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1. Introduction

The calculation of plates with the considered conditions 
for resting the sides poses significant difficulties in terms 
of solving the problems within the theory of elasticity, as 
well as in mathematical terms. The methods developed for 
calculating thin plates with different boundary conditions 
are based on a different approach in terms of the theory 

of elasticity and mathematics. The resulting solutions are 
mathematically very complex, so, for plates with different 
boundary conditions, it is necessary to devise a separate cal-
culation program. This task is even more complicated when 
loading plates not all over their entire area, that is, when 
loading with concentrated forces or moments, piecewise 
evenly distributed loads. If the intensity of distributed loads 
is not linear, the problem in some cases cannot be solved at 
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This paper reports a study into the distribution 
capacity of a flexible plate in different cross-sec-
tions exposed to the external vertical concentrated 
forces applied in any place of its area. A plate with 
one pinched side and a series of racks arranged at 
any distance from the pinching has been consid-
ered. In terms of the theory of elasticity and math-
ematics, solving this problem poses significant 
difficulties. This has study found that a lateral dis-
tribution coefficient could be used to simplify calcu-
lations aimed at determining the stressed-strained 
state of the system. In determining the stressed-
strained state of the plate, the calculation meth-
od described in work [1] was applied. The plate is 
cut into a series of longitudinal strips that repre-
sent, from the standpoint of construction mechan-
ics, a console strip with one pinched end and rest-
ing on a stationary support located at any distance 
from the pinching. It has been revealed that the 
distribution capacity of the examined plate in the 
same cross-section depends insignificantly on the 
point of application of the concentrated load along 
the length of the longitudinal strip (between 2.6 
and 6.7 %). The distribution capacity in different 
cross-sections does differ greatly (in the range of 
10 to 30 %). The result of this study is the proposed 
unified and easy-to-implement method of calcu-
lating plates under any conditions for their rest-
ing on supports and when exposed to any external 
loads. There is also no difficulty in calculating the 
plates backed by edges in both directions. Other 
estimation methods in these cases require a differ-
ent mathematical approach, and, for the case of 
a series of external loads, or under difficult plate 
rest conditions, the issue relating to the stressed-
strained state of the system remains open
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all using the proposed methods. There are no solutions to 
problems in determining the stressed-strained state of plates 
resting on the racks and loaded anywhere with concentrated 
forces, moments, or piecewise distributed loads.

A universal approach is proposed to determine the 
stressed-strained state of thin plates with any condition for 
the resting of sides loaded with any external loads, which 
produces acceptable results for designing. Resolving these 
issues is not a problem at all as all the solutions are reduced 
to solving the system of equations. The use of a mixed meth-
od of construction mechanics makes it easy to, “based on 
a single formula”, to determine single movements and free 
terms included in the system of equations, exposed to any 
external loads. The possibility to build the lines of influence 
of the forces applied to longitudinal strips makes it possible 
to quickly and visually characterize the distribution capa-
bility of the system in any cross-section. This has allowed 
designers to pay attention to that the distribution capacity 
in the same cross-section varies and depends not only on the 
ratio of relative rigidities in the transverse and longitudinal 
directions but also on the type of external load and the point 
of its application. In addition, the number of equations in a 
system depends solely on the number of longitudinal strips; 
their number is not related to the conditions for the resting 
of the plate’s sides.

The relevance of this work is due to the development of 
a single method of calculating thin plates (including those 
supported by edges) under any boundary conditions for their 
resting and exposed to any external loads. This, in turn, 
greatly simplifies the programming of calculations because 
all calculations are reduced to solving the system of canon-
ical equations.

2. Literature review and problem statement

There are very few studies aimed at determining the 
stressed-strained state of the systems under consideration, 
so investigating such thin plates is of significant theoretical 
and practical interest.

In determining the stressed-strained state of plates with 
different boundary conditions for their sides’ rest, various ma- 
thematical solutions have been used. For example, work [2]  
applies a matrix calculus; paper [3] ‒ a tensor calculus. The 
difference methods [4] and a finite-element method are out-
lined in studies [5–9]. Variation methods were used quite  
widely (the Ritz-Timoshenko method [10, 11], the Raleigh- 
Ritz method [12, 13], the Galerkin-Bubnov method [14], and 
several others). A variation method, based on minimizing the 
expression of the elastic potential of the system relative to 
the nodal values of a bend function, is outlined in paper [15]. 
Initially, differential equations in particular derivatives were 
used in determining the SSS of thin plates, which, in some 
cases, were reduced to solving regular differential equations 
or integral-differential equations. The solutions derived from 
these equations were greatly complicated if the plates were 
loaded with concentrated forces, moments, or a piecewise 
distribution load. In this regard, it was quite often suggested 
that thin plates’ deflections should be described by different 
series: Fourier’s series [16], mixed series, or special-type 
series [17]. In this case, it was convenient to decompose the 
external load into the series as well.

However, there are still unresolved issues related to 
studying the work of thin plates, which rest in an arbitrary 

place on one or more racks. The plates with some patterns 
of their resting on racks have already been studied in  
works [18–20]; but the plates with the conditions under con-
sideration have not been examined in them.

The above suggests that it is appropriate to conduct a 
study on the development of a single and easy-to-implement 
method for calculating plates (even backed by edges) under 
any conditions of their resting on supports exposed to any 
external loads. Other estimation methods in these cases re-
quire a different mathematical approach, and, for the case of 
a series of external loads or under complicated conditions for 
resting the plates, the issue relating to the stressed-strained 
state of the system remains open.

It is proposed to use the method described in work [1] to 
calculate the span structures of bridges in order to analyze 
the stressed-strained state of the system in question.

3. The aim and objectives of the study

The aim of this study is to establish patterns of change 
in the stressed-strained state of the considered plates when 
they are exposed to any external loads.

To accomplish the aim, the following tasks have been set:
– to devise a method of calculating thin plates by divid-

ing them into a series of longitudinal and transverse strips 
using a mixed method of construction mechanics;  

– to test the possibility of using the proposed method 
to calculate thin plates with one pinched side and simulta-
neously resting on a row of racks arranged at any distance 
from the pinching; 

– to investigate the distribution capacity of the system in 
different cross-sections.

4. Method of calculating thin plates with the considered 
boundary conditions 

4. 1. Building the lines of efforts’ influence in cross- 
sections

A plate is cut into a series of longitudinal and transverse 
strips (Fig. 1). The longitudinal strips of width d=b/n, where 
n is the number of racks, are cut along the side l so that the 
racks are located under the middle width of the strip d. Thus, 
the number of longitudinal strips n equals the number of 
racks in the transverse row.

These strips are statically a console strip, one end of 
which is pinched at point A, and the other is free (point C, 
Fig. 2). Between points A and C, the strip rests on a support, 
that is, on a rack (point B). In the presence of longitudinal 
edges, they should be arranged under the middle of the lon-
gitudinal strips, that is, the edges must be pinched at point 
A and must rest on the racks. For the case of a monolithic 
merging of the plate with the racks, a longitudinal element 
should be considered as a flat frame. The crossbar of this 
frame is a console strip with a pinched one end (Fig. 2), con-
nected monolithically to a rack of height h.

A transverse strip of width b’=1 m is proposed to be cut 
in the cross-section along the length of the longitudinal 
strip where the distribution capacity of the plate is to be 
determined. In Fig. 1, the transverse strip is cut in the 
middle of the span  l1. In static terms, a transverse strip is 
a system on elastic-subsiding supports (Fig. 1). The role of 
the elastic-subsiding supports belongs to the longitudinal 
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strips, which are sagged under the influence of external 
loads. We introduce to the calculation the rigidity of the 
transverse cross-section of the transverse strip of width 
b’=1 m and height δ, equal to the thickness of the plate. In 
the presence of transverse edges, we introduce the rigidity 
reduced to one linear meter, which is determined consider-
ing the transverse edges.

Fig. 1. The estimation and principal schemes of  
a transverse strip

Fig. 2. The estimation scheme of a longitudinal strip

When calculating a transverse strip, we introduce a 
fictitious pinching of its left end (point А’, Fig. 1). The main 
system of a transverse strip is the console system loaded with 
forces Zi. This produces the results, which are acceptable in 
practice, from determining the distribution capacity of the 
plate in a series of cases.

It is proposed to build the lines of influence of the ef-
forts transferred by the transverse strip to the longitudinal 
elements. By loading the lines of influence with an external 
load, we shall determine the lateral distribution coefficients. 
To build the lines of influence, one should sequentially, at 
different points of the transverse strip, apply single external 
transverse forces Рi=1 (Fig. 1). At each position of the force, 
it is necessary to determine the efforts Zi, which will be the 
ordinates of the lines of the efforts’ influence. To implement 
the problem, we have applied a mixed method of construction 
mechanics, that is, the unknowns include the efforts Zi, the 
turning angle φA’, and its deflection yA’ at the point of the fic-

titious pinching. To find the unknowns, a system of canonical 
equations (1) that include (n+2) equations should be solved.
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where ( )
11

Zδ  are the single movements of the transverse strip 
due to the forces Zi=1  (Fig. 1); ai is the distance from a fic-
titious pinching to the i-th elastic-subsiding support (Fig. 1); 

iP∆  is the free term; i and k are the numbers of the elastic-sub-
siding supports (i=1, 2…n, k=1, 2…n).

The single movements ( )Z
ikδ  are easily determined be-

cause the diagrams of the bending moments in a console 
strip, which is, as mentioned, a transverse strip, will be tri-
angular. In this case, the Vereshchagin rule (the rule of mul-
tiplication of the diagrams of bending moments) can be ap-
plied instead of the Maxwell-Mohr integral, which, in turn, 
makes it possible to derive a single formula (2) to determine 
single movements ( ).Z

ikδ  By denoting ( ) ( ),Z Z
ik ikVδ =  we obtain 

( )− ν
δ = = ⋅
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where d is the width of a longitudinal strip (Fig. 1); νn is the 
Poison ratio of the material of the transverse strip; EnIn is the 
bending rigidity of the transverse strip of width 1 m. If there 
are transverse edges, EnIn is, as previously agreed, the bending 
rigidity of the transverse strip reduced to one linear meter.

The transverse strip’s deflection  wik resulting from the 
multiplication of the triangular diagrams of bending mo-
ments due to the single efforts Z, applied at points i and k, is 
determined from the following formula

2

3 ,i k i
ik

a a a
w

d d d
   = ⋅ −      

   (3)

where ai/d and ak/d are the relative distances from a ficti-
tious pinching to the points of application of single efforts 
Zi=1 and Zk=1 (Fig. 1). 

Formula (3) holds at ak≥ai. If k<i, one should swap the 
indices in formula (3). Formula (3) is much easier at ai=ak.

3

2 .i
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a
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  (4)

The deformation of the elastic supports  yii should be 
taken into consideration in determining the main single 
movements ( ).Z

iiδ  Then

( ) .Z
ii ii iiy Vδ = +   (5)

Since the role of elastic supports in the system belongs 
to the longitudinal strips, the movement yii is a deflection 
of the longitudinal strip due to the distribution load of in-
tensity q=1 of a certain length (Fig. 2). The deflection of 
the longitudinal strip in the same cross-section will depend 
on the length and location of the applied single distributed 
load. Consequently, the distribution capacity of the system, 
even in the same cross-section, will be different when the 
longitudinal strips are exposed to the loads that differ in ap-
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plication points. Thus, the distribution capacity 
of the examined plate in the same cross-section 
will depend not only on its geometric size but also 
on the location of the external transverse load 
applied to the system.

The free terms iP∆  should also be determined 
using the Vereshchagin rule as the diagrams of 
bending moments in determining the lines of 
influence due to Zi=1 and Pi=1 will be triangular. 

To make it easier to determine the single 
movements, multiply the first n of in the system 
of equations (1) by the quantity 1/yii. Then the 
single movements, increased by 1/yii times, will 
be equal to

'( ) ;Z
ik ikwδ = α ⋅    (6)

'( ) 1 ,Z
ii iiwδ = + α ⋅   (7)

where α is the system’s flexibility indicator.
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times, to fit the system in the form of ' .
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the coefficients, which are the relative distances from a ficti-
tious pinching to the i-th elastic support (to the middle of the 
i-th longitudinal strip), that is, the values 0.5; 1.5;…; (n–0.5).

Denote the movement 
'A

ii

y

y

 
  

 of the fictitious pinching,  
 
increased by 1/yii times, through '

' .
A

y
Divide the last equation from system (1) by d. Then the 

coefficients for the unknown Zi and the free term will repre-
sent the relative distances.

If the transverse strip is cut in the supporting cross-sec-
tion (above the rack), then the deflection yii=0; then for-
mula (5) will be simplified in determining the main single 
movements. In this case, the first n of the system’s equa-
tions (1) should not be multiplied by the quantity 1/yii as it 
would be equal to infinity. The lines of influence of the ef-
forts, transferred by the transverse strip to the longitudinal 
ones, will be built using the method of leverage. 

When system (1) is solved by the above technique, that 
is, when the α indicator is introduced, it should be intro-
duced very large, say α=105 or α=106.

4. 2. The effect of torque on distribution capacity
The distribution capacity of the system is significantly 

influenced by the moments Mi (Fig. 1), which are, for longi-
tudinal strips, torques. When taking into consideration the 
moments Mi, n additional equations should be included, that 
is, the system (9) that includes 2(n+1) equations should be 
considered.

where Mi is the torque for longitudinal stripes and bending 
moments for the transverse strip; ( )M

ikδ  is the single vertical 
transverse strip movements at the i-th point due to the single 
moment Mk=1, applied to the k-the point; ( )Z
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the single force Zk=1, applied to the k-th point; ( )M

ikΘ  is the 
single turning angle of the transverse strip at the i-th point 
due to the single moment Мk=1, applied to the k-th point;  

ipΘ  is the turning angle of the i-th point of the transverse 
strip due to the single force Рk=1, applied to the point k.
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angle of the torsion of the longitudinal strip λii ‒ from 
formula (18)

λ = =
⋅

,
0,4ii long long

tor tor long tor

C C
G I E I

  (18)

where C is the quantity that depends on the way a longitu-
dinal strip is fixed against twisting; Gtor is the module of 
elasticity of the material of the longitudinal strip at torsion; 
can be taken equal to Gtor=0.4Еlong; Elong is the module of 
elasticity of the material of the longitudinal strip at bending;

long
torI  is the moment of inertia of the cross-section of the longi-

tudinal strip at torsion.
To make it easier to determine the single movements, 

we shall, in formula (9), multiply the first 2n equations by 
the quantity 1/yii. Then the movements '( ),Z

ikδ  increased by 
1/yii, should be determined from formulae (6) and (7). The 
increased movements
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1 ,M

ik ikwδ = α ⋅    (19)

and the increased single turning angles
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The main single turning angles, increased by 1/yii times, 
should be determined from formula (23)
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Deriving the α1…α3 coefficients makes it much easier 
to determine single movements when building a system of 
equations, which, in turn, simplifies the methodology for 
compiling a calculation program.

5. Testing the proposed method for calculating  
a plate with the predefined dimensions and load

Consider the work of a thin plate with dimensions in 
the plan of 7.5×7.5 m, resting on a row of racks located at a 
distance of 2.5 meters from the console (Fig. 3). The plate 
is loaded with the concentrated force Р=100 kN, applied 
over the second longitudinal strip. The thickness of the 
plate δ=0.3 m, the grade of concrete is V30, the Poisson 
coefficient νtr=νlong=0.2, the elasticity module of concrete 
Еtr=Еlong=Еb=34.5·105 MPa.

We shall determine the distribution capacity of the plate 
in the middle cross-section of a span  l1 under the action of 
force P; to this end, we shall cut the strip of width b’=1 m 
in this cross-section (Fig. 3). To calculate the bending mo-

ments at points A (pinching) and at point D (the middle of 
the span l1) (Fig. 4), it is necessary to build the lines of influ-
ence of the forces transmitted by the considered transverse 
strip to the longitudinal strips.

Fig. 3. A slab loaded with force Р=100 kN at point D

Fig. 4. Plate loading scheme

The deflection yii of the longitudinal strip at point D, 
which is part of formula (8), should be determined based on 
the single distributed load q=1, applied only lengthwise of 
the span l1 (Fig. 2, c). It is equal to

21625
,

96
long
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y
E I

− ν
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⋅

where Ilong=0.84375·10–1 m4 is the moment of inertia of the 
cross-section of the longitudinal strip. 

The moment of inertia of the cross-section of the trans-
verse strip of width b’=1 m is Itr=0.25·10–1 m4. In this exam-
ple, the influence of moments Мi (Fig. 1) is not taken into 
consideration in building the efforts’ lines of influence.

After fitting these values to formula (8), we determine 
the flexibility magnitude α, which is 0.3. 

The ordinates of the line of influence are derived after 
solving the system of equations in formula (1) at the result-
ing indicator of the flexibility of the system α=0.3.

6. Exploring the system’s distribution capacity at  
a change in the load location 

6. 1. The distribution capacity of the plate in the mid-
dle cross-section of the span l1

Two cases of loading the plate with concentrated forces 
were considered to investigate the distribution capacity in 
the cross-section located in the middle of the span l1. Initial-
ly, the system was considered when the force was applied in 
the middle of the span l1, and then when two forces were ap-
plied in the middle of the span and at the end of the console. 

After loading the efforts’ lines of influence with force P 
applied over the second longitudinal strip (Fig. 3, 4, c), the 
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lateral distribution coefficients (LDC) were calculated. 
They are given in Table 1.

Table 1

Values of the lateral distribution coefficients when loading 
the span l1 with a single distributed load (Fig. 2, c)

Longitudinal strip

1 2 3 4 5

0.2718 0.4311 0.2716 0.0762 –0.0507

The values of the bending moments in longitudinal 
strips under this loading scheme (Fig. 4, c) are calculated 
on the basis of the derived LDCs (Table 1). They are given 
in Table 2.

Table 2

The values of bending moments due to force Р=100 kN, 
applied in the middle of the span l1, kNm

Cross-section
Longitudinal strip

1 2 3 4 5

At pinching (point A) –25.48 –40.42 –25.46 –7.14 4.75

In the middle of the 
span l1 (point D)

21.23 33.68 21.22 5.95 –3.96

We apply the two concentrated forces  Р=100 kN over 
the second longitudinal strip in the middle of the span l1 (at 
point D) and at the end of the console (at point C, Fig. 4, a). 
In determining the flexibility indicator of the system α from 
formula (8), the longitudinal strip’s deflection yii should be 
determined on the basis of the single distributed load q=1. 
The distributed load q is applied along the entire length of 
the longitudinal strip (Fig. 2, a). After fitting this deflection, 
equal to 
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to formula (8), we obtain an indicator of the flexibility of the 
system α≈0.4. Given this indicator α, we have solved the sys-
tem of equations in formula (1) and determined the ordinates 
of the efforts’ lines of influence, transferred by the transverse 
strip to the longitudinal ones. After loading the lines of in-
fluence with the concentrated forces P, we have calculated 
the lateral distribution coefficients (Table 3).

Table 3

Values of the lateral distribution coefficients when a single 
distributed load is applied along the entire length of 

 the plate (Fig. 2, a)

Longitudinal strip

1 2 3 4 5

0.2547 0.4569 0.2726 0.0651 –0.0494

An analysis of the LDC values in the middle cross-sec-
tion of the span l1 (Tables 1, 3) has revealed that these co-
efficients depended on the location of the application of the 
concentrated forces; however, insignificantly. 

The values of the bending moments at points A, B,  
and D (Fig. 4), calculated considering the lateral distribu-
tion coefficients, are given in Table 4.

Table 4

The values of bending moments due to the two concentrated 
forces Р=100 kN applied in the middle of the span l1 and at 

the end of the console, kNm

Cross-section
Longitudinal strip

1 2 3 4 5

At pinching (point A) 7.96 14.28 8.52 2.03 –1.54

In the middle of the 
span l1 (point D)

3.98 7.14 4.26 1.02 –0.77

Over the support 
(point B)

–63.68 –114.22 –68.15 –16.27 12.35

An analysis of Tables 2, 4 reveals that the distribution 
capacity of the considered plate in the same cross-section 
depends insignificantly on the location of the concentrated 
load application along the length of the longitudinal strip 
(between 2.6 and 6.7 %).

6. 2. The distribution capacity of the plate in the 
cross-section at the edge of the console 

We shall determine the distribution capacity of the plate 
at the edge of the console part; to this end, we shall cut a 
transverse strip of width b’=1 m at the end of the console. In 
determining the flexibility indicator of the system α (8), the 
deflection of the longitudinal strip yii should be determined 
on the basis of the single distributed load q=1, applied only 
within the length of the console (Fig. 2, b).

The deflection at the end of the console is
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After fitting the deflection yii  to formula (8), we shall 
derive a value of α≈0.1. 

By building, at α=0.1, the efforts’ lines of influence, and 
loading them with a concentrated load P, applied at the end 
of the second longitudinal strip (Fig. 4, b), we shall obtain 
the LDC values (Table 5).

Table 5

Values of the lateral distribution coefficients when a console 
is exposed to the single distributed load (Fig. 2, b)

Longitudinal strip

1 2 3 4 5

0.3328 0.3581 0.2479 0.0988 –0.0376

The values of the bending moments at points A, B  
and D (Fig. 4), calculated considering the lateral distribu-
tion coefficients, are given in Table 6.

Table 6

Values of the bending moments due to the concentrated 
force Р=100 kN, applied at the end of the console, kNm

Cross-section
Longitudinal strip

1 2 3 4 5

At pinching (point A) 41.60 44.76 30.99 12.35 –4.70

In the middle of the 
span l1 (point D)

–20.80 –22.38 –15.49 –6.175 2.35

Over the support 
(point B)

83.20 89.525 61.975 24.70 –9.40
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Thus, by analyzing the data from Tables 1, 3, 5, one can 
conclude that the distribution capacity of the considered 
plate changes significantly along its length.

7. Discussion of results of studying the system’s 
distribution capacity when a load location changes

The task was to devise a method for calculating one 
of the thin plates, namely a plate with one pinched side, 
simultaneously resting on a series of racks arranged at any 
distance from the pinching. It involves compiling a system 
of equations to build the efforts’ lines of influence in any 
transverse cross-section of the system (1), (9), and determin-
ing the distribution capacity of the plate in these cross-sec-
tions (5÷8). The systems of equations are built in such a 
way that they do not change significantly when studying 
the stressed-strained state of plates in different transverse 
cross-sections and when the plate is loaded with any external 
loads. This makes it easier to compile a calculation program 
and significantly save machine time. The proposed method 
of calculation, based on dividing the system into a series of 
longitudinal and transverse strips and on the application 
of a mixed method of construction mechanics, eliminates 
the difficulties associated with solving integral-differential 
equations in particular derivatives.

The proposed method could be used for the system in 
question as this relates to determining the deflection of the 
longitudinal strip yii (5) in the considered cross-section due to a 
single evenly distributed load. The deflections of the transverse  
strip wik are determined from the unified formulae (3), (4).

The results of our study into the distribution capacity 
of the system in the same cross-section have demonstrated 
that it depends slightly on the location of the concentrated 
load along the length of the longitudinal strip (Tables 1, 3). 
For different beams, the lateral distribution coefficient 
ranges from 2.6 to 6.7 %. If one takes into consideration the 
efforts due to the constant load, the difference in the values 
for the lateral distribution coefficients can be neglected in 
determining the internal efforts and deformations from all 
types of external load. The distribution capacity of thin 
plates in different transverse cross-sections is significantly 

different (Tables 1, 3, 5); for different beams, the lateral 
distribution coefficient varies from 10 to 30 %. Using a sin-
gle system of equations (a single solution approach) makes 
it possible to determine the carrying capacity of the system 
in different transverse cross-sections (including over the 
location of the racks).

The advantage of the proposed method is that under any 
conditions for the resting of sides and at any external loads, 
the problem is reduced to solving the system of equations. 
The number of equations in the system depends solely on the 
number of longitudinal strips.

We have examined the system only when a plate is di-
vided into five longitudinal strips. Further research should 
tackle determining the optimal number of longitudinal 
strips, which affects the accuracy of the results.

The proposed method needs to be refined regarding the cal-
culation program, which takes into consideration the impact of 
torques and other internal efforts on the distribution capacity.

8. Conclusions

1. A single method of calculation for thin plates has been 
developed, based on dividing the systems into a series of 
longitudinal and transverse strips using a mixed method of 
construction mechanics. This eliminates the use of complex 
mathematical approaches in solving similar problems.

2. We have proven the possibility to apply the proposed 
method to analyze the stressed-strained state of thin plates 
with one pinched side, simultaneously resting on a series of 
racks arranged at any distance from the pinching. For these 
plates, the number of equations depends only on the number 
of longitudinal strips.

3. An analysis of the system’s distribution capacity has 
revealed:

– the distribution capacity of the considered plate in the 
same cross-section depends slightly on the application point 
of the concentrated load along the length of the longitudinal 
strip (between 2.6 and 6.7 %); 

– the values of the lateral distribution coefficients in dif-
ferent cross-sections along the length of longitudinal strips 
vary significantly (between 10 and 30 %).
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