВЧ елементи [Текст] / В. М. Кичак. Вінниця : УНІВЕРСУМ-Вінниця, 1999. 240 с. ISBN 966-7199-55-X.
- 4. Yin, Peter Jerome Bonnet Amplifying Genetic Logic Gates Peter Yin [Текст] / Peter Yin, Monica E. Ortiz, Pakpoom Subsoontorn, Drew Endy. Science. 2013. P. 599–603.
- 5. Ліщинська, Л. Б. Імітансна логіка [Текст] / Л. Б. Ліщинська, М. А. Філинюк // Інформаційні технології та комп'ютерна інженерія. 2010. № 2(18). С. 25–31.
- 6. Головин, О. В. Радиоприемные устройства: учебник для радиотехн.спец.сред.спец.учеб.заведений [Текст] / О. В. Головин. М.: Горячая линия-Телеком, 2002. 384 с. ISBN 5-93517-071-X.
- 7. Ліщинська, Л. Б. Визначення, класифікація і параметри багатопараметричних узагальнених перетворювачів імітансу [Текст] / Л. Б. Ліщинська // Вісник Вінницького політехнічного інституту. 2010. № 5. С. 105-108.

- 8. Філинюк, М. А. Елементи та пристрої автоматики на основі нелінійних властивостей динамічних негатронів: Монографія [Текст] / М. А. Філинюк, О. В. Войцеховська. – Вінниця: УНІВЕРСУМ-Вінниця, 2008. – 189 с. ISBN 978-966-641-250-1.
- 9. Ліщинська, Л. Б. Оцінка основних параметрів імітансних логічних елементів [Текст] / Л. Б. Ліщинська // Інформаційні технології та компютерна інженерія. – 2011. – № 3(22). – С. 45–52.
- 10. Смогилев, К. А. Резонансные усилители на трехполюсниках [Текст] / К. А. Смогилев. М.: Сов. радио, 1972. 304 с.
- 11. Сигорский, В. П. Основы теории электронных схем [Текст] / В. П. Сигорский, А. И. Петренко. Киев: Техніка, 1967. 609 с.
- 12. Adams, D. K. Active filter for UHF and microwave frequencies [Text] / D. K. Adams, R. Y. C. Ho // IEEE transactions on microwave theory and techniques. - V.M.TT 1969. - 17, No 9. - P. 662-670.

Запропоновано глобальний критерій оцінки ефективності застосування підводної техніки в задачах глибоководної археології, який містить безрозмірний критерій безпеки виконання робіт та розмірні критерії виробничої ефективності підводних технологій і цінових характеристик їх застосування. Для обліку критеріїв розроблено систему формалізованих показників та слабо формалізованих експлуатаційних обмежень на застосування підводної техніки і технології

Ключові слова: планування проекту, глибоководна археологія, підводна техніка, оцінка ефективності, методика, критерії

Предложен глобальный критерий оценки эффективности применения подводной техники в задачах глубоководной археологии, который содержит безразмерный критерий безопасности выполнения работ и размерные критерии производственной эффективности подводных технологий и ценовых характеристик их применения. Для расчета критериев разработали систему формализованных показателей и слабо формализованных эксплуатационных ограничений на применение подводной техники и технологии

Ключевые слова: планирование проекта, глубоководная археология, подводная техника, оценка эффективности, методика,критерии

1. Вступ

Підводна археологія включає комплекс підводних робіт, спрямованих на виявлення, фіксацію, наукове дослідження, визначення наукової й культурної цінності, класифікацію, паспортизацію, картографування, консервацію, реставрацію, реабілітацію, музеєфікацию історично цінних підводних об'єктів, які включаються до Державного реєстру підводної культурної спадщини України [1 – 3].

У свою чергу, підводна культурна спадщина (Underwater Cultural Heritage, UCH) - це всі сліди людського існування, що мають культурний, історичний або археологічний характер, які частково або повністю, пері-

УДК 005.8:902.034

УЗАГАЛЬНЕНА МЕТОДИКА ОЦІНКИ ЕФЕКТИВНОСТІ ПІДВОДНОЇ ТЕХНІКИ У ПРОЕКТАХ ГЛИБОКОВОДНОЇ **АРХЕОЛОГІЇ**

О. В. Блінцов

Кандидат технічних наук, доцент Кафедра імпульсних процесів і технологій Національний університет кораблебудування ім. адмірала Макарова пр. Героїв Сталінграда, 9, м. Миколаїв, Україна, 54025 E-mail: energybox@mail.ru

А. В. Надточій

Викладач

Кафедра автоматики та електроустаткування суден Національний університет кораблебудування ім. адмірала Макарова

Херсонська філія

вул. Ушакова, 44, м. Херсон, Україна, 73022 E-mail: tasman.85@mail.ru

одично або постійно перебувають під водою протягом не менш 100 років [4]. До них належать: об'єкти, споруди, артефакти й людські останки разом з їх природним оточенням; судна, літальні апарати, інші транспортні засоби або будь-які їхні частини, їхній вантаж або інший уміст, разом з їх археологічним і природним оточенням; предмети доісторичного періоду.

Глибоководна археологія (ГА) – це важлива складова наукового напрямку «Підводна археологія», яка передбачає проведення досліджень на «заводолазних» глибинах (більше 60 метрів), де використання водолазного спорядження на стисненому повітрі неможливе.

Як науковий напрямок ГА в Україні знаходиться на початковому етапі свого розвитку, що вимагає роз-