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The studies have established the possi-
bility of reducing computational complexity,  
higher productivity of minimization of the 
Boolean functions in the class of expanded nor-
mal forms of the Sheffer algebra functions by 
the method of image transformations.

Expansion of the method of image trans-
formations to the minimization of functions of 
the Sheffer algebra makes it possible to iden-
tify new algebraic rules of logical transforma-
tions. Simplification of the Sheffer functions on 
binary structures of the 2-(n, b)-designs fea-
tures exceptional situations. They are used both 
when deriving the result of simplification of 
functions from a binary matrix and introducing 
the Sheffer function to the matrix.

It was shown that the expanded normal 
form of the n-digit Sheffer function can be rep-
resented by binary sets or a matrix. Logical 
operations with the matrix structure provide 
the result of simplification of the Sheffer func-
tions. This makes it possible to concentrate the 
principle of minimization within the truth table 
of a given function and do without auxiliary 
objects, such as Karnaugh map, Weich dia-
grams, coverage tables, etc.

Compared with the analogs of minimizing 
the Sheffer algebra functions, the method under 
the study makes the following to be possible:

– reduce algorithmic complexity of mini-
mizing expanded normal forms of the Sheffer 
functions (ENSF-1 and ENSF-2);

– increase the productivity of minimizing 
the Sheffer algebra functions by 100–150 %;

– demonstrate clarity of the process of mini-
mizing the ENSF-1 or ENSF-2;

– ensure self-sufficiency of the method of 
image transformations to minimize the Sheffer 
algebra functions by introducing the tag of 
minimum function and minimization in the com-
plete truth table of the ENSF-1 and ENSF-2.

There are reasons to assert that applica-
tion of the method of image transformations to 
the minimization of the Sheffer algebra func-
tions brings the problem of minimization of the  
ENSF-1 and ENSF-2 to the level of a well- 
studied problem in the class of disjunctive- 
conjunctive normal forms (DCNF) of Boolean 
functions
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1. Introduction

The entire history of digital circuits is based on the choice 
of logical basis and optimization of functions on this basis.  

Webb and Sheffer bases attract attention because they con-
sist of one function, that is, they are monofunctional and 
easily implemented by transistor circuits. The Sheffer basis 
uses NAND logic elements.
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Technological advantage of the NOR and NAND logic 
elements follows from two theses. First, they provide a func-
tionally complete basis: each Boolean function can be imple-
mented by combining NOR or NAND elements (Fig. 1). 

Fig. 1. Implementation of the elements of the basic 	
basis {NOT, AND, OR} using AND-NOT elements: 	

a – inverter; b – conjunction; c – disjunction
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The second thesis implies that these logic elements 
require fewer transistors (for example, NAND gate in the 
NMOS logic is simpler than the AND or OR logic ele-
ment) [1–3]. However, developers naturally use the concepts 
based on the logical basis {AND, OR, NOT}, and not based 
on {NOR, NAND}. In addition, almost all known methods 
of minimizing logic circuits from Karnaugh maps to Espres-
so algorithms, give results based on {AND, OR, NOT} as 
well [4, 5]. Only after such minimization, special algorithms 
replace elements of the {AND, OR, NOT} basis with ele-
ments of the {NOR, NAND} basis. Such mapping is trivial in 
a case of two-level minimization in a form of DNF or CNF. 
However, FPGA circuits feature a multilevel implementation 
of Boolean functions [6–9]. Optimal conversion of a multi-
level circuit from the {AND, OR, NOT} basis to the {NOR, 
NAND} basis is an uneasy task.

Sheffer stroke is a 2-digit 2-NAND logical opera-
tion (Fig. 2).
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Fig. 2. 2-NAND logic element

The symbols /, | or ↑ are commonly used to denote the 
«Sheffer stroke» operation. The «Sheffer stroke» operation 
is a negation of conjunction f x x x x x x= ( ) = ⋅ = +1 2 1 2 1 2/ , so 
the «false» value of the «Sheffer stroke» operation is only 
obtained when both arguments x1 and x2 take the «true» 
value (Table 1).

Table 1

Truth table of the «Sheffer stroke» operation

х1 х2 f x x x x x x= = ⋅ = +1 2 1 2 1 2/

0 0 1

0 1 1

1 0 1

1 1 0

Since the Sheffer basis belongs to the field of optimization 
of logical functions [10], the studies aimed at improvement of 
such factors as:

– methods of simplification of the Boolean functions in 
the Sheffer basis;

– minimization of logic circuits based on the Sheffer 
functions;

– reliability of the optimal result of the function mini-
mization;

– cost of the process of minimizing the logical functions 
remain topical.

2. Literature review and problem statement

The rapid transformation of the multilevel {AND, OR, 
NOT} basis logic into a functionally equivalent circuit of the 
{NOR, NAND} basis was considered in [11]. It was shown 
that the problem can be solved by replacing the AND and 
OR logic elements with NAND or NOR elements. How
ever, this requires an introduction of additional inverters 
or distribution of logic elements in some cases. The authors 
proposed algorithms for fast circuit conversion from the  
{AND, OR, NOT} basis to the {NOR, NAND} basis while 
minimizing the number of inverters. The presented algo-
rithms make it possible to convert any multilevel circuit 
into a circuit that is a combination of the NOR, NAND logic 
elements, or both types of universal logic elements.

The implementation of logic functions using NAND or 
NOR gates was considered in [12]. Replacement of the NOT, 
OR, and AND logic elements in the circuit with the NAND 
logic elements was demonstrated. Unambiguity of replacing 
logic elements from the {AND, OR, NOT} basis with elements 
from the {NOR, NAND} basis was provided by means of de 
Morgan transformations. The procedure of replacing logic el-
ements is ended with optimization of the circuit consisting in 
replacement of a combination of an even number of inversions 
in a form of the NOT function with a conductor segment.

An algorithm of implementation of the Boolean value 
of functions using only NAND logic elements or only NOR 
logic elements was presented in [13]. The algorithm of con-
verting the logical structure of the Boolean basis into a mono 
base structure was performed in stages. Initially, the Boolean 
function represented by {AND, OR, NOT} logic elements 
was transformed using de Morgan laws in various forms so 
that only the NAND elements or only the NOR elements 
were used in the circuit. Next, excess inverters were removed. 
In the case where there are two serial inverters (when an 
inverted output goes directly to an inverted input), both 
inverters are removed because they cancel each other. At the  
last stage, the inverters that remained are replaced with 
equivalent NAND or NOR elements.

Implementation of logic circuits using only the NAND 
and NOR elements was considered in [14]. It was noted 
there that the NAND and NOR elements are universal logic 
elements that can be used to implement any logic function 
without the need to use any other type of logic elements. This 
is advantageous in practice because the NAND and NOR 
elements are economical, easier to manufacture, and are the 
main elements used in all families of digital logic chips. In 
fact, the AND elements are usually implemented as a NAND 
element followed by inverters and not vice versa. Similarly, 
the OR gate is usually implemented as a NOR gate followed 
by the inverter and not vice versa. To implement the function 
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using only the NAND elements, it must first be simplified to 
the sum of productions (DNF). To implement the function 
using only the NOR elements, it must first be simplified to 
the product of sums (CNF). It was shown in [14] that the 
DNF function can be implemented only using the NAND 
elements while the CNF function can be implemented using 
only the NOR elements.

The study [15] proposes the implementation of fully op-
tical universal logic gates based on a photonic crystal NAND 
and NOR with basic logic gates, namely NOT, AND, and OR 
in a two-level logic with the use of the law of dualization. 
According to the law, the NAND or NOR elements can be 
designed with two NOT elements at the first level, cascading 
to the second OR level or the AND element, respectively. Ini-
tially, the basic logic elements were designed and optimized so 
that their implementation in the design of NAND and NOR 
gateways cannot degrade the threshold value of logic levels. 
The length of the input waveguides in each design is kept 
common to have a change in the interference of the input sig-
nals with a phase difference of 0° and 180°. The proposed basic 
logic elements were obtained with a coefficient of contrast 
of 11.04, 8.24, and 5.18 dB, respectively while the calculated 
values of the coefficient of contrast of the NAND and NOR 
elements are 5.81 and 4.02 dB, respectively. Moreover, the 
data transfer rate of the proposed designs exceeds 7.485 which 
indicates their inevitable use in high-speed data networks.

Optimization of combined logic circuits using the NAND 
elements and genetic programming was considered in [16]. 
Optimization of the logic circuit that implements the Boolean  
function can be performed according to various criteria. This 
can be an optimization of the circuit complexity, the number 
of logic levels, the number of semiconductor devices in the 
circuit, and so on. The authors of [16] have presented an 
approach that uses genetic programming to optimize a given 
Boolean function concerning the above criteria. Instead of 
a set of {AND, OR, NOT, XOR} logic elements, universal 
NAND elements were used which provided better perfor-
mance and compactness of the circuit. Conventional methods 
of minimizing logical structures give simplified expressions in 
two standard forms: the sum of products (SOP) or product 
of sums (POS). The SOP form can be converted to a NAND 
expression using a procedure but the conversion results in 
an optimized scheme neither in terms of the number of logic 
elements nor in terms of the number of logical levels. The 
results of experimental studies have shown that the method 
of genetic programming presented in [16] gives better results 
compared to the conversion of the SOP form into a NAND 
expression in terms of the number of gates, logic levels, and 
semiconductor devices in the circuit.

A general view of synthetic biology as a standard engi-
neering field and synthetic computational structures was 
considered in [17]. Among the most common logical units, 
the functions NOT and AND are among the most important 
elements. An example of synthetic implementation of the 
NAND logic based on genetic regulatory elements was con-
sidered. More complex circuits or chips with combinations of 
such elements are provided by the planar technology. It was 
noted that the NOR or NAND logic elements can be used to 
construct any possible circuit but this extrapolation was not 
successful in its application to synthetic biological structures.

It follows from a review of [11–17] that the method of 
genetic programming presented in [16] gives better results 
in minimizing the logical function using the NAND universal  
logic elements compared with the transformation of the 

SOP form into the NAND structure in terms of the number 
of gates, logic levels, and circuit transistors. The result was 
determined by the use of multi-purpose optimization of the 
circuits using genetic programming. Thus, the process of the 
evolutionary design of a logical path is compared with forms 
of the conventional design process based on knowledge of 
design and experience in analytical methods.

The peculiarity of minimizing the Boolean functions by 
the method of image transformations is in the use of binary 
matrices with an established list of rules for reducing the 
Boolean functions. Some combinatorial system, metadata that 
can explain other data, e.g. determine the minimum Boolean 
function for other basis is the result of reducing terms of the 
binary matrix. In addition to this property of binary matrices, 
they also contain combinatorial images. Semantic capacity, the 
ability to transfer large amounts of data using a small number 
of characters, and, as a result, the implication of a considerable 
part of these data is a characteristic feature of images.

Almost all known methods of minimizing logical func-
tions from Karnaugh maps to Espresso algorithms give 
results in the Boolean basis. Only after such minimization, 
special algorithms replace elements of the {AND, OR, NOT} 
basis with elements of the {NOR, NAND} basis [4, 5, 11–14].

The method of image transformations provides the min-
imization of logical functions directly in monobases, in 
particular, the Sheffer basis. Thus, the considered algo-
rithms and methods of minimization of the switching func-
tions [4, 5, 11–14] and the method of image transformations 
have different approaches and therefore they see different 
prospects of technological capability of minimizing mono-
functional functions. In particular, one of the prospects is 
the application of new algebraic rules of equivalent transfor-
mation of logical functions for the {AND-NOT} monobasis 
which will expand the capabilities of the analytical method.

In this regard, there is a reason to believe that the proce-
dure of minimizing the switching functions represented by 
algorithms and methods of minimization [11–15] is insuffi-
cient for the theoretical study of optimal minimization of the 
monofunctional functions. This necessitates studies in equi
valent image transformations of the monofunctional func-
tions, in particular, for the {AND-NOT} monobasis. From the 
application point of view, this approach makes it possible to 
expand the capabilities of the technology of designing digital 
components for the {AND-NOT} monobasis.

3. The aim and objectives of the study

The study objective is to extend the method of image 
transformations to the minimization of the Boolean functions 
in the class of perfect normal forms of the Sheffer func-
tions (ENSF-1 and ENSF-2). This makes it possible to simpli-
fy, improve the productivity of minimizing the Sheffer func-
tions by extending algebraic rules of logical transformations.

To achieve this goal, it is necessary to solve the follow-
ing  tasks:

– establish the adequacy of application of the method of 
image transformations to minimize the Boolean functions in 
the Sheffer basis, in particular, determine the hermeneutics of 
logical operations with binary structures;

– analyze and provide rules for simplifying the Sheffer 
functions in exceptional situations;

– expand the Sheffer algebra in the part of minimizing 
logical functions;
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– establish a tag of the minimum Sheffer function;
– analyze the feasibility of using image transformations 

to simplify two normal forms ENSF-1 and ENSF-2 in the 
complete table of truth of a given Sheffer function.

4. The Sheffer functions

Any logical function in the Sheffer algebra can be represented 
in a canonical form: AND-NOT/AND-NOT (NAND/NAND). 
The form AND-NOT/AND-NOT is a normal (two-level), both 
internally and externally, is the AND-NOT function.

The canonical form of the AND-NOT/AND-NOT logical 
function of n variables. It consists of the Sheffer terms of the 
n-th rank united by the AND-NOT operation.

The Sheffer term of the n-th rank takes the following 
generalized form [18]:

x x xn n n
n nσ σ σ⋅ ⋅ ⋅−

−
1

1 1...  or x x xn n n
n nσ σ σ/ / ... / ,−

−
1

1 1 	 (1)

where

x
x

x
i

i i

i i

iσ σ
σ

=
=
=
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, ,

 if 
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,

1

0
 

i n= 2 3, ,..., ,  < > −−σ σ σn n 1 1...  binary set. 

The Sheffer term x x xn n n
n nσ σ σ⋅ ⋅ ⋅−

−
1

1 1...  or the Sheffer function 
x x xn n n

n nσ σ σ/ / ... /−
−
1

1 1 corresponds to any binary set and, con-
versely, a binary set (tuple) corresponds to the Sheffer term 
x x xn n n

n nσ σ σ⋅ ⋅ ⋅−
−
1

1 1...  or the Sheffer function x x xn n n
n nσ σ σ/ / ... / .−

−
1

1 1  
For example, the Sheffer term x x x x1 2 3 4  or the Sheffer func-
tion x x x x1 2 3 4/ / / , corresponds to the set <1100> and the 
set <01001> corresponds to the Sheffer term x x x x x1 2 3 4 5  or 
the Sheffer function x x x x x1 2 3 4 5/ / / / .

The rules for performing the «Sheffer stroke» operation 
have the following interrelations (Table 2) verified using the 
truth tables.

The transition from the Boolean basis to the Sheffer basis 
is performed using the equations:

x x x x x x1 2 1 2 1 2/ ;= ⋅ = +

x x x x x x x x x x1 2 1 2 1 2 1 2 1 2⋅ = + = = ( ) ( )/ / / / ;

x x x1 1 2= / ;

x x x x x x x x x x1 2 1 2 1 2 1 1 2 2+ = ⋅ = = ( ) ( )/ / / / .

Only the interchange law is valid in the Sheffer algebra:

x x x x1 2 2 1/ / ;=  x x x x x x1 2 3 2 3 1/ / / / .=

Table 2

Rules of performing the «Sheffer stroke» operation 	
and conversion formulas

No. Sheffer stroke, 2-NAND

1 x x x/ =

2 x x/ = 1

3 x x/ 1 =

4 x / 0 1=

5 x / 0 1=

6 x x/ 1 =

7 x x x x1 2 1 2/ = ↓

8 x x x x1 2 1 2/ = ↓

9 x x x x1 2 1 2/ = ↓

10 x x x x1 2 1 2/ =

All definitions for the functions in the algebra of logic 
in the {AND, OR, NOT} basis have also their analogs with 
the Sheffer {AND-NOT} basis (Table 3). Replacement of  
the {AND, OR, NOT} basis with the {AND-NOT} basis is 
possible based on de Morgan formulas:

x x x x1 2 1 2⋅ = + ;  x x x x1 2 1 2+ = ⋅ .

To obtain the ENSF-1, the sets of variables at which 
the Sheffer function returns a value of 1 are marked in the 
truth table. The marked sets are written as terms in which 
the «Sheffer stroke» is used as an operation. The terms are 
also combined with each other by the «Sheffer stroke» ope
ration (2):

f x x x f x x xn n n
n

1 2 1 2 1 2
1 2, ,..., / , ,..., / / ... / ,( ) = ( )

α

α α αα α α 	 (2)
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,

,
.
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 if 

1

0

If the variable for a given term takes a value of 1, it is 
taken in a direct code, otherwise in an inverse code.

Table 3
Thesauri of logical bases

No. Thesaurus of the {AND, ОR, NOT} basis Thesaurus of the {AND-NOT} basis

1 Implicant Inversant

2 Simple implicant Simple inversant

3 Expanded disjunctive normal form (EDNF) Expanded normal Sheffer form 1 (ENSF-1)

4 Expanded conjunctive normal form (ECNF) Expanded normal Sheffer form 2 (ENSF-2)

5 Minimal disjunctive normal form (МDNF) Minimal normal Sheffer form 1 (МNSF-1)

6 Minimal conjunctive normal form (МСNF) Minimal normal Sheffer form 2 (МNSF-2)
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Example 1. Present the ENSF-1 for the f(x1, x2, x3) func-
tion (Table 4).

Table 4

The truth table of the f (x1, x2, x3) logical function 

x1 x2 x3 f(x1, x2, x3) x1 x2 x3 f(x1, x2, x3)

0 0 0 1 1 0 0 1

0 0 1 1 1 0 1 0

0 1 0 0 1 1 0 1

0 1 1 1 1 1 1 0

The following is obtained according to the algorithm:

f x x x x x x x x x

x x x x x x x

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

, , / / / / / /

/ / / / / / /

( ) = ( ) ( )
( ) ( ) 11 2 3/ / .x x( )

To obtain the ENSF-2, the variables in each Sheffer term 
are combined by the ‘Sheffer stroke’ operation on which it 
depends. If the variable for a given term takes zero value, it is 
taken in a direct code, otherwise in an inverse code.

Example 2. Present the ENSF-2 for the f(x1, x2, x3) func-
tion (Table 4).

The following is obtained in accordance with the algorithm:

f x x x x x x x x x x x x1 2 3 1 2 3 1 2 3 1 2 3, , / / / / / / / / .( ) = ( ) ( ) ( )
By analogy with the two-digit functions, the n-digit Shef-

fer functions (Sn) are also considered (Table 5):

Sn x x x xn= 1 2 3/ / / ... / .

When n = 2, a two-digit Sheffer function is obtained from 
Table 5, and when n = 1, the Sheffer function degenerates in 
a negation function. Therefore, the expression x/x can be 
represented as x :

x x x/ .=

The following relations are valid for the n-digit Sheffer 
functions:

x x x x x/ / / ... / ;=

x x x x x/ / ... / / / ... / ;= 1

x x x xl l1 11 1/ ... / / / ... / / ... / ;=

x xl1 0 0 1/ ... / / / ... / ;=

x x x x x x x x xn n n1 2 1 2 1 2/ / ... / ... ... .= = ∨ ∨ ∨

Table 5

The truth table of the n-digit Sheffer function (Sn)

x1 x2 x3 . . . xn–1 xn Sn

0 0 0 – – – 0 0 1

0 0 0 – – – 0 1 1

0 0 1 – – – 1 0 0

– – – – – – – – –

– – – – – – – – –

1 0 1 – – – 0 1 1

1 1 0 – – – 1 0 0

1 1 1 – – – 1 1 1

5. The results of minimizing the Sheffer functions  
by the method of image transformations

Equivalent image transformations give the following re-
sult when minimizing the Sheffer functions:

– hermeneutics of logical operations is determined on 
binary structures;

– rules of simplifying the Sheffer functions are provided 
in exceptional situations;

– the Sheffer algebra is extended in the part of minimiz-
ing the logical functions;

– a tag of minimum Sheffer function is set;
– minimization of the Sheffer functions for the complete 

truth table is simplified.

5. 1. Hermeneutics of logical operations with binary 
structures

In the conjunctive normal form (CNF) of the Boolean 
function:

F x x x x x x= + +( ) + +( )1 2 3 1 2 3 . 	 (3)

Replace the variables with inversion xn  with 0n and 
replace the variables without inversion xn with 1n where 
n is a numerical index determining the bit size of the sym-
bol-variable («1» or «0») in the function maxterm (3) [19]. 
As a result, the binary equivalent of expression of the logical 
function in the CNF is obtained [19]:

FCNF = + + + +( )( )0 0 0 0 0 11 2 3 1 2 3 	 (4)

or the matrix:

FCNF =
0 0 0

0 0 1
. 	 (5)

The disjunctive normal form (DNF) of the Boolean function:

F x x x x x xDNF = +1 2 3 1 2 3 	 (6)

can be represented by binary codes:

F = +0 0 0 0 0 11 2 3 1 2 3 	 (7)

or the matrix:

FDNF =
0 0 0

0 0 1
. 	 (8)

When observing matrices (5) and (8), it can be seen that 
the CNF and DNF of the logical functions are represented 
by matrices with the same combinatorial structures [19]. 
The difference between them in terms of equivalent trans-
formations lies in the hermeneutics of the logical operations. 
The matrix representing CNF of the Boolean function (5) 
presents maxterms of the function and the conjunction ope
ration for them. The matrix representing DNF of the Boolean 
function (8) presents minterms of the function and the dis-
junction operation for them.

Combinatorial structure-images and equivalent transfor-
mations with them can be extended to the Sheffer basis. For  
example, if the variables with inversion x  are replaced with «0», 
and the variables without inversion x are replaced with «1» for 
the recording of variable degeneracy in the Sheffer basis,
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x x x/ ,= 	 (9)

then the binary equivalent of the degeneracy of variables in 
the Sheffer basis is obtained:

1 1 0/ ,= 	 (10)

or the matrix:

1

1
1= = x . 	 (11)

Since the original matrix (11) consists of one column, 
and, therefore, there are no conditions for the occurrence of 
the third exceptional situation (par. 5.2), the first or second 
exceptional situation (par. 5.2) can be applied when deriving 
the result in (11).

The record of the degeneracy of variables in the Sheffer ba-
sis (10) using the matrix (11) gives the one-digit terms of the 
Sheffer function and the «Sheffer stroke» operation for them.

In other words, the degeneracy of variables (10) in the 
Sheffer basis has an illustration of an image (11).

If operation (9) is extended to the n-digit Sheffer terms,  
a logical operation of idempotency of variables for the Sheffer 
basis is obtained:

x x x x x x1 2 1 2 1 2/ / / / .( ) ( ) = 	 (12)

Transformation of expression (12) can be continued:

x x x x x x1 2 1 2 1 2/ .= + = 	 (13)

When examining the expression (13), it can be seen that 
the idempotence operation for the two-digit Sheffer terms 
corresponds to the logical product of variables x1 and x2.

The operation of idempotence (12) in the Sheffer basis 
has an illustration of image (14):

1 1

1 1
1 1 1 2= = x x/ ;

1 0

1 0
1 0 2 2= = x x/ . 	 (14)

When deriving the result (14), the second exceptional 
situation was applied (par. 5.2).

The idempotence operation for the three-digit Schaefer 
terms corresponds to the logical product of variables x1,  
x2, and x3:

x x x x x x x x x1 2 3 1 2 3 1 2 3/ / / / / / / .( ) ( ) = 	 (15)

x x x x x x x x x1 2 3 1 2 3 1 2 3/ / .= + + =

The proof of idempotency of variables x1, x2, and x3  
in (15) is based on the following transformations:

x x x x x x x x x x x x

x x x x x x

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

/ / / / / /

/

( ) ( ) = =

= + +( ) + +( ) ==

= + +( )⋅ + +( ) = + + =

= =

x x x x x x x x x

x x x x x x

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3/ / .

The operation of idempotence (15) in the Sheffer basis 
has an illustration of image (16):

1 1 1

1 1 1
1 1 1 1 2 3= = x x x/ / ;

1 0 1

1 0 1
1 0 1 1 2 3= = x x x/ / . 	 (16)

When deriving the result (16), the second exceptional 
situation was used (par. 5.2).

Oher variants of idempotence of variables for the n-digit 
Sheffer terms have the following form:

x x x x x x x x x1 2 3 1 2 3 1 2 3/ / / / / / / .( ) ( ) = 	 (17)

Proof of the result of operation (17) is based on the fol-
lowing transformations:

x x x x x x x x x x x x

x x x x x x

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

/ / / / / /( ) ( ) = ( ) ( ) =

= ( )⋅( ) == =x x x x x x1 2 3 1 2 3/ / .

Let us prove the transformation:

x x x x x x1 2 3 1 2 3 1/ / / / / .( ) ( ) = 	 (18)

Proof:

x x x x x x

x x x x x x

x x x

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3

/ / / / /

/ / / /

/

( ) ( ) =

= +( )( ) ( ) =

= +( ) xx x x

x x x x x x

x x x x x x x

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

/ /

/ /

/

( ) =

= +( ) +( )( ) =

= +( ) +( ) = 11 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1

x x x x x

x x x x x x x x x x

+( ) +( )( ) =

= +( )⋅ +( )( ) = +( ) + +

/

xx x

x x x x x x

x x x x x

2 3

1 2 3 1 2 3

1 2 3 1 2

( )( ) =

= +( )⋅( ) + +( ) +



 =

= +( )⋅( ) + + xx x x x x x x

x x x x x x x x x x x

3 1 2 3 1 2 3

1 2 1 2 3 1 2 2 3 1 1

( ) = +( )⋅ + + =

= + + + = + + + = + + 33 1= .

Transformation (18) is proved.
To represent the expanded normal form of the n-digit 

Sheffer function (ENSF) by binary equivalent or matrix, 
variables with inversion xn  should be replaced by 0n and 
variables without inversion xn by 1n [19] where n is the nu-
merical index that determines bitness of the symbol-variable 
«1» or «0» in terms of the Sheffer function.

The perfect normal form of the 3-digit Sheffer function:

F x x x x x x= ( ) ( )1 2 3 1 2 3/ / / / / , 	 (19)

can be represented by binary sets:

F = ( ) ( )0 0 0 0 0 11 2 3 1 2 3/ / / / / , 	 (20)

or the matrix:

F =
0 0 0

0 0 1
. 	 (21)
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In this case, the matrix (21) will be an instance of the 
class of binary matrices of the Sheffer functions.

When considering the matrix (21), it can be seen that its 
combinatorial structure coincides with structures of the (5) 
and (8) matrices. The difference between matrices (21) and 
(5) and (8) with respect to equipotential transformations lies 
in the hermeneutics of logical operations: the matrix (21) 
presents terms of the Sheffer function and the «Sheffer 
stroke» operation for them. It is expedient to apply these 
hermeneutics when deriving the result of logical operations 
in the class of binary matrices of the Sheffer functions.

Example 3. Find the ENSF-1 and ENSF-2 for the f(x1, x2, x3) 
function (Table 6), find the MNSF-1, MNSF-2 by the method 
of image transformations.

Table 6
The truth table of the f(x1, x2, x3) function

x1 x2 x3 f(x1, x2, x3)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

The ENSF-1 of the f(x1, x2, x3) function takes the follow-
ing form:

F x x x x x x

x x x x x x

ENSF− = ( ) ( )
( ) ( )

1 1 2 3 1 2 3

1 2 3 1 2 3

/ / / / / /

/ / / / / / .

F

x x x x x x x x

MNSF− = = =

= + = ( ) ( )

1

1 3 1 2 1 3 1 2

0 0 1

0 1 1

1 1 0

1 1 1

0 1

1 1

/ / /

or

F

x x x x

MNSF− = =

= = ( ) ( )

1

1 3 1 2

0 0 1

0 1 1

1 1 0

1 1 1

0 1

1 1
/ / / .

The rules of gluing the variables (30), (32) were used to 
search for FMNSF-1.

The ENSF-2 of the f(x1, x2, x3) function takes the form:

f x x x x x x x x x

x x x x x x

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

, , / / / / / /

/ / / / / / .

( ) = ( ) ( )
( ) ( )

F

x x x x x x x x x

MNSF− = = =

= +( ) +( ) = ( )( ) =

2

1 3 1 2 1 3 1 2 1

1 1 1

1 0 1

0 1 1

0 1 0

1 1

0 1

/ xx x x3 1 2( ) ( )/ / .

or

F

x x x x

MNSF− = =

= = ( ) ( )

2

1 3 1 2

1 1 1

1 0 1

0 1 1

0 1 0

1 1

0 1
/ / / .

	 (22)

The rules of gluing variables (30), (32) were used to 
search for FMNSF-2.

Thus, when deriving FMNSF-2 (22) containing more than 
one term, the entire derived expression FMNSF-2 and the va
riables of the final binary matrix of the Sheffer function are 
inverted.

5. 2. Exceptional situations in simplification of the 
Sheffer functions on binary structures

When simplifying the Sheffer functions on binary struc-
tures, it is necessary to take into account the exceptional 
situations.

The first exceptional situation. If there are terms in the sim-
plified Sheffer function which consist of one variable (that is 
the term has the maximum rank), then the variable describing 
the term is taken in the inverse code.

One literal is given in the Sheffer basis in the form:

x x x/ =  or x x x/ ,=

to which logic elements correspond (Fig. 3).

 
& &1x1x

1x1x

Fig. 3. Logic elements for one literal in the Sheffer basis

In the case when the final binary matrix of the min-
imal Sheffer function consists of several terms including  
a term (terms) consisting of one literal, then the literal must 
be inverted.

Example 4. Find the MNSF-1 for the function:

f x x x x1 2 3 4 0 4 5 6 7 8 12 13 14 15, , , , , , , , , , , , .( ) = ( )S 	 (23)

S in expression (23) defines minterms at which the func-
tion returns back «1» at the output.

An expanded normal form of the ENSF-1 for the 
f(x1, x2, x3, x4) function (23) is as follows:

F x x x x x x x x

x x x x x x x

ENSF− = ( ) ( )
( )

1 1 2 3 4 1 2 3 4

1 2 3 4 1 2

/ / / / / / / /

/ / / / / / / 33 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2

/ /

/ / / / / / / / /

/ / / / / / /

x

x x x x x x x x

x x x x x x

( )
( ) ( )
( ) xx x

x x x x x x x x

3 4

1 2 3 4 1 2 3 4

/ /

/ / / / / / / / ,

( )
( ) ( )



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 ( 107 ) 2020

26

FMNSF− =1

0 0 0 0 0

4

5

6

7

8 1 0 0 0

12

13

14

15

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 1 0 0

1 1 0 1

1 1 1 0

11 1 1 1

1

0 0 0

0 0

1 3 4 2

= =

= = ( )x x x/ / .

In the submatrix of blocks 4–7 and 12–15 (highlighted 
in red) which contains the combinatorial system 2-(3, 8)-de-
sign, the operation of supergluing of variables was used [20]. 
The simple gluing of variables is highlighted in black. Since 
the final binary matrix of the minimal Sheffer function con-
tains a term with one literal, the latter is inverted when de-
riving FMNSF-1. As a result, the minimum normal form of the 
Sheffer function will be obtained:

F x x xMNSF− = ( )1 3 4 2/ / .

A similar result can be obtained in the Sheffer algebra 
after the semi-gluing operation:

x x x x x x x x

x x x x x x x x

x x x

2 2 3 4 2 2 3 4

2 2 3 4 2 2 3 4

2 2

/ / / /

/

( ) = =

= + + = + +( ) =

= + + 33 4 2 2 3 4

2 3 4 2 3 4

2 3 4 2 3 4

+( ) = + =

= + = + =

= ⋅( ) = ( )

x x x x x

x x x x x x

x x x x x x

/

/ / / ..

Example 5. Find the МNSF-1 for the function:

f x x x x1 2 3 4 0 4 5 6 7 8 12 13 14 15, , , , , , , , , , , , .( ) = ( )S 	 (24)

Solution:

FMNSF− =1

0

4

5

6

7 0 1 0 0

8

12

13

14

15

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

11 1 0 0

1 0 0 0 0

00 3 4 2

=

= = = ( )x x x/ / .

A similar result can be obtained in the Sheffer algebra 
after operation of semi-gluing:

x x x x x x x x

x x x x x x x x

x x x

2 2 3 4 2 2 3 4

2 2 3 4 2 2 3 4

2 2

/ / / /

/

( ) = =

= + + = + +( ) =

= + + 33 4 2 2 3 4 2 3 4

2 3 4 2 3 4

+( ) = + = + =

= ⋅( ) = ( )
x x x x x x x x

x x x x x x/ / .

Example 6. Simplify the function set in the ENSF-1.

F x x x x x x x x x

x x x x x

ENSF− = ( ) ( ) ( )
( )

1 1 2 3 1 2 3 1 2 3

1 2 3 1 2

/ / / / / / / / /

/ / / / / // / / / .x x x x3 1 2 3( ) ( ) 	 (25)

Proof:

F

x x

MNSF− = = =

= =

1

2 3

0 0 0

0 0 1

1 0 0

1 0 1

00 1 1

1 1 1

1 1

0

1
/ . 	 (26)

The two terms in the final binary matrix of the Sheffer 
function (26) contain one variable each which are inverted 
during derivation of FMNSF-1.

The verification of the obtained MNSF-1 (26) is present-
ed in Table 7.

Table 7
Verification of the MNFS-1: x x2 3/

No. x1 x2 x3 FENSF-1 x x2 3/ FМNSF

0 0 0 0 1 0 0/ 1

1 0 0 1 1 0 1/ 1

3 0 1 1 1 1 1/ 1

4 1 0 0 1 0 0/ 1

5 1 0 1 1 0 1/ 1

7 1 1 1 1 1 1/ 1

2 0 1 0 0 1 0/ 0

6 1 1 0 0 1 0/ 0

Taking into account Table 7, it can be seen that the 
MNSF-1, x x2 3/ , satisfies the set logical function (25).

The second exceptional situation. If the result of sim-
plification of the Sheffer function is only one Sheffer term 
containing several literals, then the general inversion over all 
literals is taken (Fig. 4).

 

&

1x

2x

nx

1 2/ / ... / nx x x

Fig. 4. Logic element n-NAND in the Sheffer basis
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Example 7. Simplify the function set in the ENSF-1.

F x x x x x xENSF− = ( ) ( )1 1 2 3 1 2 3/ / / / / .

Proof:

F x xMNSF− = = =1 2 2

0 0 0

0 0 1
0 0 / .

Example 8. Simplify the FNSF-2 for the function from 
example 6.

F x x x x x xESNF− = ( ) ( )2 1 2 3 1 2 3/ / / / / .

Proof:

F

x x x x x x

MNSF− = = =

= + = =

2

2 3 2 3 2 3

1 0 1

0 0 1
0 1

/

or

F x xMNSF− = = =2 2 3

1 0 1

0 0 1
0 1 / . 	 (27)

Thus, when deriving FMNSF-2 (27) containing one term, 
variables of the final binary matrix of the Sheffer function 
are inverted and the term itself is not inverted. Note that the 
expressions FMNSF-1 (26) and FMNSF-2 (27) coincide.

Example 9. Minimize the f(x1, x2, x3, x4) logical function 
given in the truth table (Table 8):

Table 8

The truth table of the f(x1, x2, x3, x4) function 

No. x1 x2 x3 x4 f(x1, x2, x3, x4)

2 0 0 1 0 0

6 0 1 1 0 0

7 0 1 1 1 0

9 1 0 0 1 0

11 1 0 1 1 0

Proof:

FMNSF− = =

= = =

=

2

2 1 1 0 1

6

7

9

11

1 1 0 1 1 0 1

1 0 0

0 1 0

1 0 0 1

1 0 0 0

1 0 0

0 1 1 0

0 1 0 0

0 1 0

xx x x x x x x x x

x x x x x x x x x

1 3 4 1 2 3 1 2 4

1 3 4 1 2 3 1 2 4

+ +( ) + +( ) + +( ) =

= ( )( )( ) =

== ( ) ( ) ( )x x x x x x x x x1 3 4 1 2 3 1 2 4/ / / / / / / / .

The МNSF-2 of the function given in the truth  
table (Table 8):

F x x x x x x x x xMNSF− = ( ) ( ) ( )2 1 3 4 1 2 3 1 2 4/ / / / / / / / . 	 (28)

Let us recall that when deriving FMNSF-2 which contains 
more than one term, the entire derived expression FMNSF-2 
and variables of the final Sheffer binary matrix are inverted.

The verification of the MNSF-2 (28) is presented  
in Table 9.

Examination of Table 9 shows that MNSF-2:

x x x x x x x x x1 3 4 1 2 3 1 2 4/ / / / / / / /( ) ( ) ( )
satisfies the logical function given in Table 8.

The third exceptional situation. If simplification of the 
function results in only one term containing only one literal, 
then the MNSF will look like:

f x xn nMNSF = = .

Thus, the result of simplifying the Sheffer function does 
not change in the third exceptional situation.

In the Sheffer basis, the logic element corresponds to the 
literal with a double inversion (Fig. 5).

Table 9

Verification of MNSF-2: x x x x x x x x x1 3 4 1 2 3 1 2 4/ / / / / / / /( ) ( ) ( )
No. x1 x2 x3 x4 FENSF-2 x x x x x x x x x1 3 4 1 2 3 1 2 4/ / / / / / / /( ) ( ) ( ) FМNSF-2

2 0 0 1 0 0 0 1 0 0 0 1 0 0 0/ / / / / / / /( ) ( ) ( ) 0

6 0 1 1 0 0 0 1 0 0 1 1 0 1 0/ / / / / / / /( ) ( ) ( ) 0

7 0 1 1 1 0 0 1 1 0 1 1 0 1 1/ / / / / / / /( ) ( ) ( ) 0

9 1 0 0 1 0 1 0 1 1 0 0 1 0 1/ / / / / / / /( ) ( ) ( ) 0

11 1 0 1 1 0 1 1 1 1 0 1 1 0 1/ / / / / / / /( ) ( ) ( ) 0



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 ( 107 ) 2020

28

 

& && &1x
1x 1x

1x

Fig. 5. Logic elements for a literal with a double inversion 	
in the Sheffer basis

Rules (30), (38), (45) can serve as an example of simpli-
fying the Sheffer functions in the event of the occurrence of 
the third exceptional situation.

5. 3. Equipotential transformations of the Boolean func-
tions in the Sheffer basis

In a general case, when minimizing the Boolean functions 
in the Sheffer basis by the method of visual transformations, 
the following rules of the logical algebra are possible.

Variables of two-digit terms of ENSF-1 can be glued by 
means of the transformation:

x x x x x1 2 1 2 2/ / /( ) ( ) = . 	 (29)

Proof:

x x x x x x x x

x x x x x x x

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1

/ / / /

/

( ) ( ) = ( ) ( ) =

= +( ) +( ) = +( )⋅ + xx

x x x x x x x x x x

2

1 2 1 2 2 2 1 1 2 21

( ) =

= + + = + +( ) = = .

Equipotential transformations for the rule of gluing vari-
ables of the two-digit ENSF terms (29) have an illustration 
of combinatorial image (30):

1 1

0 1
1 2= = x . 	 (30)

The third exceptional situation was taken into account 
when deriving the result of gluing variables of the two- 
digit terms.

The variables in the three-digit terms of the ENSF-1 can 
be glued by means of the transformation:

x x x x x x x x1 2 3 1 2 3 1 2/ / / / / / .( ) ( ) = 	 (31)

Proof:

x x x x x x x x x x x x

x x x x x x

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

/ / / / / /

/

( ) ( ) = =

= + +( ) + +( ) ==

= + +( )⋅ + +( ) =

= + +( ) + + +( ) =

= +

x x x x x x

x x x x x x

x x x x

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1xx x x x x x

x x x x

2 3 1 2 3 3

1 2 1 2

= +( ) =

= = / .

Equipotential transformations for the rule of gluing 
variables of three-digit terms of the ENSF-1 (31) have an 
illustration of image (32):

1 1 1

1 1 0
1 1 1 2= = x x/ . 	 (32)

The second exceptional situation was taken into account 
when deriving the result of gluing variables of the three-digit 
terms of ENSF-1.

Bonding of variables of three-digit ENSF-2 terms 
Let us recall that to obtain the ENSF-2, variables in each 

Sheffer term are combined by the «Sheffer stroke» operation 
which depends on them. If the variable for the given term 
takes a zero value, it is taken in the direct code, otherwise in 
the inverse code [21].

For example, binary sets of variables:

0 0 0 0 0 11 2 3 1 2 3/ / / / /( ) ( ) 	 (33)

correspond to the three-digit ENSF-2 terms:

x x x x x x1 2 3 1 2 3/ / / / / .( ) ( ) 	 (34)

Before performing the operation of gluing variables for 
the ENSF-2, values of binary variables in the terms are in-
verted.

0 0 0

0 0 1

1 1 1

1 1 0
1 1

1 2 1 2 1 2

= = =

= +( ) = =x x x x x x/

or 

0 0 0

0 0 1

1 1 1

1 1 0
1 1 1 2= = = x x/ . 	 (35)

The verification of the result of gluing variables for the 
ENSF-2 (35) is presented in Table 10.

Table 10
Verification of the expression x x1 2/

х1 х2 х3 ENSF-2 value x x1 2/ Verification

0 0 0 0 0 0/ 0

0 0 1 0 0 0/ 0

It is seen from Table 10 that the result of gluing variables 
x x1 2/  satisfies the given terms of the ENSF-2 (33).

Note that the expressions in the results of gluing the 
variables of the three-digit terms of the ENSF-1 (32) and 
ENSF-2 (35) differ. This feature applies also to MNSF-1 
and MNSF-2 with a larger number of terms which makes  
it possible to choose the optimal structure of the mini-
mum  function.

Variables of four-digit terms of the ENSF-1 can be glued 
by means of the transformation:

x x x x x x x x x x x1 2 3 4 1 2 3 4 2 3 4/ / / / / / / / / .( ) ( ) = 	 (36)

Proof:

x x x x x x x x

x x x x x x x x

x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2

/ / / / / / /

/

( ) ( ) =

= ( ) ( ) =

= + + xx x x x x x

x x x x x x x x

x x

3 4 1 2 3 4

1 2 3 4 1 2 3 4

2 3

+( ) + + +( ) =

= + + +( )⋅ + + +( ) =

= +

/

++ = =x x x x x x x4 2 3 4 2 3 4/ / .



Mathematics and cybernetics – applied aspects

29

Equipotential transformations for the rule of gluing 
variables of the four-digit ENSF-1 terms (36) have an illus-
tration of image (37):

1 1 1 1

0 1 1 1
1 1 1 2 3 4= = x x x/ / . 	 (37)

The rule of supergluing variables
Combinatorial properties of the block diagram with rep-

etition provide the rule of supergluing the variables [20] in 
the Sheffer basis.

Example 10. The rule of using super-gluing the variables 
for three-digit terms of the ENSF-1 can be presented as 
follows:

1 1 1

0 1 1

1 1 0

0 1 0

2= x . 	 (38)

Proof:

x x x x x x x x x x x x

x x x x x x

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

/ / / / / / / / / / /

/

( ) ( ) ( ) ( ) =

= // /

/ / /

x x x x x x

x x x x x x x x x x x x

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

=

= + +( ) + +( ) + +( ) + +(( ) =

= + +( )⋅ + +( )⋅ + +( )⋅ + +( ) =

= + +

x x x x x x x x x x x x

x x x

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3(( ) + + +( ) + + +( ) + + +( ) =

= + +

x x x x x x x x x

x x x x x x x x x

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 ++ =

= + + +( ) =

= +( ) + +( )( )

x x x

x x x x x x x x x

x x x x x x x

1 2 3

2 1 3 1 3 1 3 1 3

2 3 1 1 3 1 1 == +( ) =x x x x2 3 3 2.

The 2-(2, 4)-design [19] is used in the rule (38).
Example 11. For example, the rule of supergluing vari-

ables for four-digit terms of the ENSF-1 can be as follows:

1 1 0 1

1 1 0 0

1 0 0 1

1 0 0 0

1 3= x x/ . 	 (39)

Proof:

The 2-(2, 4)-design is used in the rule (39). Variables x1, 
x3 can occupy any digit (position) in the ENSF-1 term.

The rule of incomplete supergluing variables
Combinatorial properties of the incomplete combina-

torial system with repetition of the 2-(n, x/b)-design [20] 
provide the rule of incomplete supergluing variables in the 
Sheffer basis.

Example 12. For example, the rule of incomplete super-
gluing variables for two-digit and three-digit terms of the 
ENSF-1 can be as follows:

  

0 0

1 0
0

0 1
0 1

0

0 1 2= = = x x/ . 	 (40)

  

0 0 0

0 0 1

0 1 0

0 1 1

0

1 0 0

1 0 1

1 0

1 1 0

1 1 0

0

1 0

1 0

0

0

0
1 2 3

= =

= = = x x x/ / . 	 (41)

Proof of the result of (40):

x x x x x x

x x x x x x

x x x x x

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

/ / / / /

/ /

/ /

( ) ( ) ( ) =

= =

= +( ) +( ) 11 2

1 2 1 2 1 2

1 2 1 2 1 2

+( ) =

= +( )⋅ +( )⋅ +( ) =

= +( ) + +( ) + +( ) =

x

x x x x x x

x x x x x x

== + + = +( ) + =

= + = + =

x x x x x x x x x x x

x x x x x x x

1 2 1 2 1 2 2 1 1 1 2

2 1 2 1 2 1 2/ .

The 2-(2, 3/4)-design [20] is used in the rule (40). When 
deriving the result of the operation of incomplete superglu-

ing of variables of two-digit ENSF-1 
terms (40), the first exceptional situa-
tion was taken into account.

The result of (41) is similarly proved. 
The 2-(3, 7/8)-design [20] is used in the 
rule (41). When deriving the result of 
the operation of incomplete superglu-
ing of variables of three-digit ENSF-1 
terms (41), the first exceptional situa-
tion was taken into account.

Generalized gluing of variables can 
be done by means of the transformation:

x x x x x x

x x x x

1 2 1 3 2 3

1 3 2 3

/ / / / /

/ / / .

( ) ( ) ( ) =

= ( ) ( ) 	 (42)

x x x x x x x x x x x x x x x x

x

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4/ / / / / / / / / / / / /( ) ( ) ↓ ( ) ↓ ( ) =

= 11 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2

x x x x x x x x x x x x x x x

x x x x x x x

/ / /

/

=

= + + +( ) + + 33 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2

+( ) + + +( ) + + +( ) =

= + + +( )⋅ + +

x x x x x x x x x

x x x x x x x

/ /

33 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2

+( )⋅ + + +( )⋅ + + +( ) =

= + + +( ) + + +

x x x x x x x x x

x x x x x x x33 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

+( ) + + + +( ) + + + +( ) =

= ( ) + ( )
x x x x x x x x x

x x x x x x x x ++ ( ) + ( ) =

= + + +( ) =

x x x x x x x x

x x x x x x x x x x x x x x

1 2 3 4 1 2 3 4

1 3 2 4 2 4 2 4 2 4 1 3 2 44 4 2 4 4

1 3 2 2 1 3 1 3

+( ) + +( )( ) =

= +( ) = ⋅ =

x x x x

x x x x x x x x/ .
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Proof:

x x x x x x

x x x x x x x x x

1 2 1 3 2 3

1 2 3 1 2 3 1 3 2

/ / / / /

/ / / / / / / / /

( ) ( ) ( ) =

= ( ) ( ) ( ) xx

x x x x x x x x x x

x x x x x x x x

3

1 2 3 1 2 3 1 3 2 3

1 2 3 1 2 3 1

( ) =

= =

= + +( ) + +( ) +

/ / /

/ / 33 2 3

1 2 3 1 2 3 1 3 2 3

1 2 3 1

/

/ /

x x

x x x x x x x x x x

x x x x

+ =

= + +( )⋅ + +( ) + + =

= + +( )⋅ ++ +( ) + + =

= +( ) + + =

=

x x x x x x

x x x x x x x x x x

x x x

2 3 1 3 2 3

1 2 3 1 2 3 1 3 2 3

1 2 3

/ /

/ /

++( ) +( )⋅ +( ) =

= +( )



 ⋅ +( )⋅

x x x x x x x

x x x x x x x x x

1 2 3 1 3 2 3

1 2 3 1 2 3 1 3 2

/

++( )( ) =

= +( ) + +( )⋅ +( )( ) =

= +

x

x x x x x x x x x x

x x x x x x

3

1 2 3 1 2 3 1 3 2 3

1 2 3 1 2 3 ++ + =

= = =

= + =

x x x x

x x x

x x x

x x

x x

x x

x x

x x x x x x

1 3 2 3

1 2 3

1 2 3

1 3

2 3

1 3

2 3

1 3 2 3 1 3 ⋅⋅ = ( ) ( )x x x x x x2 3 1 3 2 3/ / / .

Thus, x x x x x x x x x x1 2 1 3 2 3 1 3 2 3/ / / / / / / / ,( ) ( ) ( ) = ( ) ( )  
what was necessary to prove.

Equipotential transformations for the rule of generalized 
gluing of variables (42) in the Sheffer basis have an illustra-
tion of image (43):

1 1

1 1

1 0

1 1

1 0 1 3 2 3= = ( ) ( )x x x x/ / / . 	 (43)

Another variant of the rule of generalized gluing of vari-
ables for the ENSF-1:

x x x x x x x x x x1 3 2 3 1 2 1 3 2 3/ / / / / / / / .( ) ( ) = ( ) ( ) ( )
1 1

1 0

1 1

1 1

1 0

1 2 1 3 2 3

= =

= ( ) ( ) ( )x x x x x x/ / / / / .

The rule of absorption of variables is reduced to the trans-
formations:

1.  x x x x1 1 2 1/ / .( ) = 	 (44)

Proof:

x x x x x x

x x x x x x x

1 1 2 1 1 2

1 1 2 1 1 2 1

/ / /

/ .

( ) = =

= +( ) = ⋅ +( ) =

Since the left-hand side of expression (44) is the initial 
Sheffer function, then, to introduce it in the matrix, one 

variable representing the term must be inverted (the first 
exceptional situation):

x x x x1 1 2 1

0

0 1
0/ / .( ) = = = 	 (45)

When deriving the result (45), the third exceptional si
tuation was applied (final matrix of the Sheffer function con-
tains only one term with one variable: the result of function 
simplification does not change).

2.  x x x x1 1 2 1/ / .( ) =
Proof:

x x x x x x

x x x x x x x x

1 1 2 1 1 2

1 1 2 1 1 2 1 1

/ / /

/ .

( ) = =

= +( ) = ⋅ +( ) = =

3.  x x x x x x x1 2 1 2 3 1 2/ / / / / .( ) ( ) =
Proof:

x x x x x x x x x x

x x x x x

x x

1 2 1 2 3 1 2 1 2 3

1 2 1 2 3

1 2

/ / / /( ) ( ) = ↓ =

= +( ) ↓ + +( ) =

= +( ))⋅ + +( ) =

= +( ) + + +( ) =

= + = +( ) =

x x x

x x x x x

x x x x x x x x

1 2 3

1 2 1 2 3

1 2 1 2 3 1 2 31 xx x x x1 2 1 2= / .

1 1

1 1 1
1 1 1 2= = x x/ .

4.  x x x x x x x x1 2 1 2 3 4 1 2/ / / / / / .( ) ( ) =  
Proof:

x x x x x x x x x x x x

x x x x x x

1 2 1 2 3 4 1 2 1 2 3 4

1 2 1 2 3 4

/ / / / / /

/

( ) ( ) = =

= +( ) + + +( ) ==

= +( )⋅ + + +( ) =

= +( ) + + + +( ) =

= +

x x x x x x

x x x x x x

x x x x

1 2 1 2 3 4

1 2 1 2 3 4

1 2 1 2xx x x x x x x x x x3 4 1 2 3 4 1 2 1 21= +( ) = = / .

1 1

1 1 1 1
1 1 1 2= = x x/ .

The rule of semi-gluing variables can be realized by means 
of the following transformations:

x x x x x x x x1 2 1 2 3 2 1 3/ / / / / / ,( ) ( ) = ( ) 	 (46)

x x x x x x x x x1 2 1 2 3 1 2 2 3/ / / / / .( ) ( ) = ( ) 	 (47)

Proof of the result (46):

x x x x x x x x x x

x x x x x x x

1 2 1 2 3 1 2 1 2 3

1 2 1 2 3 1 2

/ / / / /

/

( ) ( ) = =

= +( ) + +( ) = +( )⋅⋅ + +( ) =

= +( ) + + +( ) = + = +( ) =

=

x x x

x x x x x x x x x x x x x x

1 2 3

1 2 1 2 3 1 2 1 2 3 2 1 1 3

xx x x x x x x x x2 1 3 2 1 3 2 1 3+( ) = ( ) = ( )/ / .
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The result (47) is similarly proved.
The rule of semi-gluing the variables (46) has an illustra-

tion of the image:

0 1

1 1 1

0 1

1 1 1 2 2 3

2 1 3 2 1 3 2 1 3

= = + =

= +( ) = ( ) = ( )
x x x x

x x x x x x x x x/ / . 	 (48)

The rule of semi-gluing the variables (47) has an illustra-
tion of the image:

0 1

1 1 1

0 1

1 1 1 2 2 3 1 2 2 3= = + = ( )x x x x x x x x/ .

The rule:

x x x x x1 1 2 1 2/ / /( ) =

is proved by means of the following transformations:

x x x x x x x x x

x x x x x x x

1 1 2 1 1 2 1 1 2

1 1 2 1 2 1 2

/ / / /

/ .

( ) = = +( ) =

= ⋅ +( ) = =

x x x x x1 1 2 1 2

0

1 1

0

1
/ / / .( ) = = = 	 (49)

When deriving the result (49), the first exceptional situa
tion was applied.

Since the combinatorial structure of the truth tables 
of logical functions provides more information about or-
thogonality, contiguity, the unambiguity of the truth table 
blocks [22], the use of combinatorial images to find objects 
of equipotential transformation is effective when simplifying 
the Sheffer functions.

5. 4. Establishing sign of the minimum Sheffer function
A tag of the minimum Sheffer function is established by 

performing successive procedures to reduce the function 
in sets of the truth table at which the function returns «1» 
and «0» at the output. In the error-free reduction of a given 
function in these two procedures and the algebraic transfor-
mation of the second result of function reduction to the first 
result, such an algebraic transformation will coincide with 
the first result of the function reduction.

Example 13. Simplify the logical function f(x1, x2, x3) by 
image transformations given in the truth table (Table 11) and 
establish the minimum function tag.

Table 11
The truth table of the f (x1, x2, x3) function 

x1 x2 x3 f(x1, x2, x3)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Proof.
The ENSF-1 of the given f(x1, x2, x3) function has the form:

F x x x x x x x x xENSF− = ( ) ( ) ( )1 1 2 3 1 2 3 1 2 3/ / / / / / / / .

Simplification of ENSF-1 of the f(x1, x2, x3) function by 
equipotential image transformations:

F

x x x x

MNSF− = = =

= = ( ) ( )

1

1 2 2 3

0 1 1

1 1 0

1 1 1

0 1 1

1 1

1 1

1 1
/ / / . 	 (50)

The ENSF-2 of the given f(x1, x2, x3) function has the form:

F x x x x x x

x x x x x x x x

ENSF− = ( ) ( )
( ) ( )

2 1 2 3 1 2 3

1 2 3 1 2 3 1 2

/ / / / / /

/ / / / / / / / // .x3( )
Simplification of the ENSF-2 of the f(x1, x2, x3) function 

by equipoentialt inage transformations:

F

x x x

MNSF− = = =

= = ( )

2

1 3 2

1 1 1

1 1 0

1 0 1

0 1 1

0 1 0

1

1 0 1

1

1 1
/ / . 	 (51)

Algebraic transformation of expression (51) to expres-
sion  (50):

x x x x x x x x x

x x x x x x x x

1 3 2 1 3 2 1 3 2

1 3 2 1 3 2 1

/ / / /( ) = ( )⋅ = ( )⋅ =

= ⋅( )⋅ = +( ) = 22 2 3

1 2 2 3 1 2 2 3

1 2 2 3

+ =

= ( )⋅( ) = ( ) ( ) =

= ( ) ( )

x x

x x x x x x x x

x x x x

/

/ / / . 	 (52)

Algebraic expressions (50) and (52) coincide which, on 
the basis of the minimum function, indicates obtaining the 
minimum normal form of the Sheffer function by the simpli-
fication procedure.

5. 5. Minimization of the Sheffer functions in the com-
plete truth table

Example 14. Minimize the logical function f(x1, x2, x3, x4) 
given in a canonical form [23] in the complete truth table  
by image transformations in two expanded normal forms 
ENSF-1 and ENSF-2:

F x x x x1 2 3 4 0 1 6 8 11 14 15, , , , , , , , , .( ) = ∑( ) 	 (53)

S in expression (53) determines minterms at which the 
f(x1, x2, x3, x4) function returns «1» at the output.

Choose the minimum function based on the results of the 
simplification of two expanded normal forms ENSF-1 and 
ENSF-2.
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Minimization of the ENSF-1 (53) is illustrated by image 
transformations:

FMNSF− = =

=

1

0

1 0 0 0 1

6

8

11

14

15

0 0 0 1

0 0 0 0

1 0 0 0

0 0 0

0 1 1 0

1 1 1 0

1 1 0

1 0 1 1

1 1 1 1

11 1 1

0 0 0

0 0 0

1 1 0

1 1 1

= .

The MNSF-1 of the f(x1, x2, x3, x4) function:

F x x x x x x

x x x x x x

MNSF− = ( ) ( )
( ) ( )

1 1 2 3 2 3 4

2 3 4 1 3 4

/ / / / / /

/ / / / / / . 	 (54)

Minimization of the ENSF-2 of the given function (53):

FMNSF− = =2

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

7 0 1 1 1

9 1 0 0 1

10 1 0 1 0

12 1 1 0 0

13 1 1 0 1

1 11 0 1

0 1 0 1

1 0 1

1 1 0 0

1 0 0 0

1 0 0

1 0 1 1

1 0 1 0

0 0 1 1

0 0 1 0

0 1

0 1 1 0

0 1 1 0

1 0 1

1 0 0

0

=

= =
11

0 1 0

.

MNSF-2 of the f(x1, x2, x3, x4) function:

F

x x x x x x x x x x x

MNSF− =

= ( ) ( ) ( ) ( )
2

2 3 4 1 3 4 2 3 1 3 4/ / / / / / / / / / .
	(55)

The MNSF-2 (55) contains fewer literals compared to 
the MNSF-1 (54). Thus, at the same functionality of ex-
pressions (54) and (55) (Table 12), the latter corresponds to  
a simpler structure (Fig. 6, a).

It can be seen from Fig. 6 that implementation by means 
of the combinational circuit of the MNSF-2 (Fig. 6, a) 
is simpler because it contains a two-input logic element  
AND-NOT which is absent in the scheme that implements 
the MNSF-1 (Fig. 6, b).

Table 12 presents the functionality of the MNSF-2 and 
MNSF-1 for the function given in a canonical form (53).

It can be seen from Table 12 that the FMNSF-2 and FMNSF-1 
have the same functionality, however, the FMNSF-2 has one 
literal less.

According to the results of the minimization of two nor-
mal forms ENSF-1 and ENSF-2, choose MNSF-2 (55) as the 
minimum one.

Table 12
The truth table of functions 

F x x x x x x x x x x xMNSF− = ( ) ( ) ( ) ( )2 1 3 4 1 3 4 2 3 4 2 3/ / / / / / / / / / ;  

F x x x x x x x x x x x xMNSF− = ( ) ( ) ( ) ( )1 1 2 3 2 3 4 2 3 4 1 3 4/ / / / / / / / / / /

No. x1 x2 x3 x4 FMNSF-2 FMNSF-1

0 0 0 0 0 1 1

1 0 0 0 1 1 1

6 0 1 1 0 1 1

8 1 0 0 0 1 1

11 1 0 1 1 1 1

14 1 1 1 0 1 1

15 1 1 1 1 1 1

No. x1 x2 x3 x4 FMNSF-2 FMNSF-1

2 0 0 1 0 0 0

3 0 0 1 1 0 0

4 0 1 0 0 0 0

5 0 1 0 1 0 0

7 0 1 1 1 0 0

9 1 0 0 1 0 0

10 1 0 1 0 0 0

12 1 1 0 0 0 0

13 1 1 0 1 0 0

  
 
 

 

&
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а

b

Fig. 6. Implementation of the minimum logical f(x1, x2, x3, x4) 
function by means of a combinational circuit: 	

a – MNSF-2; b – MNSF-1

6. Discussion of the results obtained in minimization 
of the Sheffer functions by the method of image 

transformations

The mathematical apparatus of image transformations 
was considered in [10, 19, 20, 22, 24]. Hermeneutics of logic 
operations with binary structures provides sufficient didactics 
of simplification of the Boolean functions including the class 
of expanded normal forms of functions of the Sheffer algebra.
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The main task of minimizing the ENSF-1 and ENSF-2 
implies finding terms suitable for a particular algebraic ope
ration. However, with an increasing number of variables of 
the algebraic expression, such a search can become quite dif-
ficult. When simplifying logical formulas, it is not always ob-
vious which of the laws of logical algebra should be applied at 
a given step. In turn, image transformations, due to their in-
herent clarity and unification of original procedures, make it 
possible to solve this problem to some extent. In some cases,  
the apparatus of image transformations is the only way to 
continue the optimal simplification of the logical expression.

Binary structures with repetition which are actually the 
truth tables of given functions were the object of solving the 
problem of minimizing Boolean functions in the Sheffer basis 
by the method of image transformations. This has allowed 
us to do without auxiliary objects, such as Karnaugh map, 
Weich diagrams, acyclic graph, coverage tables, etc.

For example, improvement of the first stage of Quine’s me
thod proposed by McCluskey can be applied to the Sheffer basis.

Let us find the MNSF-1 of a 4-bit Boolean function by 
the Quine-McCluskey method for the sets of literals at which 
function (56) returns the value of 1.

F =




0000 0010 0100 0110

1000 1010 1100 1101 1110

, , , ,

, , , ,

    

    



. 	 (56)

Break the sets of variables into groups depending on the 
number of ones in them and glue the variables in neighboring 
groups (Fig. 7).

Persistent (PNSF-1) of function (56) which is simulta
neously the MNSF-1 (57) was obtained:

F x x x xMNSF− = ( )1 4 1 2 3/ / / . 	 (57)

Finding the MNSF-1 by the method of image transforma-
tions is reduced to the following procedure:

FMNSF− = =1

0

2

4

6

8

10

12

13 1 1 0 1

14

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

== = =

( )

0

1 1 0 1

0

1 1 0

4 1 2 3= x x x x/ / / . 	 (58)

The result of finding the MNSF-1 by two methods is 
the same, however, the method of image transformations is 
much simpler.

The considered method of simplification of logical ex-
pression in the ENSF-1 and ENSF-2 features the use of 
exceptional situations. They are effectively used both in 
deriving the simplification result from the binary matrix and 
introducing the Sheffer function into the matrix.

The visuality of image transformations makes it possible 
to apply a manual method of minimization of the Sheffer func-
tions (using the mathematical editor, e.g. Math Type v. 7.0)  
approximately within ten input variables.

00-0 00-0
0-00 0-00 0--0

0000 -000 -000 -0-0
0010 0-10 0-10 0--0
0100 -010 -010 --00
1000 01-0 01-0 --00
0110 -100 -100 --10 =
1010 10-0 10-0 --10
1100 1-00 1-00 -1-0
1101 -110 -110 -1-0
1110 1-10 1-10 1--0

110- 110- 1--0
11-0 11-0 110-

3-а гр.

0--0
-0-0
0--0 0--0
--00 -0-0
--00 --00 ---0

= --10 --10 ---0 ---0
--10 -1-0 ---0 110-
-1-0 1--0 110-
-1-0 110-
1--0
1--0
110-

1th gr. 

2thgr. 

3th gr. 

1th gr. 

2th gr. 

3th gr. 

4th gr. 

Fig. 7. Breaking sets of the function variables (56) 	
into groups followed by procedures of gluing, absorption, 

and idempotency

Application of the method of image transformations to 
minimize functions of the Sheffer algebra brings the problem 
of simplification of the ENSF-1 and ENSF-2 to the level of  
a well-researched problem in the class of disjunctive-con-
junctive normal forms (DCNF) of the Boolean functions.

Limitations of the method application include the cases 
when the switching function contains logical operations from 
several bases. In this case, the function must be represented 
by a single logical basis.

The weakness of this method is in a narrow practical ap-
plication of equivalent image transformations to the process of 
minimizing the Sheffer functions with subsequent manufacture 
of appropriate computational components. Negative internal 
factors of the method are associated with additional time spent 
on the establishment of protocols for simplifying the Sheffer 
functions with the subsequent creation of a library of rules 
of logical algebra which illustrate the corresponding image 
transformations. Since image transformations are a universal 
apparatus for minimizing the Boolean functions, the prospect 
of further studies may consist, e.g. in the application of the 
method of minimizing the Boolean functions in the class of 
expanded normal forms of the Pierce-Webb algebra functions.

7. Conclusions

1. It was established that the minimization of the Boolean 
functions in the Sheffer basis by the method of image trans-
formations is based on a block diagram with repetition. It is  
actually a truth table of the given function. This makes it 
possible to concentrate the principle of minimization within 
the truth table of the function and thus do without auxiliary 
objects, such as Karnaugh map, Weich diagrams, acyclic 
graph, cubic representation, etc.

The expanded normal form of the n-digit Sheffer function 
can be represented by binary sets (20) or a matrix (21) which  
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in this case will represent terms of the Sheffer function and 
the «Sheffer stroke» operation for them. Such hermeneutics 
should be used effectively in the reduction of a logical func-
tion and deriving the result of logical operations in the class 
of binary matrices of the Sheffer functions.

2. When simplifying the Sheffer functions on binary 
structures, it is necessary to take into account exceptional 
situations. In total, three exceptional situations have been 
identified. They have an effective application both when 
deriving the minimization result from the binary matrix (45) 
and introducing the Sheffer function to the matrix (49).

3. For a proper minimization of the Sheffer functions by the 
method of image transformations, the rules of supergluing (38), 
(39), incomplete supergluing the variables (40), (41), genera

lized gluing the variables (43) were developed and absorption 
rules and semi-gluing the variables (48) were made more clear.

4. It was found that image transformations simplify the  
procedure of establishing the criterion of the minimum 
Sheffer function (example 13) which guarantees an optimal 
reduction of the number of the logical function variables 
without losing its functionality.

5. It was found that the best result of minimizing the 
Sheffer functions can be achieved in both ENSF-1 and 
ENSF-2 (example 14). It follows that minimization of a given  
function should be carried out in two expanded normal 
forms: ENSF-1 and ENSF-2 using a complete truth table. 
The optimal function should be chosen based on the results of 
minimizing two normal forms: ENSF-1 and ENSF-2.
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