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1. Introduction

The process of designing modern technical equipment 
includes a large number of various stages. One of the key 
ones is obtaining the fields of physical parameters resulting 
from the operation of the designed product. This is made 
by solving problems of computational gas dynamics in the 
geometry of the domain of interest. This allows one to make 
more exact the product design and make an assumption 
about its characteristics. The solution to such problems is 
associated with numerical integration of basic equations of 
gas dynamics in domains of a complex shape with curvilinear 
boundaries. The main ways to solve such problems include 
the application of the finite volume method on structured 
and unstructured grids and solution of basic equations of 
gas dynamics written in curvilinear coordinates [1, 2]. Each 
of them has its own advantages and disadvantages when 
modeling physical processes in domains with curvilinear 
boundaries but high complexity and low efficiency are their 
common disadvantages. This results in overestimated re-
quirements for computing power and more longer calculation 

time which is unacceptable in the context of the rapid devel-
opment of engineering and technology as well as high com-
petition. Therefore, it is an urgent task to develop a simple 
and economical method for solving gas dynamics problems 
in the domains with curvilinear boundaries.

2. Literature review and problem statement

The study results presented in [3, 4] are a reasonable 
alternative to the above approaches. They show that the use 
of the finite volume method in problems with curvilinear 
boundaries on regular Cartesian rectangular grids can give 
correct results within the computational domain. However, 
the complexity of this procedure lies in the fact that it is 
necessary to apply special relations in finite volumes outside 
the computational domain. Two approaches can be distin-
guished here: immersed particles [3] and fractional cells [4]. 
However, the absence of conservative property and implicit 
consideration of the body boundaries allow us to exclude the 
first of them from further consideration in this work [5].
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A method of extended cells for the formulation of bound-
ary conditions in the numerical integration of the Euler 
equations in domains with curvilinear boundaries for the 
cases of one-dimensional and two-dimensional compress-
ible gas flows has been proposed in this study. The proposed 
method is based on the use of the explicit Godunov type finite 
volume method on a regular rectangular Cartesian grid. The 
essence of the extended cell method is that when integrat-
ing the basic equations of gas dynamics in a fractional cell, 
numerical fluxes are calculated through the sides of the new 
extended cell. This new cell is constructed tangentially to the 
curved boundary and has a size no less than the cell size in 
the regular domain. Parameters inside the new cell are cal-
culated as mean integral values over the area of the neigh-
boring regular cells included in it. In this case, when choos-
ing a time step in accordance with the Courant condition, the 
stability of the method in the main computational domain is 
preserved both when integrating fractional cells and when 
integrating regular cells. Thanks to this approach, the pro-
posed method has low requirements for computing resourc-
es, the ability to generalize for three-dimensional space and 
increase the order of accuracy without major modifications 
of the algorithm.

To test the proposed method, solutions were obtained 
for the generally accepted test problems of gas dynamics: 
normal and double Mach reflection of a shock wave from a 
plane wall. The choice of the time step was made in accor-
dance with the Courant condition in regular finite volumes. 
The results obtained have made it possible to assess the con-
vergence of the proposed method and their comparison with 
the results of calculations using other methods have shown a 
good quantitative and qualitative agreement
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It was shown in [4] that until recently, the issue of 
ensuring the stability of computations due to the presence 
of small cells in the computational domain still does not 
have an unambiguous solution. One of the common ways to 
ensure stability implies the application of the cell merging 
method characterized by a decrease in accuracy of the solu-
tion near the boundary and difficulty of obtaining a univer-
sal grid generation algorithm [6]. The “h-box” method can 
be an option of overcoming these difficulties [7, 8]. What 
is proposed in this method is to integrate fractional finite 
volume with fluxes calculation performed using several 
additional “h-cells” constructed on each of the fractional 
finite volume faces. The solution stability is maintained 
here due to the property of reducing the difference in 
fluxes calculated with the use of “h-cells”. However, the 
extension of the “h-box” method to the multidimensional 
case will still be ineffective because of the complexity of 
calculating fluxes through one face of the fractional finite 
volume. To this end, it is necessary to introduce a new co-
ordinate system and build four “h-cells” in it and then find 
the flow parameters in each of them. After that, one should 
solve two Riemann problems along the corresponding di-
rections and calculate flux through one face on this basis. 
Implementation of such an algorithm at each time step is 
resource-intensive even when using schemes of the first 
order of accuracy.

Thus, the analysis of existing studies shows that the 
existing methods do not ensure a universal economical algo-
rithm for solving the computational gas dynamics problems 
on regular rectangular Cartesian grids in domains with 
curvilinear boundaries. All this makes it possible to assert 
that it is expedient to conduct a study devoted to the de-
velopment of an effective method for formulation boundary 
conditions for solving problems of the computational gas 
dynamics.

3. The aim and objectives of the study

The study objective is to develop an effective method 
for the formulation of boundary conditions when solving 
problems of computational gas dynamics using the explicit 
finite volume method on regular rectangular Cartesian 
grids. The proposed method should be universally extended 
to multidimensional cases and allow an increase in the order 
of accuracy.

To achieve the objective, the following tasks were set:
– to develop a method for integrating equations of gas 

dynamics in boundary cells;
– to generalize this method for the case of two spatial 

variables;
– to verify the proposed approach by solving a series 

of test problems of the dynamics of a inviscid compres- 
sible gas.

4. The method of numerical solution of the system of 
equations for the dynamics of a inviscid compressible gas

The system of two-dimensional unsteady Euler equations 
in an integral form closed by the equation of state [1, 2, 9]  
was used as the basic model of an ideal inviscid compressible 
gas. The vector form of the used system of equations is as 
follows:
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where U is the vector of conservative variables; F, G are the 
flow components of quantity U along axes of coordinates 
OX, OY, respectively; ρ is density; p is pressure; u, v are ve-
locities of the flow along the axes of OX and OY coordinates, 
respectively; e is specific internal energy; E is specific total 
energy; k is the gas heat capacity ratio.

The slip wall boundary conditions were set on the solid 
wall [2, 9]:

d
0,

d
Vτ =
τ



 0,nV =


    (2)

where ,Vτ



 nV


 are the velocities along tangential and normal 
directions to the wall.

The explicit Godunov type finite volume method was 
used for numerical integration (1) [1, 2, 9] which consists of 
the following sequential stages:

1) reconstruction of the flow parameters was performed 
by means of piecewise constant functions on boundaries of 
a finite volume by their mean values inside the volume. For 
example, reconstruction of the first order of accuracy for a 
finite volume with indices i, j will take the form:

, , , , , ,L R T B
i j i j i j i j i j= = = =U U U U U    (3)

where Ui,j is the mean value of the vector of conservative 
variables inside the finite volume; , ,L

i jU  , ,R
i jU  , ,T

i jU  ,
B
i jU  are 

values of the vector of conservative variables on the left, 
right, upper and lower faces of the finite volume with indi-
ces i, j, respectively;

2) solution of the Riemann problem using the Lax-Fried-
richs relations [10] on the boundaries of a finite volume and 
calculating the fluxes through them. For the right face of the 
finite volume with indices i, j, the ratio takes the form:
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U  is the solution of the Riemann problem on the  

 
right face of a finite volume based on which flux ( )*

1
2i

F
+

U  

through this face is calculated which is necessary for further 
search for parameters in a finite volume; λmax is the maxi-
mum wave propagation velocity in the problem under con-
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sideration. In this and the following notations, half-integer 
indices refer to the solution of the Riemann problem on the 
corresponding faces.

3) time integration using the Euler’s explicit method was 
performed. In this case, equation (1), taking into account (3), 
(4) in a semi-discrete form, will be written as follows:

( ) ( )
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where Ai,j is the area of the final volume, Δyi,j, Δxi,j are the 
height and width of the final volume, respectively.

Numerical modeling of slip wall boundary conditions (2) 
was carried out using “dummy” cells [2, 9].

5. The method of integrating the equations of gas 
dynamics in boundary cells

5. 1. The one-dimensional case
Let us consider a one-dimensional problem of evolution 

of gas flow in a semi-bounded region Ω={0≤x≤L, 0≤t≤T} 
with an impenetrable wall at the point x=L.

Divide the domain Ω into N equal finite volumes accord-
ing to the following relation in accordance with Fig. 1:

,ix i h= ⋅  1 ,i N=      (6)

where xi is coordinate of the right side of the i-th finite 
volume; h is the discretization step in space in the regular 
domain.

The spatial discretization step is chosen so that the fol-
lowing condition was fulfilled:

.
1

L L
h

N N
< <

−
     (7)

As seen from Fig. 1, with this step choice, the last cell 
goes beyond the boundary of the calculation domain for the 
length h–h’ where h’ is the spatial discretization step near 
the wall and

' ,h h h= α <  1.α <  (8)

For the one-dimensional case, equation (5) for the i-th 
finite volume is transformed:
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As is known, a necessary condition for stability of explicit 
finite-volume methods is the Courant-Friedrichs-Levy (CFL) 
condition [10, 11]:

max 1,
t

C
h

∆ ⋅λ
= ≤     (10)

where C is the Courant number.
In accordance with the CFL condition, the time step Δt 

for the inner cells is determined as follows:

max

,
h

t K∆ =
λ

      (11)

where K≤1 is a certain stability factor determined for each 
problem being solved.

It is easy to show that if the condition K/α>1 is satisfied, 
the CFL condition in the last cell will be violated leading to 
the algorithm instability. The idea of the proposed approach 
is to construct an extended cell N ’ of width h including the 
cell N. In this case, the right border of the cell N ’ coincides 
with the wall and the left border is inside the cell (N–1).

Fig. 2. Structure of an extended cell

Obviously, the CFL condition (10) will be fulfilled in  
cell N ’ at the selected time step (11).

Equation (9) for the cell N ’ has the form:
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As seen from Fig. 2, the state in the new cell N ’ can be 
determined by calculating the mean integral value along the 
length h of the new cell from the piecewise constant func-
tions UN–1 and UN:
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Now, when knowing the value of the 
vector of variables in the extended cell, in 
order to calculate (12), it remains to find the 

value of the vector of variables in the dummy cell with 
index (N ’+1) using boundary conditions (2). In accor-
dance with [7], introduce the reflection operator ℜ which 
will have the following form in the one-dimensional case:
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Fig. 1. Discretization of the calculation domain
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Then the value of the vector of variables in the dummy 
cell is found from the expression UN ’+1=ℜ[UN’].

Using (13) and (14), find solutions of the Riemann prob-
lem on faces of the cell N` from formulas (3) and (4)

;R
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Following substitution of (15) into (12), calculate fluxes, 
integrate (12), and store the parameters obtained in the new 
cell in the last cell with index N.

Since the integration of the last finite volume uses the 
size h of the new cell and corresponding fluxes, the resulting 
solution remains stable if condition (10) is fulfilled. Note 
also that calculations by (13) and (14) are performed at the 
first stage of the finite volume method and the parameter α 
is determined only once when generating the grid. Due to all 
this, the proposed method can be modified to obtain a higher 
order of solution accuracy.

5. 1. The two-dimensional case
Let us generalize the proposed approach for the two-di-

mensional case. Consider, for example, the two-dimensional 
flow of a inviscid compressible gas in a rectangular domain 
{0≤x≤Lx, 0≤y≤Ly, 0≤t≤T}, a part of which under the straight-
line f(x)=kx+b is occupied by a solid wall. Divide the calcu-
lation domain into finite volumes with a regular rectangular 
Cartesian grid as shown in Fig. 3: 
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where hx is the step of discretization along the ОХ axis; hy is 
the sampling step along the ОY axis; hx, hy are the numbers 
of finite volumes along the ОХ and ОY axes, respectively.

As seen in Fig. 3, the grid cells can be divided into three 
types:

1) regular cells: the cells entirely lying in the calculation 
domain. Their area is calculated by the formula:

‒ ;r x yA h h=  (17)

2) fractional cells: the cells in which one part of the 
area lies in the calculation domain (Ac) and the other is 
inside the solid wall (Aw). The following relations are 
valid for them:

У ,f c wA A A= +

;c rA A<  (18)

3) cells that are completely behind the solid wall. These 
cells are not processed in the calculation and will not be 
mentioned further.

In the two-dimensional case, semi-discrete equation (5) 
is used for numerical integration over a regular finite volume 
with indices i,  j. The time step is chosen so that it satisfies 
the CFL condition for the two-dimensional problems in the 
regular domain [10, 11]:

max max

,X Y

x y

C
t

h h

∆ ≤
λ λ+

 (19)

where max ,Xλ  max
Yλ  are the maximum velocities of wave prop-

agation along the ОХ and ОY axes, respectively.
In this case, the standard method becomes unstable 

only when integrating fractional cells in which  Ai,j=Ac<Ar. 
Obviously, to fix this, one needs to increase the size of the 
fractional cells. This can be done by constructing a new ex-
tended finite volume with an area , .i j rA A≥′

Let us consider some arbitrary fractional cell in Fig. 4 
with indices i,  j. As in the one-dimensional case, construct 
an extended cell for the selected fractional cell in accordance 
with the following technique:

1) find coordinates of points of intersection of the wall 
line and the fractional cell (points D, F in Fig. 4);

2) find a midpoint between the obtained coor-
dinates and select the found point as origin O’ of 
the new coordinate system;

3) select the tangent to the wall line as the 
horizontal axis O’τ of the new coordinate sys-
tem (in the case under consideration, this is the 
straight line f(x)=kx+b) and the direction per-
pendicular to it as the vertical axis O’n;

4) define in the new coordinate system 
the cell vertices for which the coordinate in 
the O’n direction will be strictly positive (po- 
ints A,  B,  C in Fig. 4). Among them, find the 
maximum coordinate cn along the normal to 
the wall (point B ’) as well as the maximum (po- 
int C ’) and minimum (point A’) along the wall. 
All points considered in this section are shown 
in Fig. 4;

5) redefine the found coordinates according 
to the following relations:

‒ max , , ,n n x yc c h h =  
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Fig. 3. Two-dimensional calculation domain: regular cells 1;  
fractional cells 2; empty cells 3



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/7 ( 107 ) 2020

78

( ) ( )

( ) ( )

2 2max min max

min

2 2max min max max min min

max , ,

,

;

� 0.5max , ,

0.5max , ,

max , ,� ,

x y x y

x y

x y

c c h h c h h

c h h

c c h h c c c c

τ τ τ

τ

τ τ τ τ τ τ

   + ≤ =   
 = −  

 + > = =










 

	 (20)

6)	build	an	extended	cell	in	a	new	coordinate	system	as	
a	rectangle	with	the	lower-left	coordinate	( min ,cτ 	0)	and	the	
upper	right	coordinate	( max ,cτ cn).	In	this	case,	the	area	of	the	
constructed	cell	will	be	calculated	as	follows:

( )' max min
, � .i j nA c c cτ τ= + 	 (21)

It	is	obvious	that:

'
, ;i j cA A≥ 	 (22)

7)	determine	value	of	the	vector	of	variables	in	the	new	
cell	by	calculating	the	mean	integral	value	over	area	of	the	
new	 cell	 from	 the	 piecewise	 constant	 functions	 Ui,j, Ui+1,j, 
Ui-1,j, Ui,j+1, Ui,j-1	found	inside:
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where	S	is	the	area	of	the	polygons	resulting	from	the	inter-
section	of	cells	in	the	calculation	domain	with	a	new	cell.

Fig.	4	shows	the	constructed	extended	cell	and	the	corre-
sponding	fictitious	one	inside	the	wall.

Fig. 4. The construction of a new turned cell for  
a finite volume with indices i, j

Let	us	write	the	relation	(4)	for	the	right	face	of	the	ex-
tended	cell	and	then	the	semi-discrete	equation	(5)	 for	 the	
entire	extended	cell:
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where	 symbols	 , ,R
i j

′U  1,
L
i j+

′U  denote	 values	 of	 the	 vectors	 of	
variables	 on	 the	 right	 face	 of	 the	 new	 cell	 and	 the	 symbol	

1
2i

′
+

U* 	denotes	solution	of	the	Riemann	problem	on	the	same		
	
face.	The	value	 ,

R
i j

′U is	determined	using	the	piecewise-con-

stant	reconstruction	 ,, ,R
ii j jU′ = ′U and	 1,

L
i j+

′U 	by	calculating	the	
mean	 integral	 value	 along	 the	 length	 of	 the	 face	 from	 the	
piecewise	constant	functions	that	fell	on	it:
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where	 li+1,j	(li,j+1)	is	the	length	of	the	section	of	the	face	of	
the	turned	cell	which	is	inside	the	finite	volume	with	indi-
ces	(i+1, j)	(i, j+1).

Reconstruction	of	the	vectors	of	variables	on	the	remain-
ing	faces	of	the	new	extended	cell,	except	for	the	face	that	lies	
on	the	wall,	is	performed	in	a	similar	way.

As	in	the	one-dimensional	case,	to	calculate	the	value	of	
the	vector	of	variables	in	a	dummy	cell,	introduce	a	two-di-
mensional	reflection	operator	ℜ	which	will	take	the	form:

[ ] ,
n n

u u

u u

E E

τ τ

 ρ ρ   
    ρ ρ    = = ρ −ρ   
    ρ ρ     

UR R 	 	 	 (27)

where	uτ,	un are	the	velocities	along	the	O’τ, O’n	axes	of	the	
new	coordinate	system,	respectively.

With	its	help,	determine	the	value	of	the	vector	of	vari-
ables	in	a	dummy	cell	as	 1, .i j+ ′ UR 	Next,	solve	the	Riemann	
problem	 on	 the	 face	 which	 lies	 on	 the	 wall	 using	 values	 of	
the	 vectors	 of	 variables	 , ,

B
i j i j

′ = ′U U and	 1, .i j+ ′ UR 	 Then	 in-
tegrate	(25)	and	save	the	result	obtained	as	a	parameter	in	
a	 fractional	cell	with	 indices	 i, j.	Since	 integration	uses	the	
area	 ,i jA′ 	of	the	extended	cell	and	the	fluxes	corresponding	to	
it,	the	resulting	solution	remains	stable	under	condition	(19).

Let	us	note	the	advantages	of	the	proposed	approach:
1) in	contrast	to	the	fractional	cell	method,	the	stability	

condition	is	not	violated	when	calculating	parameters	in	the	
boundary	cells;

2) the	results	of	integration	over	the	extended	finite	volume	
are	saved	in	the	corresponding	fractional	volume	while	calcu-
lating	four	fluxes	instead	of	five,	as	in	the	“h-box”	method;

3) regardless	of	 the	geometry	of	 the	 fractional	cell,	one	
extended	finite	volume	is	built	for	it	while	the	number	varies	
from	9	to	17	in	the	“h-box”	method;

4) at	each	time	step,	the	transition	to	a	new	coordinate	
system	 occurs	 only	 once	 when	 calculating	 parameters	 of	 a	
dummy	cell	compared	with	the	“h-box”	method	in	which	this	
is	done	twice	for	each	face	of	a	fractional	cell	for	which	the	
flux	coming	through	it	is	calculated;

5)	calculation	of	parameters	in	the	extended	cells	is	per-
formed	at	the	reconstruction	stage	and	their	number	can	be	
easily	increased	by	making	larger	the	template.	This	ensures	
the	direct	application	of	the	methods	with	a	high-order	accu-
racy	without	significant	modification	of	the	main	algorithm.

6. The results obtained in test calculations

To	verify	the	proposed	method	of	formulation	of	bound-
ary	 conditions,	 two	 test	 problems	 of	 dynamics	 of	 inviscid	
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compressible gas were solved. These are the problem of 
normal reflection of a shock wave from a solid wall and the 
problem of double Mach reflection of a shock wave from an 
inclined wall. Note that when solving all problems, the time 
step was chosen according to relation (14) at C=0.9 and 
the calculation was stable in all cells of the computational 
domain.

6. 1. Normal reflection of the shock wave 
To assess the effect of using the formulation of boundary 

conditions with the help of extended cells on the conver-
gence of the method, the problem of normal reflection of a 
shock wave from a plane wall was solved. The solution was 
sought in a two-dimensional region {0≤x≤4.5, 0≤y≤3.0, 
0≤t≤0.3} shown in Fig. 5. The part of the domain below the 
straight line 

( ) tg 0.09624,
6

f x x
π = −  

 

was occupied by the wall. Initial conditions in the entire 
domain were set equal to parameters of the gas behind the 
shock wave with the Mach number of the shock wave Mw=10:
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where subscript SH refers to parameters of the gas behind the 
shock wave.

The calculation was carried out on regular grids with 
discretization steps in the OX, OY directions corresponding 
to 40, 80, 160, and 320 cells along each coordinate axis. This 
problem is one-dimensional in the Cartesian coordinate sys-
tem associated with a solid wall. This has made it possible 
to find an exact solution to the selected problem using the 
one-dimensional theory of shock waves [12]. To reduce the 
results of a numerical solution to the one-dimensional case, 
a square normal to the wall with a side equal to 1.5 units  
was selected in the middle of the calculation domain with 
its base lying on the wall. Further, density and internal 
energy domains were averaged in this square, along the 
direction tangential to the wall in such a way as to obtain 
their dependences on the distance along the normal to the 
wall. The convergence rate was estimated by comparing the 
numerical and analytical values of the gas parameters be-
hind the reflected wave in finite-dimensional analogs of the  
norms C, L1, L2 [13]. Tables 1, 2 show dependences of the 
relative calculation error Δ of density, the internal energy of 
the gas in the norms C, L1, L2, and the estimate of the order 
of accuracy n of the method of the numerical solution. There 
are also given values of errors of flow parameters when solv-
ing this problem in a one-dimensional formulation for the 
classical case of formulation of the boundary conditions (the 
solid wall coincides with the boundary of a finite volume).

Table 1

Relative error of the proposed approach calculated from  
the flow density

N
1D

ΔC nΔC ΔL1 nΔL1 ΔL2 nΔL2

40 0.032 – 0.0188 – 0.0207 –
80 0.022 0.56 0.0075 1.32 0.0106 0.97

160 0.015 0.53 0.0038 0.98 0.0063 0.75

320 0.010 0.52 0.0019 1.04 0.0037 0.78

– 2D

40 0.038 – 0.0316 – 0.0319 –
80 0.028 0.46 0.0204 0.63 0.0210 0.61

160 0.020 0.45 0.0131 0.63 0.0139 0.60

320 0.016 0.37 0.0092 0.51 0.0098 0.50

Table 2

Relative error of the proposed approach 
calculated from the flow energy

N
1D

ΔC nΔC ΔL1 nΔL1 ΔL2 nΔL2

40 0.0316 – 0.0181 – 0.0203 –
80 0.0217 0.54 0.0075 1.28 0.0106 0.94

160 0.0150 0.53 0.0038 0.98 0.0063 0.75

320 0.0105 0.52 0.0018 1.04 0.0037 0.78

– 2D

40 0.0446 – 0.0174 – 0.0182 – 

80 0.0141 1.67 0.0083 1.07 0.0093 0.96

160 0.0090 0.64 0.0037 1.18 0.0047 0.99

320 0.0055 0.70 0.0023 0.69 0.0026 0.84

As can be seen from the values in Ta-
bles 1, 2, values of the errors in different norms, 
and the values of the order of approximation 
were close in magnitude. The order of accuracy 

 

Fig. 5. Formulation of the problem of normal reflection of a shock wave
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did not deteriorate when the proposed method was used for 
the formulation of the boundary conditions.

6. 2. Double Mach reflection of the shock wave
To compare qualitative patterns of supersonic flow, the 

problem of double Mach reflection was solved in two formu-
lations.

In the first case, classical formulation of the problem 
described in [14] was used: a shock wave runs at a certain 
angle onto a horizontal wall which coincides with the lower 
boundary of the calculation domain and starts at the point 
x=0.1667. Moreover, all finite volumes in the re-
gion are regular. This formulation of the problem 
is shown in Fig. 6.

The density domain obtained as a result of 
calculations on a 420×180 grid up to the time 
moment t=0.2 s is shown in Fig. 7.

Using extended cells, this problem was solved 
in the domain {0≤x≤3.2, 0≤y≤1.8, 0≤t≤0.3} the 
part of which located below the straight line was 
occupied by the wall, as shown in Fig. 8. Initial 
conditions in the entire domain were set according 
to the Mach number of the shock wave Mw=10:
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The density domain obtained in the calculation is shown 
in Fig. 9.

Fig. 7. Density domain when solving the problem of double 
Mach reflection in the standard formulation

Fig. 9. Density domain in solving the problem of double Mach 
reflection using extended cells

 

x

y

1.
0 

4.0 

ρ u v E0 0 0 0, , , 

ρ
u

v
E

SH
SH

SH
SH

, 
, 

, VУВ

0.1667
0

60°

Fig. 6. Formulation of the problem of double Mach reflection [14]

 

 

Fig. 8. Formulation of the problem of double Mach reflection for 
verification of the proposed method
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For a quantitative comparison of the obtained density 
domains, the results of the extended cell method were 
combined with the results obtained by the method [14]. 
Fig. 10 shows the isolines of the domain of modulus of the 
difference of these densities.

Fig. 10. The modulus of difference between the density 
domains obtained in solving the problem of double Mach 
reflection in the classical formulation of the problem and 

when using extended cells

As seen from Fig. 10, the results differed only on the 
discontinuity surfaces. The geometry of the disturbed region 
was the same in both cases and the small discrepancy of the 
parameters within it was within the error limits of both 
methods.

7. Discussion of the results obtained in using the method 
of extended cells in the explicit method of finite volumes

Persistence of stability of the explicit finite volume 
method when integrating boundary cells is explained by the 
fact that size of the extended cell was used instead of size of 
the fractional cell. In this case, the CFL condition calculated 
over the regular region was not violated.

The differences between the proposed method and exist-
ing methods [4–8] are as follows.

1. New extended cells with a size greater than or equal to 
the size of cells in the regular domain were used to integrate 
fractional boundary cells.

2. Compliance with the algorithm of the explicit finite 
volume method. The use of relations of the proposed method 
at the stage of reconstruction makes it possible to apply the 
same methods to the boundary cells for increasing the order 
of accuracy, calculating fluxes, and integrating as for cells in 
a regular domain.

3. Reduction of calculations: instead of nine new cells 
[7, 8], it is necessary to build and process only one ex-
tended cell.

It should be noted that only flat boundaries were consid-
ered in the current study. Therefore, the application of the 
proposed method for convex or concave geometry requires 
further development efforts.

Also, the disadvantage of the proposed method consists 
in that after the integration stage, parameters of the ex-
tended cell are written into a fractional cell. Consequently, 
calculation results may be less physically real in the case 
of using a more complex geometry of the problem. The di-
rection of the study associated with the elimination of this 
drawback should be focused on finding values in fractional 
cells after the integration of the gas dynamics equation in 
extended cells.

In the next studies, it is planned to generalize the pro-
posed approach to domains with curvilinear boundaries, 
increase the order of accuracy of the method, and generalize 
it to a three-dimensional space.

8. Conclusions

1. A new method was proposed for the formulation of 
boundary conditions of numerical solution of gas dynamics 
equations in domains of a complex shape on Cartesian regu-
lar grids. The use of extended cells requires several times less 
amount of computations to determine flow parameters in a 
fractional cell compared to the existing approaches.

2. A technique has been developed for using the extend-
ed cell method in calculating two-dimensional flows of a 
inviscid compressible gas. The proposed method was gener-
alized to the case of two spatial variables by using additional 
geometric relationships on the faces of extended cells in a 
local coordinate system.

3. Verification of the proposed method was carried out 
by solving the problems of double Mach reflections and nor-
mal reflections of shock waves from a flat wall. The qualita-
tive pattern of the solution was in good agreement with the 
results obtained by applying earlier known methods to solve 
these problems. The magnitude of the error introduced by 
the proposed method did not exceed in orders of magnitude 
the error that occurs when using existing approaches. Since 
the volume of computations, in this case, is significantly less 
(as noted, up to nine times in the two-dimensional case), it 
can be concluded that the extended cell method has a good 
efficiency.
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A new method of reducing the resistance of submarines 
is presented, which consists in installing special circular 
recesses on its surface in the stern. It is found that during 
the movement, in the recesses there is a macro-vortex flow, 
in which pressure decreases significantly. This phenome-
non affects the characteristics of the boundary layer and 
in general the pressure distribution on the surface of the 
hull, i. e. the resistance of the submarine. Using the meth-
ods of computational fluid dynamics, the influence of the 
number and size of the recesses at their fixed location on 
the resistance of two types of “Lira” and “Gepard” sub-
marines is investigated. The results show that the decrease 
in resistance increases with increasing Reynolds number 
and reaches 6 % for “Lira” with 4 recesses with a diam-
eter of d=0.01 D at Re=1.55.108 and 2 % at Re=1.35.108 
for “Gepard” with 7 recesses with a diameter of d=0.01 D. 
The effect of the number of cells of the computational grid 
on the results of calculations in the Flow Simulation (USA, 
France, Canada) and Flow Vision (Russian Federation) 
software packages was also studied. The effect of resis-
tance reduction obtained in both software packages is 
approximately the same, but the absolute values differ due 
to the small number of cells in Flow Vision, which is due to 
the limited capabilities of the used 2nd version of this com-
plex. There was also a slight effect of resistance reduc-
tion on the model of the “Persia-110” (Iran) submarine 
with recesses during towing tests in the research basin at 
significantly lower Reynolds numbers. Unlike most resis-
tance reduction means, the use of this method does not 
require significant changes in the design of the housing. 
This makes it possible to use it both on new facilities and 
on facilities that have already been commissioned

Keywords: submarine, macro-vortex means of reduc-
ing motion resistance, computational fluid dynamics
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