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1. Introduction

Resonance vibratory machines are promising as regards 
the vibratory machines for various applications [1]. In them, 
vibration exciters of smaller mass excite oscillations with a 

greater amplitude, which improves the reliability and dura-
bility of vibratory machine operation. 

The most effective and simple techniques to excite res-
onance oscillations are based on the use of the Sommerfeld 
effect [2‒12]. Among these techniques, of special relevance 
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A three-mass anti-resonance vibratory machine with a vibration 
exciter in the form of a passive auto-balancer has been analytically 
synthesized. In the vibratory machine, platforms 1 and 2 are visco- 
elastically attached to platform 3. Platform 3 is visco-elastically 
attached to the base. The motion of loads relative to the auto-balanc-
er housing is hindered by the forces of viscous resistance.

A theoretical study has shown that the vibratory machine pos-
sesses three resonance frequencies and three corresponding forms 
of platforms' oscillations. Values for the parameters of supports 
that ensure the existence of an anti-resonance form of motion have 
been analytically selected. Under an anti-resonance form, plat-
form 3 is almost non-oscillating while platforms 1 and 2 oscillate 
in the opposite phase.

In the vibratory machine, platform 1 can be active (working), 
platform 2 will then be reactive (a dynamic vibration damper), and 
vice versa. At the same time, the vibratory machine will operate when 
mounting a vibration exciter both on platform 1 and platform 2. 

An anti-resonance form would occur when the loads get stuck 
in the vicinity of the second resonance frequency of the platforms' 
oscillations.

Given the specific parameters of the vibratory machine, numer-
ical methods were used to investigate its dynamic characteristics. 
Numerical calculations have shown the following for the case of small 
internal and external resistance forces in the vibratory machine:

– theoretically, there are seven possible modes of load jam; 
– the second (anti-resonance) form of platform oscillations is 

theoretically implemented at load jamming modes 3 and 4; 
– jamming mode 3 is locally asymptotically stable while load 

jamming mode 4 is unstable; 
– for the loads to get stuck in the vicinity of the second reso-

nance frequency, one needs to provide the vibratory machine with 
the initial conditions close to the jamming mode 3, or smoothly 
accelerate the rotor to the working frequency; 

– the dynamic characteristics of the vibratory machine can be 
controlled in a wide range by changing both the rotor speed and 
the external and internal forces of viscous resistance.

The results reported here are applicable for the design of anti-res-
onance three-mass vibratory machines for general purposes
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is a method that is based on using passive auto-balancers in 
the form of vibration exciters. The technique is applicable for 
single- and multi-mass vibratory machines [8‒12] and is dis-
tinguished by the possibility of changing the characteristics 
of vibrations in a wide range.

It should be noted that two- and three-mass vibratory 
machines have been widely used in various industries [13‒20]. 
The multi-mass structure makes it possible to design vi-
bratory machines that almost do not transmit vibrations 
to the base. Such machines include the anti-resonance 
vibratory machines. In the three-mass anti-resonance vi-
bratory machines [15‒20], the intermediate platform is 
visco-elastically attached to the base. An active platform 
(working) and a reactive platform (a dynamic oscillation 
damper) are visco-elastically attached to the intermediate 
platform. The anti-resonance form of oscillations is also a 
resonance mode. However, the vibratory machine parame-
ters are chosen so that the intermediate platform is almost 
stationary while the active and passive platforms oscillate 
in the opposite phase.

It is a relevant task to design, based on the results re-
ported in [8‒12], an anti-resonance three-mass vibratory 
machine with a vibration exciter in the form of a passive 
auto-balancer and to investigate its steady vibrations.

2. Literature review and problem statement

In the resonance-type vibratory machines, it is possible to 
excite vibrations with electromechanical vibration exciters [1]. 
However, when the mass of a vibratory platform changes, its 
resonance oscillation frequency changes as well. Therefore, 
it is necessary to constantly change the frequency of the dis-
turbing force in order to achieve resonance. This requires a 
complex control system. In addition, electromechanical vibra-
tion exciters are less powerful than the inertial ones.

The easiest technique to excite resonance vibrations is 
based on a Sommerfeld effect [2]. The effect implies that 
the shaft of the electric motor with a pendulum mounted 
onto it (an unbalanced-mass rotor) cannot accelerate to the 
working frequency of rotation. The pendulum gets stuck at 
one of the resonance oscillation frequencies of the platform 
that hosts the electric motor. In a vibratory machine, this 
automatically excites the resonance vibrations of the vibra-
tory platform. And when the mass of the vibratory platform 
changes, the frequency of the pendulum’s rotation automat-
ically adjusts to the changed resonance frequency [3]. The 
disadvantage of this technique of vibration excitation is the 
overloaded electrical circuits of the electric motor.

Instead of an electric motor, it is proposed in [4] to use an 
unbalanced impeller and an airflow. There is no overloaded 
electric motor when applying this technique. However, the 
efficiency of this technique is quite low. 

The Sommerfeld effect is also evident in the operation 
of passive auto-balancers; ‒ ball-type (roller) [5, 6], or pen-
dulum-type [7], both with the rotor isotropic [5, 7] and 
anisotropic [7] supports. In auto-balancers, loads cannot 
accelerate to the frequency of rotor rotation and get stuck 
at one of the resonance frequencies of rotor vibrations. At 
the same time, the loads are brought together, which creates 
the greatest imbalance [8]. These loads act as a resonance 
inertial vibration exciter.

A technique to excite resonance vibrations using passive 
auto-balancers is theoretically explored in [9‒12]. The equa-

tions of motion of single-mass, two-mass, and three-mass 
vibratory machines with a rectilinear translational motion of 
the platforms and a vibration exciter in the form of a passive 
auto-balancer were derived in [9]. Study [10] analytically 
examined the performance of a single-mass vibratory ma-
chine, [11] ‒ a two-mass vibratory machine, [12] ‒ a three-
mass vibratory machine.

It should be noted that multi-mass vibratory machines 
possess a series of advantages over single-mass ones: the 
frequencies of platform oscillations are less dependent 
on the weight of a load [13]; it is possible to excite the 
anti-resonance oscillations at which the platforms’ oscilla-
tions are not transferred to the base [14]. Therefore, three-
mass resonance vibratory machines have been widely used 
in different industries. These machines include: vibratory 
polishing [15] and vibration lapping [16] machines; vi-
brating tables [17]; vibratory conveyors [18]; vibratory 
mills [19]; vibratory transporters [20], etc. These ma-
chines are also anti-resonance. In them, the fluctuations 
of the working platform are practically not transferred to 
the base.

Thus, the feasibility of the technique for exciting res-
onance vibrations by passive auto-balancer has not been 
investigated for the case of three-mass anti-resonance vibra-
tory machines.

3. The aim and objectives of the study

The aim of this work is to study a three-mass anti-res-
onance vibratory machine with a vibration exciter in the 
form of a passive auto-balancer. This is necessary for the 
development and design of new anti-resonance three-mass 
vibratory machines.

To accomplish the aim, the following tasks have been set:
– to synthesize a three-mass anti-resonance vibratory 

machine; 
– to investigate the dynamic properties of the vibratory 

machine at certain parameters by numerical methods.

4. Materials and methods to study  
the three-mass anti-resonance vibratory machine

To build a model of the anti-resonance three-mass vi-
bratory machine, a generalized model is used, which was 
constructed in work [8]. The vibratory machine parameters 
are selected from the following conditions (for the existence 
of an anti-resonance frequency):

– the existence of some threshold frequency of unbal-
anced rotor rotation, at which the amplitude of an interme-
diate platform’s oscillations is minimal; 

– the match between the threshold frequency and one of 
the natural (resonance) oscillation frequencies of the vibra-
tory machine.

A vibratory machine will operate at the rotor speed 
exceeding the threshold frequency. In this case, loads in the 
vibration exciter (under certain conditions) will get stuck at 
the appropriate resonance frequency, thereby exciting the 
anti-resonance form of the platform motion. 

Our numerical experiment will be conducted using a 
procedure based on the idea of a parametric solution to the 
problem of finding frequencies at which loads get stuck and 
the bifurcation theory of motions [10–12].
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5. 1. The synthesis of an anti-resonance three-mass 
vibratory machine 

5. 1. 1. Description of the model of an anti-resonance 
three-mass vibratory machine

The generalized model of the anti-resonance three-mass 
vibratory machine is shown in Fig. 1 [9, 12]. The vibratory 
machine consists of three platforms weighing M1, M2, and M3. 
The intermediate platform 3 is held by external elastic-vis-
cous supports with a stiffness coefficient k3 and a viscosity 
coefficient b3. Platforms 1 and 3 (2 and 3) are connected via 
the internal elastic-viscous supports with a stiffness coeffi-
cient k13 (k23) and a viscosity coefficient b13 (b23).

a 

b                                               c 

Fig. 1. Model of the anti-resonance three-mass vibratory 
machine (rotated at an angle α) [9, 12]: a – the kinematics of 

the platform motions, b – balls or rollers, c – pendulums

Note that in some works the platforms (masses) are 
termed an active, intermediate, and reactive platform, or a 
working body, an intermediate platform, and a dynamic vi-
bration damper. In the designed vibratory machine, platform 
1 or 2 can be active, and platform 2 or 1 ‒ reactive. 

The platforms can only move rectilinearly translationally 
owing to the fixed guides. The direction of the platforms’ 
motion forms an angle α with the vertical. The platforms’ 
coordinates y1, y2, y3 originate from the positions of the 
platforms’ static equilibrium. In Fig. 1, a, g



 is the vector of 
free fall acceleration near the Earth’s surface.

The second platform hosts a passive auto-balancer [9, 12] ‒ 
a ball, a roller (Fig. 1, b), or a pendulum (Fig. 1, c). 

The auto-balancer housing rotates around the shaft, 
point K, at a constant angular velocity ω. Two mutually per-
pendicular axes X, Y originate from the point K and form the 
right-hand coordinate system.

The auto-balancer consists of N identical loads. The mass 
of one load is m. The center of the load mass can move along 
the circumference of radius R with the center at point K 
(Fig. 2, a, b). The position of load number j relative to the 
housing is determined by the angle ϕj, / 1, / .j N=  The mo-
tion of the load relative to the auto-balancer housing is hin-

dered by the force of the viscous resistance, having a module
( ) | |,r

j W j W jF b v b R= = φ − ω′ / 1, / .j N=  Here, bW is the viscous 
resistance force factor, ( ) | |r

j jv R= φ − ω′  is the module of the 
speed of the motion of the center of the mass of load number 
j relative to auto-balancer housing. A bar behind the value 
denotes the time derivative t. 

5. 1. 2. Differential equations of the anti-resonance 
three-mass vibratory machine motion

For the considered vibratory machine model (Fig. 1), the 
differential motion equations in a dimensionless form are as 
follows:

( ) ( )2
1 13 1 1 3 3 13 1 1 3 32 0,v h v v n v v+ ρ − ρ + ρ − ρ =  

( ) ( )2
2 23 2 3 3 23 2 3 32 ,yv h v v n v v s+ − ρ + − ρ = −   

( )
( ) ( )
( )

2
3 3 3 3 3 13 1 1 3 3

2
13 1 1 3 3 23 2 3 3

2
23 2 3 3

2 2

2

0,

v h v n v h v v

n v v h v v

n v v

+ + − ρ − ρ −

− ρ − ρ − − ρ −

− − ρ =

   

 

( ) ( )
2

cos

cos 0,

j j j

j

n

v

φ + εβ φ − + σ φ − α +

+ε φ =

 



/ 1, / .j N= 	 (1)

In (1), a dot above the value denotes a derivative with 
respect to dimensionless time τ and: 

– the dimensionless variables and time

( )1 1 1/ ,v y y= ρ   2 2 / ,v y y=   ( )3 3 3/ ,v y y= ρ 

1

1
cos ,

N

x j
j

s
N =

= φ∑  
1

1
sin ;

N

y j
j

s
N =

= φ∑  ;tτ = ω 	 (2)

– dimensionless parameters

2 13
13 2

2

,
k

n
M Σ

=
ω

 2 23
23 2

2

,
k

n
M Σ

=
ω

 2 3
3 2

3

,
k

n
M

=
ω

13
13

2

,
2

b
h

M Σ

=
ω

 23
23

2

,
2

b
h

M Σ

=
ω

 3
3

3

,
2

b
h

M
=

ω

,n
ω

=
ω

 ,
y
R

ε =
κ
  ,Wb

m
εβ =

κ ω
 

,Wb
m

β =
εκ ω

 ,dS
s

δ =


 2 .
g

R
σ =

κ ω
	 (3)

In turn, in (2), (3):
– characteristic scales

2
1

1

,
M
M

Σρ =  2
3

3

,
M
M

Σρ =  

2

,
s

y
M Σ

=




 ;s NmR=

– dimension parameters

,dS P= µ  2 2 ;M M NmΣ = + + µ 	 (4)

– for a ball, a roller, a pendulum, respectively,

7
,

5
κ =  

3
,

2
κ =  ( )21 / ,CJ mRκ = +  	 (5)
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where JC is the principal central axial moment of the pendu-
lum inertia.

5. 1. 3. Selecting the vibratory machine parameters 
for executing anti-resonance oscillations

Under an anti-resonance regime, platform 3 (the inter-
mediate platform) of the vibratory machine should be sta-
tionary (v3=0). At the same time, platforms 1 and 2 should 
execute the anti-phase oscillations. A pure anti-resonance 
regime is possible only in the absence of resistance forces. 

In the absence of resistance forces, with loads collected, 
the loads getting stuck at a constant rotation speed Ω, sys-
tem (1) takes the following form

( )2
1 13 1 1 3 3 0,v n v v+ ρ − ρ =

( )2 ( ) 2
2 23 2 3 3 max sin ,ABv n v v S+ − ρ = Ω Ωτ

( ) ( )2 2 2
3 3 3 13 1 1 3 3 23 2 3 3 0,v n v n v v n v v+ − ρ − ρ − − ρ = 	  (6)

where max
ABS  is the total unbalanced mass of the tightly 

pressed loads. 
The frequency equation that determines the system’s 

natural (resonance) oscillation frequencies is

( )

( )

2 2 2
13 1 13 3

2 2 2
23 23 3

2 2 2 2 2 2
13 1 23 3 13 23 3

2 4 6
0 1 2

Det

0

0

,

p

p n n

p n n

n n p n n n

b b p b p p

=

− + ρ − ρ
= − + − ρ =

− ρ − − + + + ρ

= − + − 	  (7)

where

2 2 2
0 3 13 23 1,b n n n= ρ

( ) ( )2 2 2 2 2
1 3 23 13 1 13 23 1 3 1 3 ,b n n n n n= + ρ + ρ + ρ + ρ ρ 	  (8)

( ) ( )2 2 2
2 13 1 3 23 3 31 .b n n n= ρ + ρ + + ρ +

Find the rotor rotation frequency at which the oscilla-
tions of intermediate platform 3 are absent. Let v3=0. Equa-
tions (6) then take the following form

2
1 13 1 1 0,v n v+ ρ =  

2 ( ) 2
2 23 2 max sin ,ABv n v S+ = Ω Ωτ  

2 2
13 1 1 23 2 0.n v n v− ρ − =  		  (9)

We find from the last equation in (9):

2
23

1 1 22
13

.
n

v v
n

= − ρ  		 (10)

Fitting (10) to the first equation in (9), after the trans-
formation, we obtain

2
2 13 1 2 0.v n v+ ρ = 		   (11)

Deduct (11) from the second equation in (9); we obtain 

( )2 2 ( ) 2
23 13 1 2 max sin ,ABn n v S− ρ = Ω Ωτ  

( ) 2
max

2 2 2
23 13 1

sin .
ABS

v
n n

Ω
= Ωτ

− ρ
 		  (12)

Fitting v2 from (12) to (11), we obtain 2 2
13 1 0,n−Ω + ρ =  

hence

13 1 .nΩ = ρ 		   (13)

In order for it to be its natural (resonance) oscillation 
frequency of the vibratory machine, it is required that it 
should the root of frequency equation (7). Fitting (13) to (7),  
after the transformation, we obtain

( ) ( )4 2 2
13 1 13 1 3 13 1 23Det 0.n n n nρ = ρ ρ ρ − =  		  (14)

Hence, we find the following condition

23 13 1 .n n= ρ  		  (15)

By fitting (15) to (6), we obtain

( )2
1 13 1 1 3 3 0,v n v v+ ρ − ρ =

( )2 ( ) 2
2 13 1 2 3 3 max sin ,ABv n v v S+ ρ − ρ = Ω Ωτ

( )2 2 2 2
3 3 13 1 3 3 13 1 1 13 1 21 0.v n n v n v n v + + + ρ ρ − ρ − ρ =   	 (16)

By fitting (15) to frequency equation (7), we obtain:

( ) ( )
( ){ }

2 2
1 13

4 2 2 2 2 2
1 3 1 3 13 3 1 13 3

Det

0.

p n p

p n n p n n

= ρ − ×

 × − ρ + ρ + ρ ρ + + ρ =   	 (17)

Find three resonance frequencies from (17):

( )
13 1 ,i

rn n= ρ  
( ) 2 2

1 3 1 3 13 3( / ) ,
2

j k
r

n n D
n

ρ + ρ + ρ ρ +
=



 	(18)

where

( ) ( )22 2 4
3 1 1 3 13 3 13 1 3 14 1 0.D n n n = ρ − ρ + ρ ρ + + ρ ρ ρ + >   	 (19)

(18) shows that (13) is one of the three resonance fre-
quencies. Since the discriminator D>0, the other two reso-
nance frequencies always exist, and

( ) ( ) 0.k j
r rn n> >  	 (20)

Arrange the resonance frequencies i, j, k from (18) in 
ascending order. Consider

( ) ( ) ( ) ( )
( )

2 2 2 2( ) ( ) ( ) ( )

4
1 3 1 131 0.

j i k i
r r r rn n n n

n

   − − =      
= −ρ ρ ρ + <  	 (21)

Given (20) and (21), arrange the resonance frequencies 
in ascending order as follows

( ) 2 2
1 3 1 3 13 3(1) ,

2r

n n D
n

ρ + ρ + ρ ρ + −
=  (2)

13 1 ,rn n= ρ

( ) 2 2
1 3 1 3 13 3(3) .

2r

n n D
n

ρ + ρ + ρ ρ + +
= 	  	 (22)
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In order to set an anti-resonance oscillation form, the 
rotor speed must exceed the second resonance frequency. At 
the same time, loads in the auto-balancer should get stuck 
at a speed close to the second resonance frequency. Then 
the platforms will execute oscillations close to the anti-res-
onance regime (the second form of the platforms’ natural 
oscillations).

5. 1. 4. The law of anti-resonance oscillations
The loads in a vibration exciter can only get stuck 

if there are viscous resistance forces in the system [11]. 
Under a jam mode, the loads are tightly pressed together 
and create a total unbalanced mass max .ABS  For the balls or 
rollers [8]

( )
2

max .
sin arcsin /

AB mR
S

r N r R
=

  
		  (23)

For the case of pendulums, additional information about 
the design of pendulums is needed to determine the greatest 
unbalanced mass max .ABS  

In the presence of viscous resistance forces, the law of 
platform motion in a zero approximation (ε=0) takes the 
following form [12]

−τ = Ω Ωτ + γ +

+ Ω Ωτ + γ =
2 1 0

2 0

( ) ( , )sin( )

( , )cos( ), / 1,3 / .

i i

i

v X S

X S i 	 (24)

Here:
Ω is the load jam frequency;

max ;ABS S s=  	 (25)

( ) ( ) ( )1, , ,q S q q S−=X A B  	 (26)

where

( ) ( ) 6

1
,ijq a q=A  ( ) ( ) 6

1
, , ,iq S X q S=X  

( ) ( )T2, 0 0 0 0 0 .q S Sq=B 	  (27)

In turn

( ) 2 2
11 1 13 ,a q n q= ρ −  ( )12 1 132 ,a q q h= − ρ  ( )13 0,a q =

( )14 0,a q =  2
15 13 3,a n= − ρ  ( )16 13 32 ;a q qh= ρ

( ) ( )21 12 ,a q a q= −  ( ) ( )22 11 ,a q a q=  ( )23 0,a q =

( )24 0,a q =  ( ) ( )25 16 ,a q a q= −  ( )26 15 ;a a q=

31 0,a =  ( )32 0,a q =  ( ) 2 2
33 23 ,a q n q= −  

( )34 232 ,a q qh= −  2
35 23 3,a n= − ρ  ( )36 23 32 ;a q qh= ρ

( )41 0,a q =  ( )42 0,a q =  ( ) ( )43 34 ,a q a q= −  

( ) ( )44 33 ,a q a q=  ( ) ( )45 36 ,a q a q= −  ( )46 35 ;a a q=

( ) 2
51 1 13,a q n= −ρ  ( )52 1 132 ,a q q h= ρ  ( ) 2

53 23,a q n= −  

( )54 232 ,a q qh=  ( ) ( )2 2 2 2
55 3 13 23 3 ,a q n n n q= + + ρ −  

( ) ( )56 3 13 23 32 ;a q q h h h = − + + ρ 

( ) ( )61 52 ,a q a q= −  ( ) ( )62 51 ,a q a q=  ( ) ( )63 54 ,a q a q= −

( ) ( )64 53 ,a q a q=  ( ) ( )65 56 ,a q a q= −  ( )66 55 .a a q= 	 (28)

The platforms’ oscillation amplitudes:

( ) ( ) ( )2 2
2 1 2, , , ,i i iAmp S X S X S−Ω = Ω + Ω  / 1,2,3 / .i =  	 (29)

The frequencies at which loads can get stuck are deter-
mined as the actual roots of equation [12].

( ) ( ) ( ) ( )2
4, 2 , 0,P n n SΩ = β − Ω ∆ Ω + Ω ∆ Ω = 	  (30)

where

( ) ( ) ,q q∆ = A

( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

4

11 12 13 15 16

21 22 23 25 26
2

41 42 43 45 46

51 52 53 55 56

61 62 63 65 66

,

.

q S

a q a q a q a q a q

a q a q a q a q a q

Sq a q a q a q a q a q

a q a q a q a q a q

a q a q a q a q a q

∆ =

= −  	 (31)

Equation (28) is a 13-power polynomial relative to Ω, 
which defies analytical examination. Therefore, further re-
search is carried out by numerical methods.

5. 2. The numerical study into the dynamic properties 
of a vibratory machine 

5. 2. 1. Procedure for studying the dynamic properties 
of a vibratory machine

We find from (30) the following solution to the equation 
of the frequencies of load jams in the parametric form

( ) ( ) ( )
( )

42 ,
,

2

S
n

β∆ Ω − Ω∆ Ω
Ω = Ω

β∆ Ω
 ( )0, .Ω ∈ +∞ 	 (32)

In the plane ( )( ), ,nΩ Ω  ( )0, ,Ω ∈ +∞  we build a diagram 
of function ( ),nΩ  ( )0, .n ∈ +∞  At the points of bifurcation of 
motions, there is an origination or merging of a pair of jam 
frequencies. At the same time,

( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

2
4

4
2 2

4

d

d

2 2 ,

d1 , 0.d2
d ,

d

n

S

S

S

Ω
=

Ω
 β∆ Ω − Ω∆ Ω ∆ Ω +
 

 ∆ Ω  ∆ Ω − = = Ω β∆ Ω +Ω  ∆ Ω −∆ Ω  Ω  

	 (33)

The procedure for studying the dynamic properties of a 
vibratory machine includes several stages [11] given below.

1. Equation (33) produces six bifurcation frequencies of 
load jamming, such as 1 2 60 .n< Ω < Ω < <Ω <

2. Formula (32) yields six bifurcation angular velocities 
of the rotor rotation ( ),i in n= Ω  / 1,6 / .i =  For convenience, 
we shall number them and arrange them in order of ascend-
ing. When these velocities are reached, one pair of jamming 
modes occurs or disappears. 
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3. For each jam mode, formula (32) calculates in para-
metric form the corresponding rotor speed:

( ) [ ]1 1( ) , 0, ;n nΩ = Ω Ω ∈ Ω

( ) [ ]2 1 2( ) , , ;n nΩ = Ω Ω ∈ Ω Ω 

( ) [ ]6 5 6( ) , , ;n nΩ = Ω Ω ∈ Ω Ω

( ) [ )7 6( ) , , .n nΩ = Ω Ω ∈ Ω + ∞  		  (34)

Based on the calculation results, we build in the (n, Ω) 
plane the diagrams of seven possible modes of jamming 

( )( ), ,in Ω Ω  / 1,7 / .i =
4. When assessing the stability of the possible jam mo- 

des, we are governed by the following rules: 
‒ if there is only one mode of load jam at a certain rotor 

rotation speed, it is (globally or locally) asymptotically 
robust; 

‒ if there are three or more modes of load jam at a certain 
rotor rotation speed, only the odd modes of jamming are 
locally asymptotically robust.

5. For each jam mode, formulae (29) are used to cal-
culate, in the parametric form, the amplitudes of the slow 
platform oscillations

( ) ( ) [ ],1 1, , , 0, ,i iAmp S Amp SΩ = Ω Ω ∈ Ω

( ) ( ) [ ],2 1 2, , , , ,i iAmp S Amp SΩ = Ω Ω ∈ Ω Ω 

( ) ( ) [ ],6 5 6, , , , ,i iAmp S Amp SΩ = Ω Ω ∈ Ω Ω

( ) ( ) [ )Ω = Ω Ω ∈ Ω + ∞,7 6, , , , ,i iAmp S Amp S

=/ 1,2,3 / .i  	 (35)

Based on the calculation results, we build in the (n, Amp) 
plane the diagrams of the amplitudes of the platforms’ oscil-
lations ( ) ( )( ),, ,i i jn AmpΩ Ω  / 1,3; 1,7 / .i j= =

5. 2. 2. The numerical study into the dynamic proper-
ties of a vibratory machine

All calculations involve dimensionless quantities. The 
results are also derived in a dimensionless form. 

The estimation data (dimensionless parameters):

13 23 1,n n= =  3 0.5,n =  13 23 0.01,h h= =  3 0.01,h =

1 1,ρ =  3 0.25,ρ =  1,F =  2,β =  0.02,ε =  0.σ = 	 (36)

Fitting (36) to (22), we find three natural (resonance) 
frequencies of the system’s oscillations in the absence of 
resistance forces

(1) 0.39614,rn =  (2) 1.0,rn =  (3) 1.26217.rn =

Six bifurcation frequencies of load jamming are found as 
the roots of equation (30):

(1 6) 0.39637; 0.42316; 1.00016;
.

1.09908; 1.26251; 1.41131b
−  

Ω =  
 

 	 (37)

Fitting (37) to (32), we find six appropriate bifurcation 
speeds of the rotor. Arrange them in ascending order:

(1 6) 0.43984; 0.66525; 1.22507;
.

1.51629; 5.16456; 7.26216bn −  
=  

 
 	 (38)

Fig. 2 shows the diagrams built for 7 possible load jam-
ming modes (34).

 
 
 
 
 
 
 
 
 

a 
 
 
 
 
 
 
 
 

b                                              c  
Fig. 2. Diagrams of possible modes of load jamming 

depending on the rotor speed: a – general view; b – in the 
vicinity of the origination of modes 2, 3; c – in the vicinity of 

the disappearance due to the merging of modes 3 and 4

In Fig. 2, solid lines show stable (odd) modes of jamming, 
dotted lines ‒ unstable (even). Fig. 3 shows the diagrams 
built for possible amplitudes of platform oscillations depend-
ing on the frequency at which loads get stuck.

a 

b  

c 
Fig. 3. Diagrams of possible amplitudes of platform 

oscillations depending on the frequency at which loads get 
stuck: a – h13=0.01, h3=0.01; b – h13=0.01, h3=0.1;  

c – h13=0.005, h3=0.01
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Fig. 3 shows the following:
‒ increasing the external viscous resistance forces, act-

ing on platform 3 (h3), has little or no effect on the anti-res-
onance regime, and reduces the amplitudes of platform oscil-
lations at the first and third resonances (Fig. 3, b); 

‒ reducing the internal viscous resistance forces, acting 
between platforms 1, 3, and 2, 3 (h13), has little effect on the 
amplitudes of platform oscillations at the first resonance 
and increases the amplitudes of platform oscillations at the 
second and third resonances (Fig. 3, c).

Fig. 4 shows a diagram of the amplitudes of platform 
oscillations depending on the frequency at which loads get 
stuck under a stable anti-resonance mode 3.

Fig. 4. Diagram of the platforms’ oscillation amplitudes 
depending on the frequency at which loads get stuck under 

load jam mode 3 (h13=0.01, h3=0.01)

Fig. 5 shows the diagrams built for possible amplitudes 
of platform oscillations depending on the speed of rotor 
rotation.

a                                                 b 

c 

Fig. 5. Diagrams of the possible amplitudes of platform 
oscillations depending on the rotor speed: a – all modes of 

load jamming; b – stable anti-resonance mode 3 at β=2;  
c – stable anti-resonance mode 3 at β=0.5

A stable anti-resonance regime of the vibratory machine 
can be achieved in the range (nb1, nb6) of rotor speeds when 
implementing jam mode 3. At the same time, as the rotor 
speed increases, the oscillation amplitudes of platforms 1 and 

2 increase. The oscillation amplitude of platform 3 is much 
smaller and is almost unchanged.

The forces of viscous resistance to the motion (β) of 
loads do not affect the minimum and maximum values of 
the amplitudes but narrow the range of rotor speeds over 
which there is an anti-resonance regime (Fig. 5, b, c). With 
larger resistance forces, a smaller change in the rotor speed 
results in a greater change in the oscillation amplitudes of 
platforms 1 and 2.

5. 2. 3. Integrating differential motion equations, as-
sessing the stability of the anti-resonance regime

Differential motion equations (1) were integrated given 
the estimation data from (36). The initial conditions are 
close to the anti-resonance regime:

1 30,v =  1 0,v =  2 30,v = −  2 0,v =  

3 0,v =  3 0,v =  0,ϕ =  (2) 1.rnϕ = =  		  (39)

Fig. 6 shows the diagrams of the platforms’ coordinates 
and a diagram of the angular speed of load rotation at dif-
ferent rotor speeds after entering the mode of oscillations.

a  

b  

c 

Fig. 6. Diagrams of platforms’ coordinates (v1, v2, v3) and  
a load rotation angular velocity diagram (Ω3) at:  

a – n=1.1; b – n=7.2; c – n=7.3

The calculation results confirm that the anti-resonance 
regime does exist and is stable in the range of angular rotor 
speeds (nb1, nb6). Significantly, the stability is locally asymp-
totic. Thus, under zero initial conditions, the anti-resonance 
regime is entered before the rotor speed n=2. At n=2.1, there 
is the onset of mode 7 of load jam. It is obvious that mode 7 
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has a large area of attraction, while for mode 3 increasing the 
rotor speed reduces the area of attraction. In this regard, the 
onset of load jamming mode 3 can be enabled by smoothly 
accelerating the rotor to the working frequency.

7. Discussion of results of studying  
the three-mass anti-resonance vibratory machine

Our study has demonstrated the possibility of selecting 
parameters for a three-mass vibratory machine based on 
condition (15) that ensures the existence of an anti-reso-
nance form of motion. The anti-resonance form corresponds 
to the second of the three resonance frequencies (22) of the 
vibratory machine oscillations. Under an anti-resonance 
form, platform 3, visco-elastically attached to the base, al-
most does not oscillate while platforms 1 and 2, attached to 
platform 3, oscillate in antiphase. The forces of viscous resis-
tance in the supports prevent the anti-resonance regime from 
being ideal. The amplitude of platform 3 oscillations is not 
zero but an order of magnitude smaller than the oscillation 
amplitudes of platforms 1 and 2. However, the presence of 
viscous resistance forces in the supports and auto-balancer is 
necessary for the existence of modes at which loads get stuck 
in the auto-balancer.

In order to execute an anti-resonance form of oscilla-
tions, the rotor speed must exceed the second resonance fre-
quency. At the same time, loads in the auto-balancer should 
get stuck at a speed close to the second resonance frequency. 
Then the platforms will execute fluctuations close to the 
anti-resonance form. 

In the anti-resonance vibratory machine, platform 1 can 
act as active (working), then platform 2 will be reactive (a dy- 
namic vibration damper), and vice versa. In this case, the 
vibratory machine will operate when mounting an auto-bal-
ancer on both platform 1 and platform 2. 

The numerical calculations have shown the following for 
the case of small resistance forces in the vibratory machine:

– theoretically, there are seven possible modes of load 
jams (Fig. 2), with the first form of the resonance platform 
oscillations excited under modes 1 and 2, the second (anti- 
resonance) ‒ 3 and 4, the third ‒ 5, 6, and, under jamming 
mode 7, the frequency at which loads get stuck is slightly less 
than the frequency of rotor rotation; 

– the odd jamming modes (1, 3, 5) are stable (implement-
ed in practice); 

– to excite the anti-resonance platform oscillations, jam-
ming mode 3 must be set.

The properties of the anti-resonance form are significant-
ly influenced by the external and internal forces of viscous 
resistance:

– increasing the external viscous resistance forces, act-
ing on platform 3 (h3), has little or no effect on the anti- 
resonance form, and reduces the amplitudes of platform os-
cillations at the first and third resonances (Fig. 3, b); 

– reducing the internal viscous resistance forces, acting 
between platforms 1, 3 and 2, 3 (h13), has little effect on the 
amplitude of platform oscillations at the first resonance, and 
increases the amplitudes of platform oscillations on the sec-
ond and third resonances (Fig. 3, c);

– the forces of viscous resistance to the motion (β) of 
loads do not affect the minimum and maximum values of the 
amplitudes but narrow the range of rotor speeds over which 
there is an anti-resonance form (Fig. 5, b, c); 

– with greater resistance forces to the motion of loads, a 
smaller change in the rotor speed results in a greater change 
in the oscillation amplitudes of platforms 1 and 2.

The anti-resonance form of platform motion is as-
ymptotically stable over the entire range of rotor speeds. 
However, the area of attraction of this form decreases with 
the increasing rotor speed. Therefore, for the loads to get 
stuck in the vicinity of the second resonance frequency, 
one needs to provide the vibratory machine with initial 
conditions (38), close to jamming mode 3. A gradual 
increase in the rotation rate of the rotor to the working 
frequency is also possible.

It should be noted that the dynamic characteristics 
of the vibratory machine were investigated at a specific 
value of the parameters for the vibratory machine. How-
ever, the research methodology is also applicable for other 
parameters, however, at small viscous resistance forces. 
Increasing viscous resistance forces in the supports could 
lead to the disappearance of some modes of load jams. 
These cases have not been investigated given their practi-
cal insignificance. 

In the future, it is planned to synthesize a two-mass an-
ti-resonance vibratory machine and investigate its dynamic 
characteristics.

8. Conclusions

1. The theoretical study has shown that the three-mass 
vibratory machine possesses three resonance frequencies 
and three corresponding forms of platform oscillations. For 
such a vibratory machine, it is possible to select such pa-
rameters for the supports that would ensure the existence of 
an anti-resonance form of motion. Under an anti-resonance 
form, platform 3, visco-elastically attached to the base, al-
most does not oscillate, and platforms 1 and 2, attached to 
platform 3 oscillate in antiphase.

In the anti-resonance vibratory machine, platform 1 
can act as active (working), then platform 2 will be re-
active (a dynamic vibration damper), and vice versa. At 
the same time, the vibratory machine will operate when 
mounting an auto-balancer on both platform 1 and plat-
form 2. 

The anti-resonance form will occur when loads get stuck 
in the vicinity of the second resonance frequency of platform 
oscillations.

2. Our numerical calculations have demonstrated the 
following for the case of small resistance forces in the vibra-
tory machine:

– theoretically, there are seven possible modes of load 
jamming;

– the second (anti-resonance) form of platform oscil-
lations is theoretically implemented under load jamming 
modes 3 and 4;

– jamming mode 3 is locally asymptotically stable while 
load jamming mode 4 is unstable;

– for the loads to get stuck in the vicinity of the second 
resonance frequency, one needs to provide the vibratory 
machine with the initial conditions close to jamming 
mode 3, or smoothly accelerate the rotor to the working 
frequency;

– the dynamic characteristics of the vibratory machine 
can be controlled over a wide range by changing the rotor 
speed and the forces of viscous resistance.
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