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The paper presents a new method for solving the 0–1 linear program-
ming problems (LPs). The general 0–1 LPs are believed to be NP-hard 
and a consistent, efficient general-purpose algorithm for these models has 
not been found so far. Cutting planes and branch and bound approaches  
were the earliest exact methods for the 0–1 LP. Unfortunately, these 
methods on their own failed to solve the 0–1 LP model consistently and 
efficiently. The hybrids that are a combination of heuristics, cuts, branch 
and bound and pricing have been used successfully for some 0–1 models.  
The main challenge with these hybrids is that these hybrids cannot com-
pletely eliminate the threat of combinatorial explosion for very large 
practical 0–1 LPs. In this paper, a technique to reduce the complexity 
of 0–1 LPs is proposed. The given problem is used to generate a simpler 
version of the problem, which is then solved in stages in such a way that 
the solution obtained is tested for feasibility and improved at every stage 
until an optimal solution is found. The new problem generated has a coef-
ficient matrix of 0 s and 1 s only. From this study, it can be concluded that 
for every 0–1 LP with a feasible optimal solution, there exists another  
0–1 LP (called a double in this paper) with exactly the same optimal 
solution but different constraints. The constraints of the double are made 
up of only 0 s and 1 s. It is not easy to determine this double 0–1 LP by 
mere inspection but can be obtained in stages as given in the numerical 
illustration presented in this paper. The 0–1 integer programming mo dels 
have applications in so many areas of business. These include large eco-
nomic/financial models, marketing strategy models, production sche-
duling and labor force planning models, computer design and networking 
models, military operations, agriculture, wild fire fighting, vehicle rout-
ing and health care and medical models
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1. Introduction

Integer programming in general has very important ap-
plications in business. Research on the general integer prob-
lem has been going on for over 70 years [1, 2]. A consistent, 
efficient general-purpose algorithm for the integer has not 
been found so far. The 0–1 model has been used successfully 
to solve business problems for the past 70 years. With these 
models, the variables assume only binary variables. There are 
so many exact methods that were proposed for the 0–1 LPs. 
These include branch and bound [3], use of cuts [4–7], 
pricing [8, 9], heuristics and hybrids of these stated meth-
ods [10–12]. The major weakness of these methods is that 
they cannot completely eliminate the threat of combinatorial 
explosion for very large practical 0–1 problems.

In this paper, a technique to reduce the complexity of 
0–1 LPs is proposed. The given problem is used to generate  
a simpler version of the problem, which is then solved in 
stages in such a way that the solution obtained is tested for 
feasibility and improved at every stage until an optimal solu-
tion is found. The new problem, which is a simpler problem is 
generated (in this case called a double) and has a coefficient 
matrix of 0 s and 1 s only.

The 0–1 integer programming models have applications 
in so many areas of business. These include large economic/fi- 

nancial models, marketing strategy models, production sche-
duling and labor force planning models, computer design and 
networking models, military operations, agriculture, fighting 
fire protection, vehicle routing and health care and medical 
models [13, 14]. Therefore, there is a need to develop an 
efficient general-purpose method for the 0–1 linear program-
ming model. 

2. Literature review and problem statement

The 0–1 LP is used in maximizing yield in Codon optimi-
zation. In the process, particular nucleotide bases sequences 
should be avoided or included [15]. Because of the two op-
tions (include or exclude), this problem can be formulated 
as a 0–1 LP. Currently, there is no efficient general-purpose 
algorithm for the formulated 0-1 LP for this problem. With 
such an important application in real life there is a need for an 
efficient general purpose algorithm for 0–1 LPs. 

The paper [16] is aimed at finding better algorithms for 
solving parameter reduction problems of soft sets and gives 
their potential applications. In that paper, 0–1 formulations 
were used and from the comparison with the algorithm pro-
posed by Ma et al. [16], experimental results showed that 
the proposed 0–1 formulation method for normal parameter  
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reduction was more efficient. Even though 0–1 formulations 
showed better results, there is no efficient general-purpose 
algorithm for these 0–1 models. 

The paper [17] is on a general algorithm for converting the 
0–1 integer linear programming problem into an optimal tran-
sition firing sequence problem (OFSP) of a Petri net (PN).  
The algorithm proposed in this paper was applied to a tra-
veling salesman problem, a vehicle routing problem and an 
automated guided vehicles (AGV) routing problem. Cuts were 
derived using reachability analysis of the converted PN model. 
Computational results showed that the proposed algorithm 
using the reachability analysis was more efficient. The pro-
posed algorithm [17] is not for all 0–1 linear integer models.

In the paper [18], a binary integer linear programming 
formulation of the rectangle blanket problem is presented. 
Four methods for solving the formulated problem were 
used, which were branch-and-price algorithm, constrained 
simulated annealing heuristic and two other heuristics. The 
fact that heuristics are being used shows that efficient exact 
approaches for 0–1 LPs are still not available.

In the paper [19], a new formulation based on the defini-
tion of new binary variables has been proposed to convert the 
grid-connected photovoltaic (GCPV) problem to the binary 
linear programming (BLP). The proposed method was able 
to find the global optimum solution faster than the evolu-
tionary algorithms (EAs). This clearly shows how important 
the 0–1 LP is in solar systems.

The paper [20] shows the application of 0–1 integer pro-
gramming in combination and placement of sustainable drain-
age system (SuDS) devices. It was shown that with 0–1 LPs, 
it helps to objectively choose the best SuDS device combina-
tion and placement scheme for cost-effective implementation.

Branch and bound related exact approaches that are nor-
mally used for the 0–1 LPs have the weakness that the num-
ber of sub-problems increases exponentially with an increase 
in the number of variables or size of the 0–1 LP problem [3]. 
There is definitely a need to improve solution methods for 
these 0–1 LPs. 

3. The aim and objectives of the study

The aim of the study is to develop a method for the 
0–1 LP model. To achieve the set aim, the following objec-
tives have been set:

– to create a simpler problem in stages, of the given 
0–1 LP with a coefficient matrix of 0 s and 1 s only;

– to illustrate the proposed algorithm by an example.

4. General 0-1 LP

Suppose the 0–1 LP is presented as given in (1).
Maximize c x c x c xn n1 1 2 2+ + +... .
Such that:

a x a x a x bn n n11 1 12 1 1+ + + £... ,

a x a x a x bn n n21 1 22 2 2+ + + £... ,

a x a x a x bm m n mn n m1 1 2+ + + £... ,  (1)

where c j ≥ 0,  aij and bj are constants, xj is a binary variable, 
i m= 1 2, ,...,  and j n= 1 2, ,..., .

4. 1. Special relationship of 0–1 variables
A special relationship of binary variables is given in (2).

x sj j+ = 1,  (2)

where sj is a slack variable and when x j = 1  then s j = 0  and 
vice versa. With this relationship, any maximization 0–1 LP 
can be converted into a minimization one and vice versa.

4. 2. Cutting plane & Branch and Bound approaches
Cutting plane and branch and bound approaches where 

the earliest exact methods for the 0–1 LP. Unfortunately, these 
methods on their own failed to solve the 0–1 LP model consis-
tently and efficiently. The hybrids such as branch and cut, branch 
and price or branch cut and price were developed. The challenge 
with these hybrids is that they cannot completely eliminate 
the threat of combinatorial explosion for very large 0–1 LPs.

4. 3. Theorem
Matrix A is totally unimodular if it satisfies the following 

five conditions:
a) all entries of A are 0, 1 or –1;
b) the rows of A can be partitioned into two disjoint sets 

R1, and R2;
c) every column of A contains at most two nonzero entries;
d) if any column of A contains two nonzero entries of the 

same sign, then one is in a row of R1 and the other in a row of R2;
f) if any column of A contains two nonzero entries of oppo-

site sign, then they are both in rows of R1 or both in rows of R2. 
The proof and more on this theorem can be found in [20].
Unfortunately, the coefficient matrix of the general 0–1 LP 

is not totally unimodular. In this paper, constraints with 0, 1 
and or –1 only as coefficients are created at every iteration. 
These special constraints are added to the current new problem 
and the process is repeated until a feasible solution is obtained.

5. Creating the new problem

5. 1. Initial new problem
From the problem given in (1), the new initial problem is 

created as given in (3).
Maximize c x c x c xn n1 1 2 2+ + +... .
Such that: 

x x xn n1 0+ + + £... ,α  (3)

where α0 0≥  and integer.
The variable sum limit (α0) is given by (4).
Maximize α0 1 2= + + +x x xn... .
Such that:

a x a x a x bn n n11 1 12 1 1+ + + £... ,

a x a x a x bn n n21 1 22 2 2+ + + £... ,

a x a x a x bm m n mn n m1 1 2+ + + £... .  (4)

The variable sum limit can also be accurately approxima-
ted using pre-processing. This significantly reduces the com-
putational effort. Solving (3), we obtain the optimal binary 
solution as given in (5).

Z x x xn
0

1
0

2
0 0, , ,..., .( )  (5)
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The binary solution given in (5) satisfies 
the problem given in (3) and is optimal for that 
problem.

5. 2. First new problem
The initial solution is tested for feasibility 

and if feasible then it is optimal. Since we want 
all coefficients to be 0 and 1 only, the initial infea-
sible solution is used to generate clique inequali-
ties. This is done by using the initial feasible solu-
tion to determine the original constraints that 
are vio lated and then these are used to generate 
clique inequalities. Suppose the initial optimal 
solution is given by (6) and the violated original 
constraint is given by (7).

26 1 1 0 0 1 0, , , , , , .( )  (6)

3 8 5 11 9 2 101 2 3 4 5 6x x x x x x+ − + + + £ .  (7)

Using the initial optimal solution and the 
violated solution, we can generate the clique 
inequality given in (8).

x x x1 2 5 1+ + £ .  (8)

The clique inequalities generated from all 
the violated constraints are added to the initial 
infeasible problem and then solved to get the first 
optimal solution given in (9).

Z , , ,..., .1
1
1

2
1 1x x xn( )  (9)

The first optimal solution given in (9) is 
used to determine violated constraints. Once 
the violated constraints are known the process 
is repeated.

5. 3. Optimal solution
The optimal solution is obtained when the kth 

optimal solution given in (10) is feasible.

Z , , ,..., .k k k
n
kx x x1 2( )  (10)

The solution in (9) is optimal in the sense that all con-
straints are not violated and is the largest in terms of the 
objective for (1).

6. Proposed algorithm for solving the 0–1 LP

The steps for the proposed algorithm are summarized as 
follows.

Step 1. Determine the variable sum limit (a0) and use it to 
construct the initial new problem.

Step 2. Solve the problem to obtain an optimal integer 
solution x x xk k

n
k

1 2, ,..., .( )  Test this optimal solution for feasi-
bility. If feasible then it is optimal to the original 0–1 LP else 
go to Step 3.

Step 3. Determine the original constraints that are vio-
lated by the infeasible solution. Use the original violated 
constraints to generate clique inequalities, add them to the 
current new problem. Return to Step 2. In diagram form, the 
proposed algorithm is presented in Fig. 1.

In every iteration, the problem is made easier to solve so as 
to get a new solution. The chance of the numbers of sub-prob-
lems exploding to unmanageable levels is put to a minimal.

6. 1. Numerical illustration
Maximize 8 15 6 9 71 2 3 4 5x x x x x+ + + + . Such that:

11 13 5 7 14 291 2 3 4 5x x x x x+ + + + £ ,

16 12 36 11 21 351 2 3 4 5x x x x x− + + + £ ,

− + + + − ≥13 9 13 15 5 151 2 3 4 5x x x x x ,  (11)

where x x x x x1 2 3 4 5 0, , , , ≥  are binary variables. In the worst 
case, it takes 9 sub-problems to verify optimality.

Variable sum limit (a0).
Maximize α0 1 2 3 4 5= + + + +x x x x x . Such that:

11 13 5 7 14 291 2 3 4 5x x x x x+ + + + £ ,

16 12 36 11 21 351 2 3 4 5x x x x x− + + + £ ,

− + + + − ≥13 9 13 15 5 151 2 3 4 5x x x x x .  (12)

Fig.	1.	Flow	chart	for	the	proposed	method	for	0–1	LPs

 



Mathematics and cybernetics – applied aspects

9

Solving we obtain (13).

x x x x x1 2 3 4 5 3 13+ + + + £ . ,

i. e.

x x x x x1 2 3 4 5 3+ + + + £ .  (13)

Since these are binary variables, we have (14).
Initial Problem and initial solution.
Maximize 8 15 6 9 71 2 3 4 5x x x x x+ + + + .
Such that:

x x x x x1 2 3 4 5 3+ + + + £ ,  (14)

where variables are binary.
Solving this we have the initial solution as given in (15):

32 1 1 0 1 0, , , , , .( )  (15)

Violations caused by initial solution.
Constraint 1: is violated and the clique x x x1 2 4 2+ + £ , is 

generated.
Constraint 2: is satisfied.
Constraint 3: is violated and the clique x x x1 2 4 2+ + £ , is 

generated.
Note that the two cliques are exactly the same therefore 

we take only one.
First Problem and First Solution.
We now add the generated clique constraint to get the 

First Problem as given in (16).
Maximize 8 15 6 9 71 2 3 4 5x x x x x+ + + + .
Such that:

x x x x x1 2 3 4 5 3+ + + + £ ,

x x x1 2 4 2+ + £ ,  (16)

where variables are binary.
Solving this we have the initial solution as given in (17):

31 0 1 0 1 1, , , , , .( )  (17)

Violations caused by First Solution.
Constraint 1: is violated and the clique x x x2 4 5 2+ + £ , is 

generated.
Constraint 2: is satisfied.
Constraint 3: is satisfied.
Second Problem and Second solution.
We now add the generated clique constraints to get the 

Second Problem as given in (18).
Maximize 8 15 6 9 71 2 3 4 5x x x x x+ + + + .
Such that:

x x x x x1 2 3 4 5 3+ + + + £ ,

x x x1 2 4 2+ + £ ,

x x x2 4 5 2+ + £ ,  (18)

where variables are binary.
Solving this we have the initial solution as given in (19):

30 1 1 0 0 1, , , , , .( )  (19)

Violations caused by initial solution.
Constraint 1: is violated and the clique x x x1 2 5 2+ + £ , is 

generated.
Constraint 2: is satisfied.
Constraint 3: is violated and the clique x x3 4 1+ ≥ , is 

generated.
Second Problem and Second solution.
We now add the generated clique constraints to get the 

Second Problem as given in (20).
Maximize 8 15 6 9 71 2 3 4 5x x x x x+ + + + .
Such that:

x x x x x1 2 3 4 5 3+ + + + £ ,

x x x1 2 4 2+ + £ ,

x x x2 4 5 2+ + £ ,

x x x1 2 5 2+ + £ ,

x x3 4 1+ ≥ ,  (20)

where variables are binary.
Solving this we have the initial solution as given in (21):

30 0 1 1 1 0, , , , , .( )  (21)

In other words, the double for 0–1 LP for (12) is (20). 
In this paper, a double 0–1 LP is another 0–1 LP that gives 
exactly the same optimal solution as the original 0–1 LP.  
In addition, the coefficient matrix is made up of 0 s and 1 s 
only. It takes only 3 sub-problems to verify optimality.

Violations caused by initial solution.
Constraint 1: is satisfied.
Constraint 2: is satisfied.
Constraint 3: is satisfied.
There are no more violations thus the solution 30 0 1 1 1 0, , , , ,( ) 

is optimal.
The coefficient matrix is given in (22):

x x x x x1 2 3 4 5

1 1 1 1 1

1 1 0 1 0

0 1 0 1 1

1 1 0 0 1

0 0 1 1 0

























.  (22)

7. Discussion of numerical illustration

We need a total of 3 iterations to solve the 0–1 LP 
given in the illustration. The total or final number of 
clique inequa lities required to solve the problem is 4. From 
the numerical illustration, it can be noted that for every 
0–1 LP there exists another 0–1 LP with exactly the same 
optimal solution but different constraints. It is not easy to 
determine this double 0–1 LP by inspection from the start 
but it can be obtained in stages as given in the numerical 
illustration. It is noted that the total number of sub-prob-
lems required to verify optima lity is decreased from 9 to 3. 
An obvious disadvantage is that the number of clique con-
straints generated and added to the 0–1 LP increases from 
one iteration to the next. 
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The double obtained for the illustration is given in (20) 
and it is easier to solve than the original problem given in (3).  
The number of sub-problems required to verify optima-
lity is reduced from 9 to 3. The coefficient matrix of the  
double obtained for the matrix is made up of 0 s and 1 s only 
as given in (22). If the coefficient matrix is made up of 0 s 
and 1 s, the closer it is to become unimodular. The closer 
a coefficient matrix is to become unimodular, the easier it 
is to solve by branch and bound related approaches. The 
properties of a totally unimodular matrix are presented  
in Section 4. 1.

Even though the number of cliques generated increases, 
what is pleasing is that these cliques significantly reduce the 
total number of iterations necessary to obtain the optimal 
solution.

A limitation of the proposed algorithm is that there 
are no computational results to compare with other  
methods.

8. Conclusions

1. A simpler problem of the original 0–1 LP was created 
in stages and its coefficient matrix was made up of 0 s and 1 s 
only. The 0–1 LPs made up 0 s and 1 s only are easier to solve 
than the general 0–1 LP.

2. The proposed method presented in this paper is illus-
trated in Section 5. 1. It can be noted that the variable sum 
limit can be accurately estimated, which will significantly 
reduce the number of computations.
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