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1. Introduction

The emergence of new technical developments leads to 
an increase in the variety of applied problems of continuum 
mechanics. Physical and mathematical models, boundary, and 
edge conditions become more complicated. It becomes nec-
essary to find an optimal result from the standpoint of their 
generalization, identify differential and integral relations that 
determine conditions of existence of closing solutions.

The method of argument functions was developed and 
improved in [1–6] making it possible to use practically the 
same approaches in solving problems of the continuum me-
chanics including the theories of plasticity, elasticity, and 
dynamic processes. Cauchy-Riemann differential relations 
are the generalizing factor for the argument functions. If 
there is any regularity in this, then it should manifest itself 
in the future as well, for example, when solving equations in 
different reference systems, including the polar coordinate 
system. Such approaches were defined [7, 8] and have found 
their further development in present-day publications.

The proven method for solving problems of continuum 
mechanics needs to be expanded for its use. This becomes 
relevant since several sections of the continuum mechanics 

are touched upon. When applying generalizing approaches 
to solving the problems shown in the method, it can be seen 
that the obtained regularities make it possible to formulate 
and solve new problems of the continuum mechanics includ-
ing the solution of problems of the theory of elasticity in 
polar coordinates.

2. Literature review and problem statement

The study in the theory of plasticity was one of the first 
publications in which generalizing solutions using the meth-
od of argument functions were presented [1]. The method 
was further developed by considering applied issues of metal 
forming in the study on the theory of plasticity [2]. The 
development was somewhat reshaped as a new approach in 
the theory of plasticity in relation to the applied produc-
tion issues and then proposed in [3]. The approaches of the 
method of argument functions were used in [4] as applied to 
dynamic problems of the theory of elasticity. Subsequently, 
the method was developed in the theory of elasticity [5, 6].

Along with the studies [7, 8], generalized approaches 
were formulated in a series of publications [9–11]. Classical 
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The method of argument functions has become famous for 
solving problems of continuum mechanics. The solution of prob-
lems of the elasticity theory in polar coordinates was the further 
development of this method. The same approaches are applied 
to solving problems of the theory of plasticity, the theory of elas-
ticity, and the theory of dynamic processes. If regularities of the 
solution are determined correctly, then they should be continued 
in other fields including the problems of the theory of elasticity in 
polar coordinates.

The proposed approach features finding not the solution itself 
but the conditions for its existence. These conditions may include 
differential or integral relations which make it possible to close the 
solution in a general form. This becomes possible when additional 
functions are introduced into consideration or the argument func-
tions of coordinates of the deformation zone. Basic dependences that 
satisfy the boundary or edge conditions as well as the functions that 
simplify the solution of the problem in general should be the carriers 
of the proposed argument functions. For various reasons, two basic 
dependences were used in the solution: trigonometric and exponen-
tial. Their arguments are two unknown argument functions.

In the process of transformations, a mathematical connection 
was established between them in a form of the Cauchy-Riemann 
relations which had a stable tendency to be repeated in problems 
of the continuum mechanics. From these positions, the flat problem 
was solved in the most detailed way, tested, and compared with the 
studies of other authors.

By reducing the solution to a particular result, a way to clas-
sical solutions was found which confirms its reliability. The result 
obtained is useful and important since it becomes possible to solve 
an extensive class of axisymmetric applied problems using the 
method of argument functions of a complex variable
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solutions of problems of the theory of elasticity were con-
sidered. The monograph [9] has presented the method of 
complex-variable function which can be applied after some 
refinements in conjunction with the method of argument 
functions. It all depends on whether the argument function 
can be represented as an analytical variable. Extensive use of 
tensor analysis serves as a generalization in [10]. The prob-
lem of this work was solved in a scalar form since the capabil-
ities of the method in other coordinates were not completely 
clear. Solutions using the stress function method which 
differs significantly from the method of argument functions 
were presented in [11]. The results obtained in [11] do not 
allow one to estimate solutions using argument functions.

As is known, the main problem of the theory of elasticity 
is determining the stress-strain state of a solid. A possible 
linkage of solving the problems of the theory of elasticity 
to practical use was presented in [12]. In present-day pub-
lications, elements of generalization are reflected in a form 
of structural solutions of the problem [13] and integral re-
lations for the assessment of kinematic perturbations [14]. 
The use of closing parameters [15] for the general form of 
the gradient solution can be to some extent analogs of the 
argument functions. However, the proposed generalizations 
do not enable the application of the results obtained in recent 
studies to the definition of closing differential relations.

To a limited extent, the studies in [16–18] can be an op-
tion of overcoming the above difficulties. Transformations 
and additional functions associated with basic dependences 
were considered. In the problem considered in [16], the Han-
kel’s transform was applied to the basic differential Cauchy- 
Navier equilibrium equation to reduce the problem to an 
ordinary differential equation. In the case of the argument 
functions, transitions are used as well, however, the ones 
between partial differential equations. The Cauchy relations 
were used in [17], however, parameters of these relations are 
not the closing solution of the problem. Differential relations 
in the problem [18] were applied but they are inapplicable 
to the generalizations using argument functions. General 
approaches were considered in [19] where conditions of 
coupling in the sample-punch interaction were taken into 
account. The analysis has shown that they (conditions) do 
not adequately reflect the possibility of finding a concrete 
solution to the problem taking into account the application 
of the argument functions.

It was shown in [20] that there are transient conditions 
for introduction into consideration of additionally separated 
variables (analogy of the argument functions) when refor-
matting one type of differential equations into another. The 
very idea of transition is productive, however, the appear-
ance of additional solutions, in this case, does not mean the 
determination of conditions for the existence of solutions.

A possibility of predicting one of the basic functions 
was considered in the problem considered in [21]. The 
trigonometric function was implemented in the structural 
formulation of a practical problem. The solution did not 
consider the argument functions as a closing component of 
the overall result.

Cyclic loading was shown in the case of simple shear 
which finds a corresponding response of internal stresses [22]. 
As in [21], a basic trigonometric function was introduced 
into consideration. Its capabilities were shown under various 
loads. Possibilities of its combination with argument func-
tions were not shown. Using the example of [23], changes in 
the loading nature across the thickness of a compact speci-

men were determined. The maximum zone was closer to the 
surface which indicated unevenness of the material stress 
state. Taking into account the heterogeneity was ensured 
by introducing into consideration the coordinate function 
or the argument functions in this case. The coordinate de-
pendences that were used did not serve as closing solutions 
to the problem. Loading at the base of a discontinuity was 
studied in [24]. The general approach to solving the problem 
was determined by the environment state. Inhomogeneity of 
the stress state was characterized by coordinate functions 
in combination with periodic dependences determined by 
a trigonometric expression. The choice of the basic trigo-
nometric function was an important circumstance of the 
proposed solution, although there was no mentioning of a 
closing solution. A change in external loading causes a reac-
tion from the medium according to an exponential law [25]. 
This is comparable with using a fundamental substitution in 
the method of argument functions. However, the functional 
purpose of the proposed dependence was different in the 
studies which did not allow one of the argument functions to 
be applied in the solution.

Alternating stresses and deformations occurring during 
loading are the main causes of degradation of the product 
strength and durability [26]. In a combination of basic func-
tions, operating stresses were characterized in the course 
of a part loading. There were no additional functions. A 
method of R-functions was proposed in [27] which, in terms 
of functionality, has something in common with the method 
of argument functions. However, further analysis has shown 
that their application did not lead to the establishment of 
certain relationships. They are involved in other schemes 
of finding solutions, for example, applying the variational 
principles. The solution of a spatial problem of the theory 
of plasticity was considered in [28] in which its own rather 
complex approaches and generalizations were formulated. 
The work can be assessed as a new development in continuum 
mechanics. The solution of a spatial problem of the elasticity 
theory using series (asymptotic method) was shown in [29].  
Like the previous development, it does not define any anal-
ogies with the argument functions method but makes it 
possible to draw a conclusion about the development of gen-
eralizing characteristics of the problem solution. A dynamic 
problem was presented in [30]. A solution using the bound-
ary element method was considered. Analysis of the last 
three works shows a variety of approaches to solving similar 
problems of continuum mechanics. At the same time, the last 
three publications, without reducing their originality and 
novelty, are a clear example of absence in the literature of 
defining generalizations in solving problems of the continu-
um mechanics.

As a result, it was shown that the studies lack the ten-
dencies of using generalizing approaches in solving problems 
of the continuum mechanics and, in particular, problems 
of the theory of elasticity. A significant field of problems 
was covered united by some approaches to formulation and 
solution of theoretical and practical problems: use of similar 
basic functions, some additional dependences that can lead 
to obtaining the final result, choice of approaches in the 
implementation of predictive functions, etc.

However, there are problems, still unresolved, related 
to how not the solutions themselves should be determined 
but the conditions of their existence. Such generalized 
approaches make it possible to predict results for new ap-
plied problems, expand possibilities of solutions to satisfy a 
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variety of boundary and edge conditions in the problems of 
ever-changing production.

The use of the method of argument functions of a 
complex variable which has shown its capabilities in solv-
ing diverse problems of continuum mechanics is a way to 
overcome such obstacles. The general regularities that 
have been identified make it possible to pose and solve 
new problems of the theory of elasticity, for example, the 
stress state study in polar coordinates using the argument 
functions.

3. The aim and objectives of the study

The study objective was to develop new approaches to 
solving problems of the continuum mechanics, in particular 
problems of the theory of elasticity taking into account in-
variant generalizations as applied to polar coordinates.

To achieve the objective, the following tasks were set:
– show the possibilities of using the method of argument 

functions in solving problems of the theory of elasticity in 
polar coordinates;

– determine generalizing relations in a differential form 
to enable obtaining the conditions for the existence of clos-
ing solutions of problems of the theory of elasticity;

– solve in an analytical form a plane problem of the the-
ory of elasticity in polar coordinates using the method of 
argument functions;

– test the result obtained by the example of applied prob-
lems and compare it with the studies of other authors.

4. The methods used

The method of functions of a complex variable was 
used. Also, the method of argument functions was used 
which makes it possible to close the problem solution by 
introducing additional dependences and obtained general-
izing differential relations into consideration. In addition, 
the method of comparison of the obtained practical result 
with theoretical and experimental data of other authors 
was used.

5. The study results

A plane problem of the theory of elasticity in polar coor-
dinates was considered. To solve it, the following system of 
equations was used. 

Equilibrium equations of the following form:

1
,ρ ρφ ρ φ∂σ ∂τ σ − σ

+ +
∂ρ ρ ∂φ ρ

1
2 0;φρ φ φρ∂τ ∂σ τ

+ + =
∂ρ ρ ∂φ ρ

	 (1)

the condition of deformation continuity,

( )2 0;ρ φ∇ σ + σ = 				    (2)

the boundary conditions,

sin 2 cos2 ,
2n

φ ρ
ρφ

σ − σ
τ = − φ + τ φ 		  (3)

where τn is the boundary contact shear stress; σϕ, σρ are  
the normal tangential and radial stresses, respectively; τρϕ is 
the shear stress in the deformation zone; ϕ is the angle of 
inclination of the contact area.

Expression (3) is convenient for simplifications which 
will allow us to linearize the boundary conditions in the 
future, that is, simplify them. It should be emphasized that 
the system (1) to (3) is applicable to both plane-stressed and 
plane-deformed states.

5. 1. The method of argument functions of a complex 
variable 

Boundary conditions are an important factor in solving 
problems. Their knowledge allows one to determine unknown 
functions. It was shown in [31] how boundary conditions are 
formed based on certain approaches (the collocation method). 
The formation of boundary conditions in the method of ar-
gument functions makes it possible to define one of the basic 
trigonometric functions. Basic provisions of the mechanics of 
deformed solid are the basis for such a definition.

Expression (3) can be simplified by using the trigono-
metric law of distribution of contact stresses. To this end, it 
is necessary to know the difference between normal stresses 
and shear stress. The problem becomes even simpler if the 
relations connecting normal and shear stresses are known. 
The intensity of shear stresses for a plane deformed state 
takes the form

( )2 21
4

2iT ρ φ ρφ= σ − σ + τ  

or

2

2 1 .i
i

T
T

ρφ
ρ φ

τ 
σ − σ = −   

		  (4)

The attractiveness of expression (4) lies in the fact that 
it is possible to express in some way the difference of normal 
stresses which is an unknown quantity.

To get rid of nonlinearity, the following dependence is 
taken [6, 21, 22, 24]:

sin ,iTρφτ = ΑΦ 				    (5)

where ΑΦ is the unknown coordinate function, or the first 
argument function; Α is a constant correction value. Substi-
tute (5) into the last equality to get:

( )sin 2 .n iTτ = − ΑΦ − φ 			   (6)

The boundary conditions were greatly simplified. Ex- 
pressions (5), (6) are decisive in obtaining solutions to 
problems of the theory of elasticity in an analytical form. 
In addition to simplifications, it becomes possible to use 
fundamental substitution for the intensity of shear stress-
es [7, 25] since differential equations (1), (2) are assumed 
to be linear, that is:

exp ,iT Cσ= θ 				    (7)

where θ is an unknown function of coordinates or the 
second argument function; Cσ is a constant characterizing 
dimension of the intensity of shear stresses. Taking into 
account (6), (7), we can write down:
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exp sin ,Cρφ στ = θ ΑΦ 			   (8)

further

( )exp sin 2 .n Сστ = − θ ΑΦ − φ

Basic functions [24, 25] have appeared in formula (8). 
They satisfy boundary conditions and facilitate mathe-
matical transformations when solving differential equa-
tions (1), (2).

The problem is reduced to the integration of differen-
tial equations of equilibrium (1) taking into account (8). 
In this regard, the problem is formulated as follows: under 
what conditions the argument of the function ΑΦ and θ 
can close the solution of the plane problem of the theory of 
elasticity, that is the system of equations (1) to (3) taking 
into account (6), (8) which will be identically satisfied 
upon substitution.

Using the method of complex variable [9], the unknown 
argument functions can be represented for shear stresses (8) 
in the form:

( ) ( )exp exp
.

2

i i
C

iρφ σ

θ + ΑΦ − θ − ΑΦ
τ = 		  (9)

The argument functions are assumed to be continuous, 
differentiable functions.

The solution of the system of equilibrium equations.
To determine normal stresses σρ, σϕ from equations (1), 

it is necessary to know coordinate derivatives from expres-
sion (9).

Normal stresses are introduced into consideration:

( )'
0 ,fρ ρσ = σ − σ − φ 	

( )'
0 ,fφ φσ = σ − σ − ρ 				    (10)

where ' ,φσ  σ0, f(φ) are the deviatoric component of normal 
stress σρ, hydrostatic pressure, and integration function, 
respectively; ' ,φσ  f(ρ) are the deviatoric component of 
normal stress σϕ and integration function, respectively. 
Expressions (10) will be substituted into differential equa-
tions (1) as was done in [32]. Separate the variables in a 
general form to get:

( )0

1
d ,fρφ ρ φ

ρ

∂τ σ − σ 
σ = − + ρ + σ + φ ρ ∂φ ρ 

∫

( )02 d .fρφ
φ ρφ

∂τ 
σ = − ρ + τ φ + σ + ρ ∂φ 

∫ 		  (11)

Substitute the stress difference from expression (4) tak-
ing into account the boundary conditions. The following is 
obtained taking into account (5), (7):

ρφ
ρ φ σ

τ 
σ − σ = − = θ ΑΦ  

2

2 1 exp cos .i
i

T C
T

Select the plus sign in the right-hand member. Substitute 
derivatives and differences of normal stresses in (11). Assum-
ing that there can be a differential connection in a form of 
the Cauchy-Riemann relations [6] between the constituents 
of the argument functions, it is obvious that for polar coor-
dinates:

, .ρ φ φ ρρθ = ΑΦ θ = ±ρΑΦ 		  (12)

Passing with the help of (12) to opposite variables with 
their signs, the following is obtained:

( ) ( )
( ) ( )

( )
( )

( )0

exp
d

2 exp

exp
2 d

2 exp

,

i iC

i i i

iC

i

f

ρ ρσ

ρ ρ
ρ

σ

  ΑΦ − θ θ + ΑΦ −
  ± ρ +
  − ΑΦ + θ θ − ΑΦ  σ = − + 
  θ + ΑΦ +

+ ρ  
ρ + θ − ΑΦ    

+σ + φ

∫

∫
	 (13)

( ) ( )
( ) ( )

( )
( )

( )0

exp
d

2 exp

exp
2 d

2 exp

,

i iC

i i i

iC

i i

f

φ φσ

φ φ
φ

σ

  ΑΦ − θ θ + ΑΦ −
   φ +
  − ΑΦ + θ θ − ΑΦ  σ = − + 
  θ + ΑΦ −

+ φ  
− θ − ΑΦ    

+σ + ρ

∫

∫



	 (14)

where θϕ, ΑΦϕ, θρ, ΑΦρ are the partial derivatives of the ar-
gument functions with respect to the coordinates φ and ρ.

Introduce into consideration an imaginary unit i  
for (13), (14). The following is obtained after transforma-
tions when passing to real functions:

( )1 0exp cos ,C I fρ σσ = ± θ ΑΦ − + σ + φ 		  (15)

( )2 0exp cos ,C I fφ σσ = θ ΑΦ − + σ + ρ 		  (16)

where 

1

1
2 exp cos d ,I Cσ= θ ΑΦ ρ

ρ∫  
2 2 exp sin d .I Cσ= θ ΑΦ φ∫

The analysis shows that there is a mathematical relation-
ship between the values of I1 and I2 when constraints on the 
argument functions of Cauchy-Riemann with upper signs 
are satisfied:

1 2 ,
I I∂ ∂

=
∂ρ ∂ρ

 1 2 ,
I I∂ ∂

=
∂φ ∂φ

	

under a condition that

, .ρ φ φ ρρθ = −ΑΦ θ = ρΑΦ

Eventually, 

1 2 1
2 exp cos ,

I I
Cσ

∂ ∂
= = θ ΑΦ

∂ρ ∂ρ ρ

1 2 2 exp sin .
I I

Cσ
∂ ∂

= = θ ΑΦ
∂φ ∂φ

In this case, variables I1 and I2 can differ only in the inte-
gration constant which can be taken equal to zero, or:

1 2 .I I I= = 					     (17)

One should make sure whether the equality between the 
values of I1, I2, and the derivatives will hold if signs in the 
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Cauchy-Riemann relations change. Let us consider this issue 
in more detail:

, .ρ φ φ ρρθ = ΑΦ θ = −ρΑΦ

Writing down similar partial derivatives and substi-
tuting the modified Cauchy-Riemann relations, we get the 
following

1 2 ,
I I∂ ∂

= −
∂ρ ∂ρ

 1 2 ,
I I∂ ∂

= −
∂φ ∂φ

or after integration

1 2 .I I I= − = 					     (18)

It can be shown that if relations (12) are fulfilled, the 
argument functions satisfy the Laplace equations. The fol-
lowing is obtained after transformations:

2 0,ρρ ρ φφρ θ + ρθ + θ = 		

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ = 		  (19)

Argument functions are harmonic functions.
Taking into account (17) to (18), the following depen-

dences are solutions of the system of equations (1) to (3):

( )0exp cos ,C I fρ σσ = ± θ ΑΦ + σ + φ

( )0exp cos ,C I fφ σσ = θ ΑΦ + σ + ρ  		  (20)

exp sin ,Cρφ στ = θ ΑΦ

at

, ,ρ φ φ ρρθ = ΑΦ θ = ±ρΑΦ

2 0,ρρ ρ φφρ θ + ρθ + θ = 	

2 0,ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ = 			   (21)

1

1
2 exp cos d ,I Cσ= θ ΑΦ ρ

ρ∫ 	

2 2 exp sin d ,I Cσ= θ ΑΦ φ∫
1 2 ,

I I∂ ∂
= ±

∂φ ∂φ
 1 2 .

I I∂ ∂
= ±

∂ρ ∂ρ

Solution with a shift of the trigonometric function.
Solution (20) can be strengthened if we consider a more 

complex problem of the form:

( )' ''
1 1sin cos exp .C Cρφ σ στ = ΑΦ + ΑΦ θ 		  (22)

In this case, it is necessary to check solutions (22) for 
compatibility with the boundary conditions (3), (4) assum-
ing that:

'
1 0cos ,C Cσ σ= ΑΦ  ''

1 0sin ,C Cσ σ= ± ΑΦ

taking into account (5), (6) and the above expressions, 
substitute in (22) to obtain:

( )
( )

0 0

0

sin cos cos sin

sin .

i

i

T

T

ρφτ = ΑΦ ΑΦ ± ΑΦ ΑΦ =

= ΑΦ ± ΑΦ 	 (23)

Taking into account (23), boundary conditions (4) must 
be satisfied. Then expression (23) can be used when integrat-
ing the equilibrium equations (1).

Substitute (23) into system (1) to obtain:

( ) ( )0 0exp cos ,C I fρ σσ = ± θ ΑΦ ± ΑΦ + σ + φ

( ) ( )0 0exp cos ,C I fφ σσ = θ ΑΦ ± ΑΦ + σ + ρ 

	
(24)

( )0exp sin .Сρφ στ = θ ΑΦ ± ΑΦ

( )1 0

1
2 exp cos d ,I Cσ= θ ΑΦ ± ΑΦ ρ

ρ∫ 	

( )2 02 exp sin d ,I Cσ= θ ΑΦ ± ΑΦ φ∫
at 

, ,ρ φ φ ρρθ = ΑΦ θ = ±ρΑΦ

2 0,ρρ ρ φφρ θ + ρθ + θ =

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

Expression (24) is a more general solution with respect 
to (20). Taking the value ΑΦ0=0 in (24), dependences (20) 
are obtained.

There are opposite signs corresponding to signs (12) in 
front of square brackets of the basic expressions. These are 
different solutions that can be taken into account by the 
general approach. Let us consider a refined version of solving 
the system of equations (1) to (3).

Some clarifications in solving the problem.
Refinements are related to the change in signs in the 

Cauchy-Riemann differential relations. Let us consider what 
happens in the solution with a sign change in the Cauchy-Rie-
mann relations (12). In this case, one more component may 
enter the solution (we will show it). We have the case (12):

, ,ρ φ φ ρρθ = − ΑΦ θ = ±ρΑΦ

hence, the initial data are:

' ', ,ρ φ φ ρρθ = −ΑΦ θ = ρΑΦ
	

'' '', .ρ φ φ ρρθ = ΑΦ θ = −ρΑΦ

Separate the variables and integrate to find θ' and θ'':

' 1 1
d d ,

2 φ ρ

 
θ = − ΑΦ ρ − ρΑΦ φ ρ ∫ ∫ 	

'' 1 1
d d .

2 φ ρ

 
θ = ΑΦ ρ − ρΑΦ φ ρ ∫ ∫

Introduce the notation: 

1 1
d d ,

2 φ ρ

 
θ = ΑΦ ρ − ρΑΦ φ ρ ∫ ∫  

then
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' ,θ = −θ  '' .θ = θ

Different signs in the Cauchy-Riemann relations give dif-
ferent signs in exponents of the exponential functions, that is

' ,ρ φρθ = −ΑΦ 	

' ,φ ρθ = ρΑΦ  ' ,→ θ = −θ

'' ,ρ φρθ = ΑΦ 		

'' ,φ ρθ = −ρΑΦ  '' .→ θ = θ

Consequently, the change of signs in the Cauchy-Rie-
mann relations in expressions (20), (24) leads to a change of 
signs not only in front of the basic functions CσexpθcosΑΦ 
but also in the signs of exponents. Taking into account the 
latter, we can write the following for (20):

( ) ( )0exp cos ,C I fρ σσ = ± ±θ ΑΦ + σ + φ

( ) ( )0exp cos ,C I fφ σσ = ±θ ΑΦ + σ + ρ  		  (25)

( )ρφ στ = ±θ ΑΦexp sin ,C

at 

, ,ρ φ φ ρρθ = ΑΦ θ = ±ρΑΦ

 
2 0,ρρ ρ φφρ θ + ρθ + θ =

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

Taking into account the shift of the trigonometric func-
tion, for (24):

( ) ( ) ( )0 0exp cos ,C I fρ σσ = ± ±θ ΑΦ ± ΑΦ + σ + φ

( ) ( ) ( )0 0exp cos ,C I fφ σσ = ±θ ΑΦ ± ΑΦ + σ + ρ  	 (26)

( ) ( )0exp sin ,Сρφ στ = ±θ ΑΦ ± ΑΦ

at 

, ,ρ φ φ ρρθ = ΑΦ θ = ±ρΑΦ

 
2 0,ρρ ρ φφρ θ + ρθ + θ =

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

Let us consider a solution with two exponents having 
argument functions with opposite signs.

In accordance with the proposed approach, determine:

( )
( ) ( )

' ''

1 2

sin

exp exp sin .

i iT T

C C

ρφ

σ σ

τ = + ΑΦ =

 = θ + −θ ΑΦ  		  (27)

Brackets in (27) can be represented through hyperbolic 
functions:

( )
( ) ( )
1 2

1 2 1 2

' ''
1 2

exp exp

cosh sinh

cosh sinh .

C C

C C C C

С C

σ σ

σ σ σ σ

σ σ

θ + −θ =

= + θ + − θ =

= θ + θ

Express (27) through the function of a complex variable 
and obtain the following:

[ ] [ ]

[ ] [ ]
1

2

exp exp

2
exp exp

.
2

i i
C

i
i i

C
i

ρφ σ

σ

θ + ΑΦ − θ − ΑΦ
τ == +

−θ + ΑΦ − −θ − ΑΦ
+ 		  (28)

Having the shear stress in the new formulation (28), we 
can proceed from the equilibrium equations (1) to finding 
normal stresses σρ, σφ. To this end, it is necessary to de-
termine coordinate derivatives from expression (28) and 
substitute the difference of normal tangential stresses into 
the equilibrium equations. Taking into account the latter, 
we have:

( )
( )

( )
( )

( )
( )

( )
( )
( )

( )
( )

1

2

1

2
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d

2
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d

2
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2
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i
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i

i
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i
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i

iC
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φ φ

σ

φ φ

φ φ

σ
ρ

φ φ

σ

σ

 θ + ΑΦ ×
 
 × θ + ΑΦ −
  ρ +

ρ  − θ − ΑΦ ×
 
 × θ − ΑΦ 

 −θ + ΑΦ ×
 
 × −θ + ⋅ ΑΦ −
 σ = − + ρ +

ρ  − −θ − ΑΦ ×
 
 × −θ − ⋅ ΑΦ 

 θ + ⋅ ΑΦ +
− 

ρ + θ − ⋅ ΑΦ  +
−θ + ⋅ ΑΦ +

−
ρ + −θ − ⋅ Α

∫

∫

( )
( )0

d

.f

 
 
 
 
 
 
 
 
 
 
   + 
 
 
 
 
 
 
 ρ     Φ    

+σ + φ

∫

	 (29)
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( )
( )

( )
( )

( )
( )
( )

( )
( )
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d
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d

2
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2
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i
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i

i
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i i

i
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ρ ρ

σ

ρ ρ

ρ ρ

σ
φ

ρ ρ

σ

σ

 θ + ΑΦ ×
 
 × θ + ΑΦ −
 ρ φ +
 − θ − ΑΦ ×
 
 × θ − ΑΦ 

 −θ + ΑΦ ×
 
 × −θ + ⋅ ΑΦ −
 σ = − + ρ φ +
 − −θ − ΑΦ ×
 
 × −θ − ⋅ ΑΦ 

 θ + ⋅ ΑΦ −
+ 

− θ − ⋅ ΑΦ  +
 −θ + ⋅ ΑΦ −

+
− −θ − ⋅ ΑΦ

∫

∫

( )0

d

.f

 
 
 
 
 
 
 
 
 
 
   + 
 
 
 
 
 
 
 φ        

+σ + ρ

∫

	 (30)

The resulting integral expressions must be transformed, 
that is integrated. It is necessary to go to one variable of 
integration. Two options are possible. When considering the 
options, use the Cauchy-Riemann relation in the form:

, .ρ φ φ ρρθ = −ΑΦ θ = ρΑΦ

Perform a change of the variable for normal stresses (29), 
(30), transformation, reformatting by the imaginary unit 
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integrating with the transition to real functions to obtain 
the following:

( )
( ) ( )1

0

2

exp
cos ,

exp

C
I f

C
σ

ρ
σ

 θ −
σ = ± ΑΦ + σ + φ 

− −θ  


( )
( ) ( )1

0

2

exp
cos ,

exp

C
I f

C
σ

φ
σ

 θ −
σ = ΑΦ + σ + ρ 

− −θ  
 

( ) ( )1 2exp exp sin ,C Cρφ σ σ τ = θ + −θ ΑΦ  	 (31)

( ) ( )1 1 2

1
2 exp exp cos d ,I C Cσ σ = θ − −θ ΑΦ ρ ρ∫

at 

, ,ρ φ φ ρρθ = ΑΦ θ = ±ρΑΦ  2 0,ρρ ρ φφρ θ + ρθ + θ =

2 0,ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

at the same time 

( ) ( )1 2 ,
I I∂ ∂

= ±
∂ρ ∂ρ 	

	

( ) ( )1 2 .
I I∂ ∂

= ±
∂φ ∂φ

Similar approaches in determining normal shear stresses 
at a shift of the trigonometric function:

( )
( ) ( )

( )

1

0

2

0

exp
cos

exp

,

C
I

C

f

σ
ρ

σ

 θ −
σ = ± ΑΦ ± ΑΦ + 

− −θ  
+σ + φ



( )
( ) ( )

( )

1

0

2

0

exp
cos

exp

,

C
I

C

f

σ
φ

σ

 θ −
σ = ΑΦ ± ΑΦ + 

− −θ  
+σ + ρ

 

( ) ( ) ( )1 2 0exp exp sin ,C Cρφ σ σ τ = θ + −θ ΑΦ ± ΑΦ  	 (32)

( )
( ) ( )1

1 0

2

exp1
2 cos d ,

exp

C
I

C
σ

σ

 θ −
= ΑΦ ± ΑΦ ρ 

ρ − −θ  
∫

( )
( ) ( )1

2 0

2

exp
2 sin d ,

exp

C
I

C
σ

σ

 θ +
= ΑΦ ± ΑΦ ΑΦ φ 

+ −θ  
∫

at 

, ,ρ φ φ ρρθ = ΑΦ θ = ±ρΑΦ

 
2 0,ρρ ρ φφρ θ + ρθ + θ =  

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

( ) ( )1 2 ,
I I∂ ∂

= ±
∂ρ ∂ρ

 ( ) ( )1 2 .
I I∂ ∂

= ±
∂φ ∂φ

Signs in (31), (32) in front of square brackets mean that 
the derivation was performed at different signs in the Cau-
chy-Riemann relations (12).

5. 2. Invariant differential generalizations in the 
problem

When formulating the problem, one should take into ac-
count certain approaches to further implementation [33]. 
The Lamé strain potential method for an analytical solution 
is extended to plane gradient elasticity of a simple type. The 
proposed method was applied to express certain components 
of generalization of the scalar functions making it possible to 
use it in solving the continuity equation. At the same time, this 
approach does not ensure the identification of those generaliza-
tions that define the method of argument functions. An accept-
able feature consists in that this scheme clearly demonstrates 
the ability to express unknown quantities through generalizing 
dependences during formulation and solution of the problem.

It can be seen from (22), (24) to (26) that to complete the 
problem, it is necessary to know the value of hydrostatic pres-
sure σ0. To this end, let us use the Laplace equation (2). After 
some transformations, the Laplace equation (2) takes the form:

( )2
0 00, 2 ,nρ φ ρ φ∇ σ + σ = σ + σ = σ → σ

( ) ( ) ( ) ( )2 2
0 0 02

0 2 2 2

1 1
0.

n n n
n

∂ σ ∂ σ ∂ σ
∇ σ = + + =

∂ρ ρ ∂ρ ρ ∂φ
	 (33)

By analogy with [33], let us express σ0 through the gen-
eralized component included in formulas (20), (24) to (26) 
for normal stresses, and I. This will make it possible to get rid 
of the integral values of I in the above expressions in the fu-
ture. The following dependences are the determining format:

( ) ( )
σ

σ

= θ ΑΦ =

θ + ΑΦ + θ − ΑΦ
=

exp cos

exp exp
.

2

R C

i i
C 		  (34)

( ) ( )
1

1
2 exp cos d

exp exp
2 d .

2

I C

i i
C

σ

σ

= θ ΑΦ ρ =
ρ

θ + ΑΦ + θ − ΑΦ
= ρ

ρ

∫

∫ 	 (35)

( ) ( )
2 2 exp sin d

exp exp
2 d .

2

I C

i i
C

i

σ

σ

= θ ΑΦ φ =

θ + ΑΦ − θ − ΑΦ
= φ

∫

∫ 	 (36)

Upon analyzing the previously obtained result, a deci-
sion is made in the form:

σ σ

σ = ± =

= θ ΑΦ ± θ⋅ ΑΦ ρ
ρ∫

0 1

1
exp cos 2 exp cos d .

R I

C C 	 (37)

or 

σ σ

σ = ± =

= θ ΑΦ ± θ ΑΦ φ∫
0 2

exp cos 2 exp sin d .

R I

C C  	 (38)

The main thing is that (37), (38) satisfy equation (33). It 
is necessary to find what conditions the argument functions 
must meet in order that expressions (37), (38) satisfy differ-
ential equation (33). Substitute (37), (38) in (33):

( ) ( ) ( ) ( )2 2
2 2

0 2 2 0.
R I R I R I∂ ± ∂ ± ∂ ±

∇ σ = ρ + ρ + =
∂ρ ∂ρ ∂φ
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The equations will be identically satisfied if:

( ) ( ) ( )2 2
2

2 2 0,
R R R∂ ∂ ∂

ρ + ρ + =
∂ρ ∂ρ ∂φ

( ) ( ) ( )2 2
1 1 12

2 2 0,
I I I∂ ∂ ∂

ρ + ρ + =
∂ρ ∂ρ ∂φ

( ) ( ) ( )2 2
2 2 22

2 2 0.
I I I∂ ∂ ∂

ρ + ρ + =
∂ρ ∂ρ ∂φ

			   (39)

Let us consider sequentially solution of equations (39) 
which taken together determine the general solution of the 
equation (33).

Let us use the method of argument functions and find 
what conditions they must meet in order that expressions (39) 
be solutions of the continuity equation (33).

Determine derivatives with respect to ρ and ϕ, substitute 
into the Laplace equation (39) with further rearrangements, 
decomposition of the difference squares and then the square 
difference to obtain the following:

( )
( )

( )( )
( )( )

( )

( )

( )
( )

( )( )
( )( )

2

2

2

2

2
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2
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i

i
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i

i

ρρ ρ φφ

ρρ ρ φφ

ρρ ρ φφ

ρ φ ρ φ

φ ρ φ ρ

ρ ρ φ φ
σ

ρρ ρ φφ

ρρ ρ φφ

ρ φ ρ φ

φ ρ φ ρ

ρ + ρ + =

 ρ θ + ρθ + θ +
 
 + ρ ΑΦ + ρΑΦ + ΑΦ +
 
 + ρθ + ΑΦ ρθ − ΑΦ + θ + ΑΦ + 
 + θ − ρΑΦ θ + ρΑΦ + 
 + ρ θ ΑΦ + θ ΑΦ  =

ρ θ + ρθ + θ −

− ρ ΑΦ + ρΑΦ + ΑΦ +

+ + ρθ + ΑΦ ρθ − ΑΦ +

+ θ − ρΑΦ θ + ρΑΦ −

− ρ( )

( )

2

.

exp i

ρ ρ φ φ

 
 
 
 
 
 
 
 
 
 
 

  
  
  
  
  θ − ΑΦ  
      θ ΑΦ + θ ΑΦ   

	 (40)

After transformations, a difference of squares was ob-
tained in equation (40) which introduces undesirable non-
linearity. If we take the expansion brackets equal to zero:

0,ρ φρθ + ΑΦ =  0,ρ φρθ − ΑΦ =
	

0,φ ρθ − ρΑΦ =  0,φ ρθ + ρΑΦ = 	 	 (41)

then simplifications are possible after substitution of (40) 
into (41):

( )

( )
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i

ρρ ρ φφ

ρρ ρ φφ

ρρ

ρ φφ

ρ ρ φ φ
σ

ρρ ρ φφ

ρρ

ρ φφ

ρ ρ φ φ

ρ + ρ + =

  ρ θ + ρθ + θ +
  
  ρ ΑΦ +
 + + θ + ΑΦ +  +ρΑΦ + ΑΦ 

 
  + ρ θ ΑΦ + θ ΑΦ =  

 ρ θ + ρθ + θ −
 
  ρ ΑΦ +
 + − − θ − ΑΦ   +ρΑΦ + ΑΦ 
 
 − ρ θ ΑΦ + θ ΑΦ  

.















		
			   (42)

In a case of (41), a mathematical connection appears be-
tween derivatives of the argument functions in a form of the 
Cauchy-Riemann relations in polar coordinates of the form:

,ρ φρθ = ΑΦ  .φ ρθ = ±ρΑΦ 			   (43)

The same relation (12) was used when integrating the 
equilibrium equations (1). If this relation was used in (12) 
in a form of an assumption, it was determined as a result 
of a correct derivation in the case of (43). Of interest is the 
fact that different differential equations (1) and (39) feature 
the same approaches when finding the main solution. Rela- 
tion (43) will be used more than once in what follows. Let 
us consider the brackets in equation (42) with taking into 
account the Cauchy-Riemann relation:

( ) ( )2 2 0.i iρ ρ φ φ φ φ φ φρ θ ΑΦ + θ ΑΦ = −θ ΑΦ + θ ΑΦ =

Equation (42) will get simplified even more and take 
the form:

( )
( )

( )
( )

2

2

2

2

2

exp

.
2

exp

R R R

i
i

C

i
i

ρρ ρ φφ

ρρ ρ φφ

ρρ

ρ φφ
σ

ρρ ρ φφ

ρρ

ρ φφ

ρ + ρ + =

  ρ θ + ρθ + θ +
  
   θ + ΑΦ + ρ ΑΦ +
  +    +ρΑΦ + ΑΦ   =  

 ρ θ + ρθ + θ − 
  
 + θ − ΑΦ ρ ΑΦ + 
 −   +ρΑΦ + ΑΦ    

	 (44)

The exponential operators in equation (44) are virtually 
the same, except for the signs. They are represented by the 
same differential expressions. Using the Cauchy-Riemann 
relations (43), one can show that the equations in (44) taken 
in parentheses are also equal to zero. This has already been 
shown in (19), hence:

2 0,ρρ ρ φφρ θ + ρθ + θ = 		

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

When substituting the last expressions in (44), an iden-
tity is obtained. It should be emphasized that the Laplace 
equations for the argument functions are identically equal 
to zero for different combinations of signs in the Cauchy- 
Riemann relations. The presented sequence of derivation 
shows that the Laplace equation (33) was mostly identically 
satisfied and its solution R takes the form:

( ) ( )

( )

exp exp

2
exp cos ,

i i
R C

C

σ

σ

θ + ΑΦ + θ − ΑΦ
= =

= θ ΑΦ



 		  (45)

at 

,ρ φρθ = ΑΦ  

,φ ρθ = ±ρΑΦ 	

2 0,ρρ ρ φφρ θ + ρθ + θ =
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2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

To obtain the final solution to the continuity equati- 
on (33), it is necessary to show that functions I1 and I2 
satisfy the Laplace equations (33) as well since they are 
part of the final result of (37) to (39). Substitute (35), (36)  
into (39) taking into account:

1 2 ,
I I∂ ∂

=
∂φ ∂φ

 ,ρ φρθ = −ΑΦ 	

,φ ρθ = ρΑΦ

1 2 ,
I I∂ ∂

= −
∂φ ∂φ

 
ρ φρθ = ΑΦ

,φ ρθ = −ρΑΦ

and obtain the following for the function I1  after transfor-
mations:
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 θ + ΑΦ θ + ΑΦ + θ − ΑΦ θ − ΑΦ  = ρ +


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2
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Correspondingly:
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C
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By passing to one variable in (46), (47), and using 
corresponding Cauchy-Riemann relations, we make sure 
that they are identically satisfied. As a result, a gener-
al solution was obtained taking into account (37) in  
the form:
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∫

∫


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
	 (48)

at

,ρ φρθ = ΑΦ  

,φ ρθ = ±ρΑΦ 	

2 0,ρρ ρ φφρ θ + ρθ + θ =
 

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

Let us consider differential equation (39) and depen-
dence (36) for I2.

By determining the coordinate derivatives (36), sub-
stituting into the Laplace equation (39), the following is 
obtained after transformations:
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∫ 	 (49)

All derivatives were found under the same in-
tegral which makes it possible to simplify the deri-
vation. The integrand (49) is actually coinciding 
with equation (40) which allows it to be reduced to 
identity. In this case, there is no need to consider 
a solution twice because of a sign change in Cau-
chy-Riemann relations. As a result, the expression 
for the average stress σ0 can be written in the form:
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± ρ =

= θ ΑΦ ± =

= θ ΑΦ ± θ ΑΦ φ

∫

∫





 	 (50)

at

,ρ φρθ = ΑΦ

 

.φ ρθ = ±ρΑΦ

5. 3. Solutions of the plane problem of the theory of 
elasticity in polar coordinates

Generalizations of expressions (48), (50) are possible if 
we use relations (21), (22). Then:

0 exp cos .nC Iσσ = θ ΑΦ ± 			   (51)

Substitute the generalized value of hydrostatic pres-
sure (51) into (20) and (24)–(26) to obtain:
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(52)

For the shift:
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( ) ( )0exp sin ,Сρφ στ = ±θ ΑΦ ± ΑΦ 			   (53)

at 

,ρ φρθ = ΑΦ

 

,φ ρθ = ±ρΑΦ

2 0,ρρ ρ φφρ θ + ρθ + θ =
 

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

Working expressions (52), (53) are simpler than (20), 
(24) to (26) since the need to calculate values of I has disap-
peared. The last formulas contain the defining expressions 
Cσexp(±θ)cosΑΦ which satisfy the equilibrium equations 
and the equation of deformation continuity. This feature 
makes it possible to expand their applicability by shifting the 
sign and the result by the value of the mean stress as is the 
case in the Mohr’s circles.

For a refined solution of (31), (32), determination of the 
mean stress σ0 should be considered separately.

We have refined solutions of (31), (32) with wider possi-
bilities in comparison with (52), (53):
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To complete the problem solution, it is necessary to know 
average stress σ0 and the integral values of I which can be 
determined from the Laplace equation (33). It has been 
shown that
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The solution should be related to the defining functions 
of equation (32),
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σ σ = θ − −θ × 
× ΑΦ ± ΑΦ
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and integral expressions of I1, I2.
For a solution, equation (33) must be identically sat-

isfied. In this case, the sign in front of the indicated vari-
ables is not essential. The solution is sought in the form as  
for (34) to (36)

0 1R I R Iσ = ± = ±  

or

0 2 .R I R Iσ = ± = ±  	 (54)

The problem is formulated as follows: what conditions 
should be met by the argument functions in order that the 
coordinate functions (54) satisfy the differential equa- 
tion (33).

Represent σ0, R, I1, I2 through the function of a complex 
variable:
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∫

Substitution of dependences (55) into (39) and the 
transformation have resulted in obtaining of working equa-
tions of the following form:
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Further, for the function I1 taking into account signs of 
the Cauchy-Riemann relations.

Option 1. ρ φρθ = −ΑΦ
 

φ φθ = ρΑΦ
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(57)

Option 2. ,ρ φρθ = ΑΦ  ,φ φθ = −ρΑΦ
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Two solutions of (57), (58) correspond to two Cauchy- 
Riemann options.

Further for the function of I2:
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Returning to (56), analysis shows that near the 4 expo-
nents of the equation:

( )0exp ,i θ + ΑΦ ΑΦ 
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( )0exp ,i −θ − ΑΦ ΑΦ   

there are 4 operators that contain parenthe-
ses with the same differential expressions. As 
for (40), generalizing differential relations of 
the following form were found:

ρ φρθ = ΑΦ , ,φ ρθ = ±ρΑΦ

which ultimately vanish identically like all 
parentheses and then operators. The equa-
tion of deformation continuity (56) turns 
into identity. In addition, the following dif-
ferential dependences were established:

2 0,ρρ ρ φφρ θ + ρθ + θ =
 

2 0,ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

allowing us to unambiguously find the coor-
dinate functions for arguments of the basic 
dependences. Hence, it follows that
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is the basic part of solving the problem of de-
formation continuity if the Cauchy-Riemann 
relation is satisfied.

In the two options, (57), (58), the La-
place equations were identically satisfied if 
the corresponding Cauchy-Riemann condi-
tions were met. Thus, the expression (55) is 
a solution to the Laplace equation (57), (58), 
however, with different signs, that is:
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	(62)

It was shown that the solution of the continuity equation 
must contain two components (61) and (62) differing in 
signs. The same components take place in finding normal 
stresses (37), (38) by integrating the equilibrium equations.

Let us consider the Laplace equation (39) for the third 
function (55). Substitute derivatives into the Laplace equa-
tion, determine the general integral, and rearrange to obtain 
the following:

The equation (63) variables are largely the same as the 
equation (56) variables. In addition, all operators at the 
exponents have the same dependences as for (56) includ-
ing the differences of squares. The latter are characterized 
by the Cauchy-Riemann differential relations ,ρ φρθ = ΑΦ  

.φ φθ = ±ρΑΦ
The analysis shows that the use of differential re-

lations (12) nullifies the parentheses of all operators, 
therefore, the integrand (63) turns into an identity, and 
the expression:
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∫ 	 (64)
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( )

( )
( )

( )
( )

( )
( )

( )

ρρ ρ φφ

ρρ ρ φφ

ρρ ρ φφ

σ ρ φ

φ φ

ρ ρ φ φ

ρρ ρ φφ

ρρ ρ φφ

σ ρ φ

φ

ρ + ρ + =

 ρ θ + ρθ + θ +
 
 + ρ ΑΦ + ρΑΦ + ΑΦ +
  + ρ θ − Α Φ + × 
 

+ θ − ρ Α Φ + 
 

+ ρ θ ΑΦ + θ ΑΦ  
 × θ + ΑΦ ± ΑΦ − 

ρ θ + ρθ + θ −

− ρ ΑΦ + ρΑΦ + ΑΦ +

− + ρ θ − Α Φ +

+ θ

= ρ

2
2 2 2

2

2

2 2 2 2
1

2 2 2 2

2

0

2

2

2 2 2 2
1

2

1
2

2

2

exp

1
2

2

I I I

i

C
i

i

i

i

C
i

( )
( )

( )
( )
( )

( )
( )

( )
( )

φ

ρ ρ φ φ

ρρ ρ φφ

ρρ ρ φφ

σ ρ φ

φ φ

ρ ρ φ φ

σ

 
 
 
   × 
 

− ρ Α Φ − 
 

− ρ θ ΑΦ + θ ΑΦ  
 × θ − ΑΦ ± ΑΦ + 

 − ρ θ + ρθ + θ +
 
 + ρ ΑΦ + ρΑΦ + ΑΦ +
  + + ρ θ − Α Φ + × 
 

+ θ − ρ Α Φ − 
 

− ρ θ ΑΦ + θ ΑΦ  
 × −θ + ΑΦ ± ΑΦ − 

−

2 2 2 2

2

0

2

2

2 2 2 2
2

2 2 2 2

2

0

2

2

exp

1
2

2

2

exp

1
2

2

i

i

i

C
i

i

i

C

( )
( )

( )
( )

( )
( )

ρρ ρ φφ

ρρ ρ φφ

ρ φ

φ φ

ρ ρ φ φ

φ

 − ρ θ + ρθ + θ −
 
 − ρ ΑΦ + ρΑΦ + ΑΦ +
  + ρ θ − Α Φ + × 
 

+ θ − ρ Α Φ + 
 

+ ρ θ ΑΦ + θ ΑΦ  
 × −θ − ΑΦ ± ΑΦ 

∫

2

2

2 2 2 2

2 2 2 2

2

0

d . (63)

2

exp

i

i

i

i
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is a solution of the continuity equation (63) if condition  
of (12), (43) is met. It should be added that the equation 
will be satisfied identically for both combinations of signs in 
relations (12), (43).

Based on the obtained solutions of the continuity equa-
tion (60) to (62), (64), we can finally write down expressions 
for determining the hydrostatic pressure σ0:

( )
( ) ( )

( )
( ) ( )

1

0 0 1

2

1

0 2

2

exp
cos

exp

exp
cos ,

exp

C
I

C

C
I

C

σ

σ

σ

σ

 ±θ −
σ = ΑΦ ± ΑΦ ± = 

− θ  
 ±θ −

= ΑΦ ± ΑΦ ± 
− θ  









or

( )
( ) ( )1

0 0

2

exp
cos ,

exp

C
I

C
σ

σ

 ±θ −
σ = ΑΦ ± ΑΦ ± 

− θ  




		  (65)

at

,ρ φρθ = ΑΦ

,φ φθ = ±ρΑΦ 	

2 0,ρρ ρ φφρ θ + ρθ + θ =

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

Refined solutions of the system of equilibrium equa-
tions (31), (32) make it possible to use the result of (65). 
Substitute to obtain the following after simplification:

( ) ( )
( ) ( ) ( )

1 2

1 2

exp exp cos

exp exp cos ,

C C

n C C f

ρ σ σ

σ σ

 σ = ± θ − −θ ΑΦ 
 θ − −θ ΑΦ + φ 





( ) ( )
( ) ( ) ( )

1 2

1 2

exp exp cos

exp exp cos ,

C C

n C C f

φ σ σ

σ σ

 σ = θ − −θ ΑΦ 
 θ − −θ ΑΦ + ρ 

 


	 (66)

at 

,ρ φρθ = ΑΦ

,φ ρθ = ±ρΑΦ 	

2 0,ρρ ρ φφρ θ + ρθ + θ =

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

For the shift trigonometric function, the following is 
obtained after simplifications:

( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 0

1 2 0

exp exp cos

exp exp cos ,

C C

n C C f

ρ σ σ

σ σ

 σ = ± θ − −θ ΑΦ ± ΑΦ 
 θ − −θ ΑΦ ± ΑΦ + φ 





( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 0

1 2 0

exp exp cos

exp exp cos ,

C C

n C C f

φ σ σ

σ σ

 σ = θ − −θ ΑΦ ± ΑΦ 
 θ − −θ ΑΦ ± ΑΦ + ρ 

 


	(67)

at 

,ρ φρθ = ΑΦ

,φ ρθ = ±ρΑΦ

2 0,ρρ ρ φφρ θ + ρθ + θ =

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

Expressions (66), (67) supplement formulas (52), (53). 
The main regularities associated with the problem solution 
are observed at each solution stage. First of all, this is the 
commonality from the position from which we have managed 
to find the result. In many simplifying transformations, the 
Cauchy-Riemann differential relations participated which 
closed solution at the final stage. It is desirable to compare 
the obtained result of (52), (53), (66), (67) with the results 
of studies of other authors.

5. 4. Testing and comparison of the study results with 
the studies of other authors

The method of argument functions proposed in this work 
was checked in the process of comparing with the study re-
sults of other authors for problems of the continuum mechan-
ics in the theories of plasticity [1–3], elasticity in Cartesian 
coordinates [5, 6], and the theory of dynamic problems [4]. 
To achieve reliability of the result obtained, it is advisable to 
carry out such a comparison in this work as well, only with 
respect to the polar coordinates.

Work [34] has presented solution of the problem in polar 
coordinates using the stress function, in the following form:

( ), sin .
D

fσ ρ φ = φ
ρ

				    (68)

By comparing the result of (68) with the third formu- 
la (25) obtained in this work, we have the following:

( )σ σρ φ = θ ΑΦ, exp sin ,f C 			   (69)

at

,ρ φρθ = −ΑΦ

,φ ρθ = ρΑΦ 	

2 0,ρρ ρ φφρ θ + ρθ + θ =

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

By solving the Laplace equation, the simplest result can 
be obtained, that is:

1 .ΑΦ = ΑΑ φ 					     (70)

By substituting into the Cauchy-Riemann relations and 
integrating, the second argument functions can be found:

1,ρρθ = −ΑΑ
		

1

1
,ρθ = −ΑΑ

ρ

1 1ln .C→ θ = −ΑΑ ρ +

Upon choosing the boundary conditions, the following 
is obtained:
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1 ln .
D

θ = ΑΑ
ρ

	 	 	 	 	 (71)

Expressions (70), (71) must be checked for compatibility 
with the Laplace equation. In the latter case:

1

1
,ρθ = −ΑΑ

ρ
 

1 2

1
,ρρθ = ΑΑ

ρ
	

or

2
1 12

1 1
0 0.

 
ρ ΑΑ + ρ −ΑΑ + ≡ ρ ρ 

An identity was obtained which shows that the result 
obtained by means of the method of argument functions is 
acceptable. Further, substituting (70), (71) into (69), write 
down the following:

	 	 (72)

When simplified

1 1Сσ = ΑΑ = →  ( ), sin ,
D

f
 

ρ φ = φ ρ 

the result of (68) was obtained, as required. In this case, ex-
pression (72) is considered a special case of a solution of (25).

As mentioned above, there is a need to obtain different 
solutions for one of the argument functions by solving the 
Laplace equation. When solving the Laplace equations, we 
have a series of coordinate dependences:

1 ,ΑΦ = φ

2 ln ,ΑΦ = ρ

3 ln ,ΑΦ = φ ρ 	

4 6 .ΑΦ = ΑΑ φ 	 	 (73)

The first argument functions (73) satisfy the Laplace 
equations:

To determine the second argument function, we use the 
Cauchy-Riemann relations: ,ρ φρθ = −ΑΦ  .φ ρθ = ρΑΦ , when

1 0,ρΑΦ =  1 1,φΑΦ =

2

1
,ρΑΦ =

ρ
	

2 0,φΑΦ =  3

1
,ρΑΦ = φ

ρ
 1 ln ,φΑΦ = ρ

4 0,ρΑΦ =  4 6.φΑΦ = ΑΑ

After substitution in Cauchy-Riemann and integration, 
we have:

1 ln ,θ = − ρ  

2 ,θ = φ 	

2 2

3

ln
,

2 2
ρ φ

θ = − + 	

4 6 ln .θ = −ΑΑ ρ 	 (74)

Functions (74) are verified by the Laplace equations:

( ) ( ) ( )2 ln ln ln 0,
ρρ ρ φφ

ρ − ρ + ρ − ρ + − ρ =

( ) ( ) ( )2 0,
ρρ ρ φφ

ρ φ + ρ φ + φ =

2 2
2

2 2 2 2

ln
2 2

ln ln
0,

2 2 2 2

ρρ

ρ φφ

 ρ φ
ρ − + +  

   ρ φ ρ φ
+ρ − + + − + =      

( )
( ) ( )

2
6

6 6

ln

ln ln 0.

ρρ

ρ φφ

ρ −ΑΑ ρ +

+ρ −ΑΑ ρ + −ΑΑ ρ =

Thus, all argument functions (73), (74) satisfy the condi-
tions of existence of a solution to the system of equations (1) 
to (3) and close it in this formulation. It is seen that the field 
of analytical solutions of applied problems can be extended 
in the cases convenient for boundary conditions.

It is of interest to compare the obtained result with theo-
retical solutions by a number of other authors. For example, the 
solution of the problem from the theory of elasticity (action of 
a concentrated force on the wedge tip) is known [11, 35, 36]. 	
Let us consider the option (15), (16), or (25) after simplifica-
tions at ( ) ( ) 0 :f fφ = ρ =

0exp cos ,C Iρ σσ = θ ΑΦ − + σ

0exp cos ,C Iφ σσ = − θ ΑΦ − + σ

exp sin ,Cρφ στ = θ ΑΦ

where

, ,ρ φ φ ρρθ = −ΑΦ θ = ρΑΦ 	

2 0,ρρ ρ φφρ θ + ρθ + θ = 	 	 	

2 0.ρρ ρ φφρ ΑΦ + ρΑΦ + ΑΦ =

Using the boundary conditions, determine the coeffi-
cient n, the constant Cσ, and the value of σ0.

Boundary conditions: 

at φ=α, ρ=ρ1, ΑΦ=ΑΦ1, 

θ=θ1, σφ=0, σρ–σφ=–2k1. 

Then

1 1 12 exp cos 2 ,С kρ φ σσ − σ = θ ΑΦ = −

00 exp cos ,C Iσ= − θ ΑΦ − + σ

0 exp cos ,C Iσσ = θ ΑΦ +

2 exp cos ,Cρ σσ = θ ΑΦ 	 	 	 	 (75)

( )σ σ

ΑΑ

σ

 
ρ φ = ΑΑ ΑΑ φ = ρ 

 
= ΑΑ φ ρ 

1

1 1

1

, exp ln sin

sin .

D
f C

D
С
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taking into account the boundary conditions and expres-
sion (75), it follows that

1

1 1

,
exp cos

k
Cσ = −

θ ΑΦ
 1,n =

( )1
1

1

2
exp cos ,

cos
k

ρσ = − θ − θ ΑΦ
ΑΦ

( )1
1

1

exp sin .
cos

k
ρφτ = − θ − θ ΑΦ

ΑΦ
		  (76)

Make use of expression (73), (74) for the first option. 
Then:

1 ,ΑΦ = α  1 1ln .θ = − ρ

Using the substitution of (71), (72) where instead of 

1,D → ρ  at 1 1,ΑΑ =  ln :θ = − ρ

1
1 1 ln .

ρ
θ − θ = θ − θ =

ρ

Substituting the last formulas in (76), the following is 
obtained:

1 1 1 12 2
exp ln cos cos ,

cos cos
k k

ρ

 ρ ρ
σ = − φ = − ⋅ ⋅ φ α ρ α ρ 

0,φσ =

1 1 1 1exp ln sin sin .
cos cos

k k
ρφ

 ρ ρ
τ = − φ = − φ α ρ α ρ 

at ,ρ → ∞  ρσ  and 0.ρφτ →
Let us determine the value of k1. To this end, write down 

the equilibrium equation for the upper cut-off part of the 
wedge, as it was done in [11, 35, 36] and in works by other 
authors:

21 12
d cos cos d .

cos
k

P
α α

ρ
−α −α

ρ
−σ ρ φ φ = ⋅ φ φ =

α∫ ∫

After integration, the following can be written:

1

1

1

1

cos
1

2 sin 2
2

cos
2 cos

1
2 sin 2 cos

2

P
k

P

ρ
α

= → σ =
 ρ α + α  

ρα
= − φ

ρ ρ α + α α  

or 

1
cos ,

1
sin 2

2

P
ρσ = − φ

ρ α + α  

	

1
sin .

1
2 sin 2

2

P
ρφτ == − φ

ρ α + α  

	 (77)

Expression (77) for normal stresses coincides with for-
mula (3) in paragraph 30 of the study [35] and in the works 

by other authors [11, 36]. This example is remarkable in that 
the simplified solution using the method of argument func-
tions of the complex variable coincided with the classical 
solution of this problem. It was not shown in (77) that the 
tangential stresses τρφ are equal to zero. In the presented 
option, when formulating the problem, tangential stresses 
of opposite signs must be present on the lateral surfaces of 
the wedge.

Let us consider a more general case which also has some-
thing in common with the work [11]. To compare the results, 
we shall use formulas (52), (53) at ( ) ( ) 0 0 :f fφ = ρ = ΑΦ =

( ) ( ) ( )1 2 0exp exp cos ,C C Iρ σ σ σ = θ − −θ ΑΦ + σ  

( ) ( ) ( )1 2 0exp exp cos ,C C Iφ σ σ σ = − θ − −θ ΑΦ + σ  

( ) ( ) ( )1 2exp exp sin .C Cρφ σ σ τ = θ + −θ ΑΦ 

Let us consider the same problem with the action of a 
concentrated force on the wedge tip. Take a solution option 
in the form:

,ΑΦ = φ  

ln .θ = − ρ

Boundary conditions: at  ,φ = α  1,ρ = ρ 	

1 ,ΑΦ = ΑΦ = α  

1,θ = θ  0,φσ = 	

0,ρφτ =  1,ρ = ρ  

12 ,kρ φσ − σ = −  

then:

( ) ( )1 1 2 1 1 12 exp exp cos 2 ,C C kρ φ σ σ σ − σ = θ − −θ ΑΦ = − 

( ) ( )1 2 0exp exp cos 0,C C Iρ σ σ σ = − θ − −θ ΑΦ + σ =  

( ) ( ) ( )1 1 2 1 1exp exp sin 0.C Cρφ σ σ τ = θ + −θ ΑΦ = 

Use the boundary conditions to obtain:

( ) ( )0 1 2exp exp cos ,C C Iσ σ σ = θ − −θ ΑΦ ± 

( )2
2 1 1exp ,C Cσ σ= − θ  

1
1

1 1

,
2exp cos

k
Cσ = −

θ ΑΦ

( ) ( ) ( )1 22 exp exp cos ,C Cρ σ σ σ = θ − −θ ΑΦ 

or

( ) ( )

( )

( )

1

1 1

2
1

1
1

1

2 2
1

2
exp cos

exp exp exp cos

2 exp
cos

1 exp exp cos ,

k

k

ρσ = − ×
θ ΑΦ

 × θ + θ −θ φ = 

= − θ − θ ×
ΑΦ

 × + θ −θ φ  		  (78)
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( ) ( )

( )

( )

1

1 1

2
1

1
1

1 1

2 2
1

2exp cos

exp exp exp sin

exp
2exp cos

1 exp exp sin .

k

k

ρφτ = − ×
θ ΑΦ

 × θ − θ −θ φ = 

= − θ − θ ×
θ ΑΦ

 × − θ −θ φ  	 	 (79)

Thus, at φ=α, τρφ=0, σφ=0, σρ=–2k1. This indicates the 
fulfillment of the boundary conditions. The following was 
obtained previously: 

1
1 1 ln .

ρ
θ − θ = θ − θ =

ρ

Substitute the last formula in (78) to (79) to obtain:

2

1 1 1

1

2 1 cos ,
cos

k
ρ

    ρ ρ σ = − + φ   ΑΦ ρ ρ     
	 	 (80)

2

1 1 1

1

1 sin ,
2cos

k
ρφ

    ρ ρ τ = − − φ   ΑΦ ρ ρ     
	 	 (81)

at ρ→∞, σρ and τρφ→0.
Let us determine the value of k1. To do this, write an 

equilibrium equation for the upper cut-off part of the wedge, 
as it was done in [35] and in works by other authors:

( ) 21 12
d cos cos d ,

cos
k

m P
α α

ρ
−α −α

ρ
−σ ρ φ φ = ⋅ ρ φ φ =

α∫ ∫

where

( ) 2 11 exp ln .m
  ρ

ρ = +  ρ  

It follows that:

( )
1

1

cos
.

1
2 sin 2

2

P
k

m

α
=

 ρ α + α ρ  

	 	 	 (82)

Substitute (82) in (80), (81) and obtain:

1
cos ,

1
sin 2

2

P
ρ

 
σ = − φ ρ   α + α  

( )
( )

'1
sin ,

1
4 sin 2

2

mP
mρφ

ρ 
τ = − φ ρ ρ   ⋅ α + α  

	 	 (83)

where

( )
2

' 11 .m
  ρ ρ = −  ρ   

Solution of (83) does not differ from expression (77) 
obtained earlier and is confirmed by classical solutions. Tan-
gential stress has slightly changed in comparison with (77). 
It became possible to satisfy the boundary condition for the 
shear stress due to the variable m’(ρ).

Analysis of the obtained solutions of varying complexity, 
when compared with the studies by other authors, shows 
that (20) and (24), (52), (53), (66), (67) have a generalized 
character. Solutions in a particular case coincide with the 
results of similar developments by other authors

The conditions for the existence of solutions to various 
problems are invariant, both in the theory of elasticity, the 
theory of plasticity, and the theory of dynamic processes. 
The Cauchy-Riemann relations are widely used in transfor-
mations, in solutions themselves which simplifies the final 
result and the process of its finding. The revealed generaliza-
tions have made it possible to obtain solutions to the problem 
of the theory of elasticity in polar coordinates.

6. Discussion of the study results

The proposed solution features identification of differen-
tial conditions of its existence using the argument functions, 
that is, the Cauchy-Riemann relations and Laplace equations 
for polar coordinates.

The obtained study results can be explained by:
– using the method of argument functions of a complex 

variable;
– obtaining of invariant differential generalizations in a 

form of the Cauchy-Riemann relations including the solution 
for polar coordinates (20), (24), (52), (53), (66), (67);

– obtaining of generalizations of disparate elements of 
solutions in literature sources which has made it possible to 
identify this problem as unsolved;

– the study results were compared with the classical solu-
tion of some problems of the theory of elasticity [8–11, 18] 
and with solutions made by present-day authors [13, 14, 27]. 
The possibilities of using the proposed method in continuum 
mechanics were shown which, in addition to the theory of 
elasticity, includes the theory of plasticity and the theory 
of dynamic processes. The analysis shows that the proposed 
mathematical apparatus can be used in the theory of plastic 
metalworking, geomechanics, the interaction of elastic bod-
ies, non-stationary problems associated with the transfer of 
interaction in a form of a wave process.

Limitations include boundaries of applicability of solu-
tions. These approaches do not apply to solutions of the 
biharmonic equation using the argument functions in polar 
coordinates. However, this will expand the capabilities of the 
method. This will ensure the emergence of additional oppor-
tunities, both for solutions and implementation of boundary 
conditions in the continuum mechanics.

The disadvantages of the study include cumbersomeness 
and volume of the derivation. This is primarily explained by 
the lack of accumulated material on this issue.

When solving problems of the continuum mechanics, 
defining generalizations were revealed in the method of 
argument functions. However, this is not enough for using it 
in new problems. There is a need to extend the method and 
perhaps not only in problems of continuum mechanics.

7. Conclusions

1. Generalizing approaches to solving problems of the 
theory of elasticity using argument functions of a complex 
variable in polar coordinates were developed. The funda-
mental difference from the known solutions consists in 
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that they are performed in Cartesian coordinates which 
contain less complex differential equations. Expansion of 
capabilities of the method argument functions in the theo-
ry of elasticity due to its use for solving problems of polar 
coordinates is a qualitative indicator of the study results.

2. Generalizing Cauchy-Riemann relations and Laplace 
equations in polar coordinates were determined in a differ-
ential form. Identification of invariant differential relations 
of diverse problems of the continuum mechanics including 
problems of the theory of elasticity is the defining indicator 
of the study results.

3. Using the method of argument functions, a plane 
problem of the theory of elasticity was solved in polar co-
ordinates. The fundamental difference is in the use of the 
argument functions of complex variables in solving the prob-
lem of the elasticity theory. The application of the method 
to solving more complex problems of the theory of elasticity 
and prediction of results is a qualitative indicator of the 
study results.

4. The obtained results were tested and compared with 
the studies of other authors. The results were compared with 
the results of solving applied problems of the theory of elas-
ticity. A more general solution by the method of argument 
functions was simplified and reduced to a special case which 
was compared with the solutions obtained by the method 
of the stress function. At the same time, arguments of trig-
onometric and exponential functions used by the authors 
were satisfied by the Cauchy-Riemann relations which were 
determined in this study.
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