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Typical problems of the theory of statistical hypothesis 
testing are considered. All these problems belong to the same 
object area and are formulated in a single system of axioms  
and assumptions using a common linguistic thesaurus. 
However, different approaches are used to solve each of these 
problems and a unique solution method is developed. In this 
regard, the work proposes a unified methodological approach 
for formulating and solving these problems. The mathematical 
basis of the approach is the theory of continuous linear pro-
gramming (CLP), which generalizes the known mathematical 
apparatus of linear programming for the continuous case. The 
mathematical apparatus of CLP allows passing from a two-
point description of the solution of the problem in the form 
{0; 1} to a continuous one on the segment [0; 1]. Theorems jus-
tifying the solution of problems in terms of CLP are proved. 
The problems of testing a simple hypothesis against several 
equivalent or unequal alternatives are considered. To solve 
all these problems, a continuous function is introduced that 
specifies a randomized decision rule leading to continuous 
linear programming models. As a result, it becomes possible to 
expand the range of analytically solved problems of the theory  
of statistical hypothesis testing. In particular, the problem 
of making a decision based on the maximum power crite
rion with a fixed type I error probability, with a constraint on 
the average risk, the problem of testing a simple hypothesis 
against several alternatives for given type II error probabi
lities. The method for solving problems of statistical hypo
thesis testing for the case when more than one observed con-
trolled parameter is used to identify the state is proposed
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1. Introduction

Methods for solving numerous problems of identifying 
the state of objects and making decisions were laid down as 
a result of the emergence and development of an important 
area of mathematical statistics – the theory of statistical hy-
pothesis testing. As you know, a statistical hypothesis is any 
statement about the form or properties of the distribution of 
experimentally observed random variables. The mathemati-
cal theory of statistical hypothesis testing was created in the 
30 s of the last century and was significantly developed in  
a number of fundamental works [1–3]. At the same time, the 
mathematical formulation and solution of various practical 
problems of statistical hypothesis testing do not have a single 
methodological basis and remain an art. This circumstance 
is an inevitable consequence of the insufficient methodolo
gical basis of the theory of statistical hypothesis testing, the 
development of which virtually no one was engaged in. The 
lack of a universal approach to solving various problems of 
this theory leads to the incompleteness of its mathematical 
framework. This seriously complicates the search and de-
velopment of possible approaches to new challenges arising 
from the needs of practice. Thus, the problem of developing 
a general universal approach to solving problems of the 
theory of statistical hypothesis testing is urgent. Using 

examples of specific problems of the theory of statistical 
hypothesis testing, we consider traditional technologies  
to solve them.

2. Literature review and problem statement

The works [1–3] consider the classical problem of testing 
a simple hypothesis Н0 against a simple alternative Н1.

When solving such problems of testing hypotheses, it 
is necessary to construct a statistical criterion that allows 
making a decision on the degree of their agreement with the 
hypothesis Н0 on the basis of observation results. Usually, 
such a criterion is constructed using a critical region, when 
some function of observations (or observations themselves) 
falls into it, the hypothesis Н0 is rejected. The problem is to 
best select this region.

Let the observed parameter XÎW be a random variable 
with the distribution density f0(x/H0), provided that the 
hypothesis H0 is true, and f1(x/H1), if the alternative hypo
thesis  Н1 is true.

Let us introduce the critical region wÌ W, when the 
observed parameter X falls into it, the hypothesis Н0 is rejec
ted (i. e. the hypothesis Н1 is accepted). Then the probability 
of rejecting the hypothesis Н0, when it is true, called the  
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criterion significance level (type I error probability), is deter-
mined by the expression:

f x H x0 0( ) =∫ d α
w

. 	 (1)

In this case, the probability of accepting hypothesis Н0, 
when the hypothesis Н1 is true,

b
w w

= ( ) = − ( )∫ ∫f x H x f x H x1 1 1 11d d
W

, 	 (2)

is called type II error probability.
Thus, the values of type I and II error probabilities de-

pend on how the critical region w is chosen. It is clear that 
the expansion of the region w leads to an increase in a, but 
a decrease in b. On the other hand, narrowing the critical 
region results in opposite results. It is natural to set the 
problem of determining the critical region being the best in 
some chosen sense.

Usually, the problem of testing a simple hypothesis Н0 
against a simple alternative Н1 comes down to finding a cri
tical region w for which the probability:

μ w b
w

( ) = − = ( )∫1 1 1f x H xd , 	 (3)

of rejecting the hypothesis Н0 when the hypothesis Н1 is 
true (criterion power) takes the highest value, provided 
that type I error probability is equal to the set value a. 
This decision criterion is called the Neyman-Pearson cri-
terion [1–3].

Along with the Neyman-Pearson criterion, the so-called 
Bayesian criteria based on average risk calculation are used 
in the statistical decision theory [4, 5]. Let it be known  
a priori that the hypotheses Н0 and Н1 are true with probabi
lities Р(Н0) and Р(Н1), respectively, Р(Н0)+Р(Н1) = 1. Then 
the average risk, depending on the choice of the critical  
area w, is determined as follows:

R r P H f x H x

r P H f x H x

w
w

w

( ) = ( ) ( ) +

+ ( ) − ( )









∫

∫

0 0 0 0

1 1 1 11

d

d , 	 (4)

where r0, r1 are some quantitative cost (risk) estimates 
of type I and II errors, respectively. Now the problem of 
making a decision according to the Bayesian average risk 
minimum criterion is to choose such a critical region for the 
observed parameter X at which the function (4) takes a mini- 
mum value.

A natural generalization of the given formulations of 
the classical problems of the theory of statistical hypothesis 
testing consists in rejecting the discrete nature of the crite-
ria  (acceptance or rejection of the hypothesis). A more gene
ral formulation of the hypothesis testing problem is as follows.

The decision rule А(х) is introduced: if the observed pa-
rameter has the value x, then the decision on the validity of 
the hypothesis Н0 is rejected with the probability А(х). Such 
a rule is called randomized. The function А(х) obviously 
must satisfy the condition:

0 1£ ( ) £A x ,  x ÎW. 	 (5)

Then the criterion power is written as:

μ A f x H A x x( ) = ( ) ( )∫ 1 1 d
W

, 	 (6)

the significance level is:

f x H A x x0 0( ) ( ) =∫ d
W

α, 	 (7)

and the average risk function takes the form:

R A r P H r x A x x( ) = ( )+ ( ) ( )∫1 1 d
W

, 	 (8)

where

r x r P H f x H r P H f x H( ) = ( ) ( ) − ( ) ( )0 0 0 0 1 1 1 1 .

The relations obtained allow formulating the following 
typical problems of choosing the optimal randomized deci-
sion rule.

Problem 1. Find the function А*(х) that minimizes the 
functional (8) and satisfies the condition (5). In this case, the 
criterion determines the minimum average risk.

Problem 2. Find the function А*(х) that maximizes the 
functional (6) and satisfies the constraints (5), (7). In this 
case, the criterion power is maximized at a given level of 
significance.

Problem 3. Find the function А*(х) that maximizes the 
functional (6), satisfies the condition (5) and the relation:

r x A x x R r P H( ) ( ) = − ( )∫ d
W

0 1 1 ,

where R0 is the allowable level of average risk. In this case, 
the criterion power is maximized for a given risk.

Problems 1 and 2 are the usual two-alternative problems 
of testing a simple hypothesis in a traditional formulation [6]. 
However, the optimal decision rule is found here in a more 
general than usual class. Problem 3 is not considered by the 
classical theory of statistical decisions.

Attempts are known to formulate some problems for sta-
tistical hypothesis testing using a randomized criterion. For 
example, in [7] the problem of maximizing the criterion power  
provided that the type I error probability does not exceed 
a given one is formulated as follows. For a given sample of 
observations Х(n), the function φ( )( )X n  called critical is intro-
duced, which determines the probability of rejecting the hy-
pothesis H0. However, this work lacks any consideration as to 
how to find such a function. The number of examples of using 
randomized decision rules to formulate various problems of 
statistical hypothesis testing can be increased. Some of them 
propose an approximate solution of the problem, reduced by 
discretizing the decision space to the application of a non-
randomized rule [8, 9], in the rest, the consideration of the 
problem is limited to correct formulation [10–13]. However, 
there is no general approach to solving the problems arising 
here. This circumstance is a consequence of the specific na-
ture of mathematical models of problems of type (5)–(8). 
By nature, these are isoperimetric problems of the calculus 
of variations. But it is impossible to use this mathematical 
apparatus here, since the desired function enters into the in-
tegrands of the optimized functional and constraints linearly. 
The Euler equation does not vanish anywhere.
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Thus, it is quite clear that the use of randomized decision 
rules allows a uniform formulation of traditional problems 
of statistical hypothesis testing, reducing each of them to 
solving the corresponding optimization problem. The need 
to improve the methodological basis of the theory of statisti-
cal hypothesis testing is emphasized in [14, 15]. At the same 
time, the problem of spreading the idea of randomization for 
solving more complex problems arising with several equiva-
lent or unequal alternatives is important.

These circumstances initiate further research on the 
problem of statistical hypothesis testing.

3. The aim and objectives of the study

The aim of the study is to develop a general approach 
to the formulation of problems of statistical hypothesis 
testing using randomized decision rules. This allows making  
a reasonable choice of the method for solving optimization 
problems.

To achieve the aim, the following objectives were set:
– to develop a general mathematical model of the prob-

lems of the theory of statistical hypothesis testing using  
a randomized criterion;

– to develop a mathematical apparatus for optimizing the 
randomized criterion, adapted for solving traditional prob-
lems of statistical hypothesis testing;

– to develop mathematical models and methods for solv-
ing an extended set of problems of the theory of statistical 
hypothesis testing.

4. Development of a general approach to the formulation 
of problems of the theory of statistical hypothesis testing

Problems 1–3 formulated in terms of (5)–(8) fit into 
a uniform mathematical model defined as follows: find the 
function y(x) that maximizes (minimizes) the functional:

F y x g x y x x
r

r

( )( ) = ( ) ( )∫ d
1

2

, 	 (9)

and satisfying the conditions:

ηi
r

r

ix y x x b( ) ( ) =∫ d
1

2

,  i m= 1 2, ,..., , 	 (10)

0 £ ( ) £ ( )y x d x ,  d x( ) > 0,  x r rÎ[ ]1 2, , 	 (11)

where g(x), ηi(x), d(x) are known continuous functions 
on [r1, r2], rk Î ∞( )0, , k = 1,2, r1<r2.

A fundamental feature of the obtained mathematical 
models of the typical problems of the theory of statistical 
hypothesis testing is the need to find a continuous function 
that satisfies the system of integral constraints. Solving such 
a problem requires a special mathematical apparatus.

5. Development of a general method for solving problems 
of the theory of statistical hypothesis testing

The resulting problem (9)–(11) is a particular case of the 
general problem of continuous linear programming (CLP) [16].  

CLP is a mathematical discipline dealing with the theory and 
methods of solving constrained optimization problems on  
a set of continuous functions. In this case, the optimized (ob-
jective) function of the problem and the constraints on it 
are described by integrals (Riemann or Stieltjes) that are 
linear with respect to the desired function of the continuous 
argument. Thus, CLP is a continuous generalization of con-
ventional linear programming [17, 18]. To solve the CLP 
problem, a special mathematical apparatus has been deve
loped [16], which provides an iterative solution. However, in 
some simple special cases, this solution is achieved directly.

Let us introduce the functions:

c x g x d x( ) = ( ) ( ),

A x
y x

d x
( ) =

( )
( ) ,

a x x d x( ) = ( ) ( )η ,  m = 1,  x r r RÎ[ ] =1 2, .

Then the problem (9)–(11) is simplified to the form: find 
the function А*(х) that maximizes (minimizes) the functional:

L A x c x A x x
r

r

( )( ) = ( ) ( )∫ d
1

2

, 	 (12)

and satisfies the conditions:

a x A x x b
r

r

( ) ( ) =∫ d
1

2

, 	 (13)

0 1£ ( ) £A x . 	 (14)

First, we solve an even simpler problem: find the func-
tion  А*(х) that maximizes the functional (12) and satisfies only 
the condition (14). To solve this problem, we use theorem 1.

Theorem 1. The solution of the problem (12), (14) is:

A x
c x

c x x R
*

, ,

, , .
( ) =

( ) <

( ) ≥ Î







1 0

0 0
	 (15)

Proof.
Let А*(х) be the function defined by (15), and А(х) – an 

arbitrary function satisfying (14). We introduce the subset 
τ = ( ) < Î{ }x c x x R: , ,0  as well as R x c x x R/ : , .τ = ( ) ≥ Î{ }0

Then

c x A x x c x A x x c x A x x

c x A x A x

R R

( ) ( ) = ( ) ( ) + ( ) ( ) ≥

≥ ( ) ( ) (

∫ ∫ ∫d d d
τ τ/

*max , )){ } +

+ ( ) ( ) ( ){ } = ( ) ( )

∫

∫ ∫

d

d d

x

c x A x A x x c x A x x
R R

τ

τ

min , .*

/

* 	 (16)

From the validity of inequality (16) follows the optimali-
ty of the function А*(х). The theorem is proved.

Set the function с(х) as follows:

c x r P H f x
H r P H f x

H( ) = ( ) 



 − ( ) 



0 0 0

0
1 1 1

1
.
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In this case, the functional (12) takes the form:

c x A x x
r

r

( ) ( )∫ d
1

2

,

coinciding, up to a constant, with the average risk func-
tion (8), and the function А(х) in accordance with (14),  
(15) takes the meaning of the rule for rejecting the hy-
pothesis Н0 in problem 1. In accordance with theorem 1, 
the function А*(х) that minimizes the average risk is de-
termined by the inequality (15). Thus, the average risk is 
minimized when А*(х) = 1, that is, if с(х)<0. In this case, 
the inequality holds:

r P H f x
H r P H f x

H0 0 0
0

1 1 1
1

0( ) 



 − ( ) 



 < ,

or

f x
H

f x
H

r P H

r P H

1
1

0
0

0 0

1 1













>
( )
( ) . 	 (17)

The obtained solution coincides with the classical Baye
sian decision rule, according to which the hypothesis Н0 is 
rejected if the inequality (17) is satisfied (the likelihood ratio 
exceeds a given threshold).

Let us now return to the original problem: find the func-
tion А*(х) that maximizes the functional (12) and satisfies 
the conditions (13), (14). The solution of the problem is 
determined by theorem 2.

Theorem 2.
Introduce the subset:

τ λλ = ( ) > ( ) Î{ }x c x a x x R: , , 	 (18)

where λ is the root of the equation:

a x x b( ) =∫ d
τλ

. 	 (19)

Then the solution of the problem (12)–(14) is:

A x
c x a x

c x a x
*

, ,

, ,
( ) =

( ) > ( )
( ) £ ( )







1

0

λ

λ
	 (20)

or

A x
x

x
*

, ,

, .
( ) =

Î
∉





1

0

if

if

τ
τ

λ

λ

Proof.
In accordance with (19) and (20), we have:

a x A x x a x A x x b
R

( ) ( ) = ( ) ( ) =∫ ∫* * ,d d
τλ

and hence the function А*(х) satisfies the condition (13). 
Next, we introduce:

R x c x a x x R/ : , .τ λλ = ( ) £ ( ) Î{ }

Then

c x A x x c x A x x c x A x x

c x a x A x

R R

( ) ( ) = ( ) ( ) + ( ) ( ) =

= ( ) − ( )( )

∫ ∫ ∫d d d
τ τλ λ

λ

/

(( ) +

+ ( ) − ( )( ) ( ) +

+ ( ) ( ) + ( ) (

∫

∫

∫

d

d

d

x

c x a x A x x

a x A x x a x A x

R

τ

τ

τ

λ

λ

λ

λ

λ λ

/

)) =

= ( ) − ( )( ) ( ) +

+ ( ) − ( )( ) ( ) + £

∫

∫

d

d

x

c x a x A x x

c x a x A x b

R

R

/

/

τ

τ

τ

λ

λ

λ

λ

λ λ∫∫

∫£ ( ) − ( )( ) ( ) ( ){ } +

+ ( ) − ( )( ) ( )

c x a x A x A x x

c x a x A x

λ

λ

τλ

max ,

min ,

*

*

d

AA x x b

c x a x A x x

c x a x A x

R

( ){ } + =

= ( ) − ( )( ) ( ) +

+ ( ) − ( )( ) (

∫

∫

d

d

/

*

*

τ

τ

λ

λ

λ

λ

)) + =

= ( ) − ( )( ) ( ) + = ( ) ( )

∫

∫∫

d

d d

x b

c x a x A x x b c x A x x

R

R

/

* * .

τ

τ

λ

λ

λ

λ λ

Thus, it is shown that the function А*(х) defined by the 
relation (20), satisfying the constraints (13), (14), maximi
zes (12). The theorem is proved.

Let us now give an interpretation of the obtained solution 
of the problem (12)–(14) in standard terms of the theory of 
statistical hypothesis testing. We set:

c x f x
H( ) = 



1

1
,  a x f x

H( ) = 



0

0
. 	 (21)

Then the relations (12) and (13) take the form of (6) and 
(7), respectively, and problem (12)–(14) will coincide with 
problem 2 (maximizing the criterion power at a given level of 
significance). Now, taking into account (21), we define the 
meaning of the decision rule (20). In these terms:

τ λ λλ = 



 > 













=













>






x f x
H f x

H x
f x

H

f x
H

: :1
1

0
0

1
1

0
0













,

where λ is the root of the equation:

f x
H x f x

H x
f x

H

f x
H

0
0

0
0

1
1

0
0





 = 



 =∫ ∫













>

τ

λ
λ

αd d . 	 (22)

In accordance with (20)–(22), the hypothesis Н0 should 
be rejected if the likelihood ratio exceeds a given threshold. 
In this case, the maximum value of the criterion power is 
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achieved for a given level of significance. This decision coin-
cides with the Neyman-Pearson decision.

Theorem 2 gives an optimal solution to problem 3. How-
ever, the relations in (12)–(14) must be specified as follows:

c x f x
H( ) = 



1

1
,  

a x r P H f x
H r P H f x

H r x( ) = ( ) 



 − ( ) 



 = ( )0 0 0

0
1 1 1

1
,

b R r P H= − ( )0 1 1 .

Then the problem (12)–(14) is converted to the form: 
find the function А*(х) that maximizes the functional:

f x
H A x x

r

r

1
1

1

2 



 ( )∫ d , 	 (23)

and satisfies the conditions:

r x A x x R r P H
r

r

( ) ( ) = − ( )∫ d
1

2

0 1 1 , 	 (24)

0 1£ ( ) £A x , 	 (25)

which corresponds to (5), (6), (8). In this case, the solution 
of the problem (20), defined by theorem 2, is:

A x

f x
H

r x
* , ,

, ,

( ) =







( ) >










1

0

1
1 λ

otherwise

	 (26)

where λ is the solution relative to the equation λ :

r x x R r P H
f x

H

r x

( ) = − ( )






( )

∫
1

1

0 1 1d . 	 (27)

Thus, it is shown that the traditional problems of the 
theory of statistical hypothesis testing can be formulated 
uniformly and solved by continuous linear programming 
methods.

6. Generalization of the proposed method for solving  
the problem of statistical hypothesis testing 

The proposed mathematical apparatus made it possible 
to significantly expand the set of solved complex problems 
of the theory of statistical hypothesis testing. This, in par-
ticular, concerns the problem of testing one main hypothesis 
against several alternatives.

We formulate a mathematical model of such a problem. 
Let x  be a random variable with a distribution density 
f(θ, x), x ÎW depending on a discrete parameter, which can 
take one of the set of values Θ Î{ }θ θ θ θ0 1 2, , ,..., .m  Let us in-
troduce a set of hypotheses H0, H1, H2, …, Hm regarding the 
equality of an unknown parameter θ  to one of its possible 
values. We consider a priori probabilities of the implementa-
tion of the corresponding hypotheses as given:

P Hi i( ) = ={ }{ }Prob θ θ ,  i m= 0 1 2, , ,..., .

The problem is to find a rule according to which, on the basis 
of observation x, the main hypothesis Н0 is accepted or rejected, 
according to which the obtained measurement belongs to the 
distribution f(θ0, x). The decision is made using the randomized 
decision rule 0 £ B(x) £ 1, which sets the probability of rejecting 
the hypothesis Н0 when the observed value x is realized.

Acceptance (rejection) of the main hypothesis is accom-
panied by the possibility of errors. Moreover, if the hypothe-
sis Н0 is rejected when it is true, then this is the type I error. 
On the other hand, if the hypothesis Н0 is accepted in a si
tuation where the hypothesis Нi, i = 1, 2, …, m is actually true, 
then this is the i-th type II error.

We introduce f x
Hi





  – the distribution density of the 

values of the observed value х, provided that the hypothe-
sis  Нi, i = 0, 1, 2, …, m is true. Then the conditional probability 
of the type I error, called, as before, the level of significance, 
is equal to

α0 0B f x H B x x( ) = ( ) ( )∫ / ,d
W

and the conditional type II error probabilities are determined 
by the relation:

bi i

i

B f x H B x

f x H B x x

( ) = ( ) − ( )( ) =

= − ( ) ( )

∫

∫

/

/ .

1

1

W

W

d 	 (28)

Taking into account a priori data on the possibility of 
implementing the hypotheses H0, H1, H2, …, Hm, the uncon-
ditional type I error probability a(В) and the unconditional 
type II error probability b(В) are calculated as follows:

α B P H f x H B x x( ) = ( ) ( ) ( )∫0 0/ ,d
W

	 (29)

b B P H f x H B x x

P H P H f x H B x

i i
i

m

i i

( ) = ( ) ( ) − ( )( ) =

= − ( ) − ( ) ( )
=
∑∫ /

/

1

1

1

0

d
W

(( )
=
∑∫ dx
i

m

.
1W

	 (30)

By analogy with the two-alternative case, in a multi-al-
ternative situation, the concept of criterion power is intro-
duced as the probability of rejecting the hypothesis H0 when 
any of the alternative hypotheses is true.

μ

b

B P H f x H B x x

P H

i i
i

m

i i
i

m

( ) = ( ) ( ) ( ) =

= ( ) −( )
=

=

∑∫

∑

/

.

1

1

1

d
W

	 (31)

Let us now specify a set of numbers ri, i = 0, 1, 2,..., m, 
characterizing the loss (risk) associated with the occurrence 
of corresponding errors. Then the value of the average risk is 
determined by the following expression:

R B r P H f x H B x x

r P H f x H B x xi i i
i

( ) = ( ) ( ) ( ) +

+ ( ) ( ) − ( )( ) =

∫

∫
=

0 0 0

1

/

/

d

d

W

W11

1

m

i i
i

m

r P H r x B x x

∑

∫∑= ( ) + ( ) ( )
=

d
W

, 	 (32)
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where

r x r P H f x H r P H f x Hi i i
i

m

( ) = ( ) ( ) + ( ) ( )
=
∑0 0 0

1

/ / . 	 (33)

The above relations make it possible to expand the set 
of problems of statistical hypothesis testing solved by conti
nuous linear programming methods.

Problem 4. Making a decision according to the criterion 
of minimum average risk: find the function В*(х) that mini-
mizes the functional:

L B r x B x x( ) = ( ) ( )∫ d
W

, 	 (34)

provided

0 £ B(x) £ 1, хÎW.	 (35)

Problem 5. Making a decision according to the criterion of 
maximum power for a fixed unconditional type I error proba-
bility: find the function В*(х) that maximizes the functional:

μ B P H f x H B x xi i
i

m

( ) = ( ) ( ) ( )
=
∑∫ / ,d

1W

	 (36)

and satisfies the constraints:

P H f x H B x x0 0( ) ( ) ( ) =∫ / ,d
W

α 	 (37)

0 £ B(x) £ 1, хÎW.	 (38)

Problem 6. Making a decision according to the criterion 
of maximum power with a limited average risk: find the func-
tion В*(х) that maximizes the functional:

μ B P H f x H B x xi i
i

m

( ) = ( ) ( ) ( )
=
∑∫ / d

1W

	 (39)

provided

r x B x x R r P Hi i
i

m

( ) ( ) = − ( )∫ ∑
=

d
W

0
1

, 	 (40)

0 £ B(x) £ 1, хÎW.	 (41)

Problem 7. Testing the hypothesis Н0 against m simple 
alternatives Нi, i = 1, 2, …, m, according to the criterion of 
the minimum type I error probability for given conditional 
type II error probabilities: find the function В*(х) that mini-
mizes the functional:

α0 0 0B f x H B x x( ) = ( ) ( )∫ / d
W

	 (42)

and satisfies the constraints:

f x H B x xi i/ ,( ) ( ) ≥ −∫ d
W

1 b  i m= 0 1 2, , ,..., , 	 (43)

0 £ B(x) £ 1, хÎW.	 (44)

The resulting optimization models belong to the class of 
continuous linear programming problems with a two-sided 

constraint on the values of the plan function, the methods for 
solving which are considered in [11].

At the same time, problems 4, 5, and 6 are the simplest 
problems of continuous linear programming and do not differ 
in structure from problems 1, 2, 3 discussed above.

Problem 7 is more complex – it takes into account pos-
sible differences in the risk of different type II errors, which 
arise if the main hypothesis is accepted in a situation where 
Нi, i = 1, 2, …, m is actually true. This is important, since in 
practice it often matters to which of the alternative hypothe-
ses an error is made. However, this problem also fits into the 
general mathematical model of canonical problems of contin-
uous linear programming.

Finally, consider a natural generalization of the problem 
of testing the main hypothesis against several alternatives in 
the case when all alternatives are equivalent.

Let, as before, x be a random variable with the distribu-
tion density(θ, x), xÎW, (or a multivariate density vector), 
depending on a discrete parameter that can take one of the 
set of values Θ Î{ }θ θ θ θ0 1 2, , ,..., .m

We introduce a set of alternative hypotheses H1, H2, …, Hm 
regarding the equality of the unknown parameter θ to one of 
its possible values. Let us consider a priori probabilities of the 
implementation of the corresponding hypotheses as given:

P Hi i( ) = ={ }{ }Prob θ θ ,  i m= 1 2, ,..., .

The problem is to find a rule according to which, based 
on the observation x, one of m hypotheses Hi, i = 1, 2, …, m  
is accepted.

The decision is made using the vector randomized deci-
sion rule R(x) = {Ri(x)}, i = 1, 2, …, m, the value of the com-
ponent of which Ri(x), when the observed value x is imple-
mented, has the meaning of the probability of accepting the 
hypothesis Hi.

The introduced decision rule must satisfy the constraints:

R xi
i

m

( ) =
=
∑

0

1,  R xi ( ) ≥ 0,  i m= 1 2, ,..., .

Acceptance or rejection of the hypothesis Hi, i = 1, 2, …, m 
is accompanied by errors. Moreover, if the hypothesis Hi is 
rejected when it is true, then this is the i-th type I error. The 
number of such errors is m. On the other hand, if the hypo
thesis Hi is accepted in a situation where Hj, i = 1, 2, …, m j ≠ i 
is actually true, this is the type II error of type (ij). In this 
situation, there may be (m2–m) such errors.

Since f x
Hi

i





  is the distribution density of the values  

of the parameter x, provided that the hypothesis Hi, i = 1, 2, …, m 
is true, the conditional probability of making a correct deci-
sion regarding the hypothesis Hi is:

μ i i i iR f x H R x x( ) = ( ) ( )∫ d
W

,  i m= 1 2, ,..., .

The conditional probability of the i-th type I error is cal-
culated by the formula:

α i i i iR f x H R x x( ) = ( ) − ( )( )∫ 1 d
W

,  i m= 1 2, ,..., ,

and the conditional probability of the (ij)-th type II error is 
determined by the relation:
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bij i j j j iR H f x H R x x( ) = ( ) ( )∫
W

d ,  

i m= 1 2, ,..., ,  j m= 1 2, ,..., ,  j ¹ i.

Let us now define the set gij, i = 1, 2, …, m, j = 1, 2, …, m of 
numbers characterizing the risk associated with the occur-
rence of the corresponding type II errors. Then the average 
risk value is determined by the formula:

G R g R H

g f x H R x x

ij ij i j
j

m

i

m

ij j j i
j

m

i

m

( ) = ( ) =

= ( ) ( )
==

==

∑∑

∫∑∑

b
11

11 W

d ..

Now the decision-making problem can be formulated as 
follows: find a set of functions R R xi

* *= ( ){ }  that minimizes 
the functional:

G R g f x H R x x

c x R x x

ij j j
j

m

i

m

i

i i
i

m

( ) = ( ) ( ) =

= ( ) ( )
==

=

∑∫∑

∫∑
11

1

W

W

d

d ,

and satisfies the constraints:

f x H R x xi i i i( ) ( ) ≥ −∫
W

d 1 α ,  i m= 1 2, ,..., ,

R xi
i

m

( ) =
=
∑

0

1,  xÎW;

R xi ( ) ≥ 0,  c x g f x Hi ij j j
j

m

( ) = ( )
=

∑
1

,  i m= 1 2, ,..., .

The obtained optimization model belongs to the class of 
distribution problems of continuous linear programming, the 
algorithms for solving which are also considered in [11].

Thus, it is shown that various problems of statistical 
hypothesis testing regarding the state of an object can be 
formulated uniformly and solved by continuous linear pro-
gramming methods.

The completion of the considered cycle of problems is the 
extension of the described methods to the case when more 
than one controlled indicator is used to identify the state. 
The proposed method for solving this problem is as follows.

Let there be a set x1, x2, …, xn of controlled indicators, for 

each of which the function f x
H

k

i





  – distribution density 

of the values of the indicator xk is given, provided that the 
hypothesis Hi, k = 1, 2, …, n, i = 1, 2, …, m is true. The problem 
can be solved iteratively, for example, as follows.

At the first iteration, the indicator x1  is selected and the 
problem of statistical hypothesis testing is solved in accordance 
with mathematical models (9)–(12), (13)–(14), (15)–(17),  
(18)–(20), (21)–(23), (24)–(27). As a result of solving the 
corresponding problem, we obtain the distribution of the 
probabilities of accepting the hypotheses Hi, i = 1, 2, …, m. 
This set is used as a priori for the next iteration. The pro-
cedure is repeated n times. The resulting set of probabilities 
R x x xi n1 2, ,...( ) is a posteriori distribution of the probabilities 
of the object being in a set of possible states, i = 1, 2, …, m.

7. Discussion of the results of developing a general 
method for solving problems of statistical  

hypothesis testing

A review of the typical problems of statistical hypothesis 
testing is carried out, which revealed that known traditional 
methods for solving them are essentially and differently 
determined by the structure, nature and characteristics of 
each of these problems. The lack of a uniform technology,  
a common method for solving various problems of statistical 
hypothesis testing determines the theoretical and practical 
usefulness of developing a universal method for solving 
each of them in each particular case. The result obtained 
improves the methodological basis of the theory of statistical 
hypothesis testing, expanding the axiomatic foundation of 
this theory. The development of a uniform approach to the 
formulation of typical problems in the theory of statistical 
hypothesis testing makes it possible to significantly increase 
the list of such problems, enhancing the practical usefulness 
of the classical theory. The main result of the study is the de-
velopment of a method of uniform formulation and solution 
of various problems of statistical hypothesis testing. The 
proposed method is based on the use of the mathematical 
apparatus of continuous linear programming (CLP). This 
method is a non-trivial generalization of the mathematical 
apparatus of linear programming by passing from a discrete 
space to a continuous one. At the same time, the range of 
solved optimization problems of the theory of statistical 
hypothesis testing is significantly expanded. These include 
the following problems. The problems of testing one main 
hypothesis against one or several alternative hypotheses, 
as well as problems of testing several equivalent alternative 
hypotheses are considered. In this case, solutions are sought 
not in a discrete, but in a more complete continuous class 
of mathematical descriptions. Theorems defining solutions 
to all typical problems of statistical hypothesis testing 
are formulated and proved. The use of the proposed ran-
domized criteria and the mathematical apparatus of CLP 
significantly expands the range of problems in the theory of  
statistical hypothesis testing, which can be uniformly solved 
analytically.

A possible direction for further research is the develop-
ment of the proposed method for an important case of uncer-
tainty of initial data, when they are given indistinctly [19] 
or inaccurately [20]. In this case, the approaches proposed 
in [21, 22] may be useful.

8. Conclusions

1. Using universal randomized rules, a uniform formula-
tion of models of all typical problems of statistical hypothesis 
testing in terms and on the basis of a modern optimization 
apparatus (CLP) is made.

2. In terms of continuous linear programming, the tech-
nology for the analytical solution of typical problems in the 
theory of statistical hypothesis testing is developed. In this 
case, the problems of the theory of statistical hypothesis 
testing are reduced to a uniform mathematical scheme for 
optimizing the integral linear functional in the presence of 
integral linear constraints.

3. The theory and methods of continuous linear pro-
gramming make it possible to expand the class of analyti-
cally solved problems in the theory of statistical hypothesis  
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testing. In this case, randomized decision rules are used that 
ensure the transition from discrete two-alternative solutions 
to a continuous description of the solution in the form of 
functions that specify the probability of decision making. 

The proposed method for solving problems of the theory of 
statistical hypothesis testing generalizes the known solution 
methods for the case when more than one independent indi-
cator is used to identify the state of an object.
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