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A method for identifying parameters of the conductivi-
ty coefficient of objects is generalized for the case of recon-
structing an image of a part of a soil massif from the tomogra-
phy data of the applied quasipotentials. In this case, without 
diminishing the generality, the reconstruction of the image 
is carried out in a fragment of a rectangular medium with 
local bursts of homogeneity present in it. The general idea of 
the corresponding algorithm consists in the sequential iter-
ative solution of problems on quasiconformal mappings and 
identification of the parameters of the conductivity coeffi-
cient, with an insufficient amount of data on the values of the 
flow functions on the «inaccessible» part of the boundary. 
The image was reconstructed according to the data obtained 
using a full-range gradient array. The developed approach, 
in comparison with the existing ones, has a number of advan-
tages that make it possible to increase the accuracy of identi-
fication of the conductivity coefficient. Namely, it provides an 
increase, in a qualitative sense, in the amount of input data, 
allows avoiding the use of Dirac delta functions when model-
ing areas of application of potentials and sufficiently flexibly 
take into account the mathematical aspects of the implemen-
tation of a quasiconformal mapping of a finite fragment of  
a half-plane onto a parametric polygon (domain of a complex 
quasipotential). The solution of the corresponding problem, 
in particular, occurs not in a single (fixed) investigated frag-
ment of a rectangular soil massif, but in a number of small-
er subdomains of the same shape, in the proposed optimal 
sequence. This saves machine time significantly. The pros-
pects for further practical implementation of the proposed 
method follow from its ability to give an approximate result 
with relatively low costs (financial, time)
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1. Introduction

Modern approaches to identifying the structure of soil 
massifs differ in the level of convenience, complexity in use, 
price, and the like. Electrical resistivity tomography (ERT) 
methods have taken a significant place here, which, due to 
their conceptual simplicity, low cost of equipment and ease 
of use, are being applied in an increasing number of indus-
tries. This is the case in environmental research, hydrological 
research, mineral exploration, archaeological mapping, con-
struction, and the like. For example, ERT is widely used to 
detect groundwater; this is especially important when solving 
the problem of landslides on hillsides. It is used in environ-
mental studies when mapping abandoned industrial lands for 
metal or chemical waste residues. Also, the method is suitable 
for hydrological studies of zones under the bottom of rivers, 
lakes and even seas. It is used in the exploration of near-sur-
face deposits of certain types of oil. It is used in engineering 
and geological studies for laying main pipelines under roads.

The main and significant disadvantage of ERT is the 
relatively low quality of the images obtained. This is due to 
both mathematical and technical aspects. First of all, due to 
the relatively high cost in time and the high cost of three- 

dimensional studies, the most appropriate are considered to 
be the corresponding two-dimensional applications. More-
over, to ensure the uniqueness of the solution, the number 
of specified boundary conditions must be very large and, in 
a sense, uniformly specified along the entire boundary. It is 
obvious that, especially in geological problems, it is generally 
impossible to comply with these conditions. Moreover, the 
averaging of electrical characteristics in the areas of potential 
application, which take place in traditional models, signifi-
cantly negatively affects the resulting solution. The use of the 
Dirac delta function in such cases when modeling the contact 
area between the electrode and the investigated medium by  
a point leads to a certain mathematical inconsistency. De-
spite all the listed problems, on the one hand, and the eco-
nomic feasibility of using ERT methods for identifying the 
soil structure, on the other, this study is relevant. This will 
allow to build more accurate maps of soil massifs.

2. Literature review and problem statement

In most cases of ERT application in the study of media 
structures, calculations are performed approximately. Namely:  



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 ( 107 ) 2020

46

by alternately solving subtasks for constructing current 
density fields and identifying parameters [1]. The latter 
is carried out using nonlinear methods, linear approxima-
tion methods, machine learning, backscattering, direct me
thods, etc. [1–3]. To construct the fields of current densities, 
in most cases, systems of equations of elliptic type are solved 
for given distributions of potentials and the corresponding 
derivatives along the normal along the entire boundary of 
the investigated body [1]. For this, finite-difference methods, 
the method of finite elements, finite volumes, etc. are usually 
used. [1–3]. In geological studies, information on the struc-
ture of the medium and its electrical characteristics is mainly 
limited to data from the surface [2]. Therefore, the issues 
of obtaining such measurements, which led to a qualitative 
result, are given considerable attention, especially taking 
into account the incorrectness of the original problem, in 
particular, according to Hadamard [1, 3]. In other words, 
there is instability, lack of unity or no denouement at all.  
In the process of iterative solution of the problem by means of 
EPT, when applying most of the methods, one usually has to 
deal with all three conditions of incorrectness. As a way out 
of this situation, a very laborious regularization procedure 
is used. In particular, the corresponding constants usually 
have to be selected experimentally. However, it should be 
noted that regularizations usually require only identification 
subproblems, which explicitly or implicitly contain matrix 
inversion procedures [3].

Taking into account, in particular, the problems with the 
input data, the important characteristics of the most common 
arrays (schemes) of charge injection and data collection are 
analyzed by examples and the corresponding comparisons 
are made. A number of characteristics are taken into account 
here, in particular, the value of the geometric factor. This 
value is the reciprocal of the potential difference. Obviously, 
the corresponding values are very large starting from the 
distance from the current electrodes. The sensitivity of the 
boundary conditions to the values of the conductivity coef-
ficient (CC) at various points of the domain is determined 
using the Frechet derivative. The corresponding values tend 
to zero at large distances from the current electrodes. Sensi-
tivity characterizes how much a change in the CC value at 
a particular point affects the measurements of the potential 
values on the surface. Signal-to-noise ratio characteristic is 
also analyzed.

Another important problem that arises when organizing 
the process of obtaining input data is the appropriate choice 
of array, depending on the characteristics of the environ-
ment under study. In [5], comparisons are made between 
the four-electrode gradient, dipole-dipole and Wenner ar-
rays. Significant advantages of the gradient configuration 
over others in all parameters are noted. In [4], the values 
of the geometric factors of the dipole-dipole, gradient and 
Schlumberger arrays are compared. Here, the dipole-dipole 
configuration is defined as having the highest sensitivity to 
noise. Whereas the gradient is the smallest. This paper also 
proposes the use of a full-range gradient array, which also 
covers measurements outside the study area. This allows 
more data to be obtained, although it results in a slightly 
worse signal-to-noise ratio.

Moreover, there is a significantly different type of array. 
In works [2, 4] examples of the study of a soil massif between 
two wells, inside which electrodes are placed, are given. For 
such a case, in [4] it was proposed to use the following arrays: 
pole-pole, pole-bipole, bipole-pole and bipole-bipole. Also, 

in this work, a certain improvement of the finite element 
method is used to construct the current density fields – the 
Gaussian quadrature grid approach.

An important issue in the study of the structure of soil 
massifs is the presence of anisotropy effect. In [6], all existing 
problems, including regularization, are outlined in suffi-
cient  detail.

The work [2] describes the general idea of reconstruction 
of a three-dimensional image of a fragment of a soil massif. 
The specific results of the operation of the corresponding 
algorithms on real examples are also presented.

In general, when solving the problem of reconstructing 
the image of a soil massif by ERT means, it is assumed that 
the particles move according to Ohm’s law J = σgradj where 
J is the current density, σ is the CC, and j is the quasipoten-
tial. In most applications, the source of charges is considered 
«point», and when solving the corresponding problem, the 
current I is taken averaged over the volume of the contact V. 
Then, assuming divJ = 0, the relationship between J and I is 
set in the form [2, 4]: grad(σgradj) = –δ(x–xs)δ(y–ys)I/ΔV, 
where δ is the Dirac delta function, (xs, ys) is the coordinate 
of the current electrode.

Reconstruction of the image of the structure of a soil mas-
sif by ERT methods, in addition to the above, has a number 
of other mathematical and physical aspects [2]. First of all, it 
should be borne in mind that problems of this kind are solved 
in infinite domains using elliptic equations with known 
boundary conditions. Since in practice it is usually impos-
sible to obtain such a volume of data, when reconstructing 
images, they are most often limited to the corresponding 
final fragment in the form of a rectangle [2, 4, 6] or a trape
zoid [2, 4, 5, 7]. In general, to ensure maximum accuracy of 
calculations, the dimensions of these figures should be as 
large as possible. However, in order to speed up the calcula-
tions, the values of the corresponding parameters are selec
ted depending on the array used, the availability of a priori 
data within the area and the values of the geometric factor. 
A separate problem is the implementation of quasiconformal 
mappings of a finite fragment of a half-plane [2, 8].

It should be noted that all of the above types of arrays 
have their own advantages and significant disadvantages, 
and are used depending on the structure of the studied en-
vironment and the corresponding boundary. However, in all 
cases there is an «acute» lack of data due to the difficulty of 
accessing deep soil layers. The use of Dirac delta functions 
in modeling the areas of application of potentials [2, 4, 7] 
distorts the resulting solution.

Thus, to date, the question of the «point nature» of the 
areas of application of potentials and the use of Dirac func-
tions has not been resolved. The regularization problem is 
complex and ambiguous, which requires an experimental se-
lection of constants. The problem of obtaining a large amount 
of data, also from the entire border of the domain, is unsolved. 
The boundaries of the studied environment, as a rule, are 
chosen very approximately. It is impossible to explore deep 
soil layers. There is no perfect array for collecting data from 
the border. The problem of time-consuming and high cost 
for obtaining a three-dimensional image has not been solved. 
Modern methods for solving subproblems of constructing 
current density fields and identifying parameters have their 
own advantages and disadvantages. In combination, the 
listed problems complement various inaccuracies and errors, 
which often lead to an unsatisfactory result. However, some 
of these issues, today, can be at least partially solved.
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3. The aim and objectives of research

The aim of research is to extend the method of quasicon-
formal mappings in the case of identifying the CC parameters 
of a fragment of a soil massif with a known structure of the 
latter. This will allow obtaining more accurate images at 
relatively low costs in the field of environmental research, 
hydrological research, mineral exploration, archaeological 
mapping, construction, and the like.

To achieve this aim, the following objectives are formed:
– to modify the mathematical model of the tomography 

problem of the applied quasipotential in the body image 
reconstruction in the case of identifying the parameters of 
a fragment of a soil massif;

– to develop an algorithm for reconstructing the image 
of a part of a soil massif and write an appropriate computer 
program;

– to carry out numerical experiments and carry out their 
analysis.

4. Working hypothesis and formalization  
of the problem description

Without loss of generality, within the framework of this 
work, let’s restrict ourselves to the use of a four-electrode 
full-range gradient array in the absence of simplification in 
terms of the «point-like» nature of the potential application 
areas. Such a data acquisition scheme, in comparison with 
others [2, 4], is characterized by a high density of input data, 
relatively low sensitivity to «noise» and relatively small 
values of the geometric factor. Therefore, this array, in most 
cases, allows to obtain the most accurate results precisely in 
the near-surface zones.

As noted above, in ERT there is an «acute» problem of 
lack of input data, the use of Dirac functions in modeling 
the areas of application of potentials and the complexity of 
the implementation of quasiconformal mappings of a finite 
fragment of a half-plane. To increase in a qualitative sense 
the number of the first, to avoid the second and at the same 
time to flexibly take into account the third possible based 
on research [8–10]. In particular, they dealt with precisely 
these problems, but in environments with discretely speci-
fied boundary conditions along the entire boundary. Namely, 
in [8], the issues of flow formation in the presence of several 
sections of application of quasipotentials were studied in de-
tail. In [9, 10], a new technique (method and corresponding 
algorithms) was developed for the complex analysis 
of solving tomography problems of applied quasipo-
tentials. It provides, for each of the corresponding 
injection, the presence on the boundary of the domain 
of only equipotential lines, with given functions of 
local current densities, and streamlines, with known 
distributions of the quasipotential on them. In [9], 
the technique is concretized in the case of media with 
available local bursts of homogeneous materials. Here 
CC is sought in the form:
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where χ, αk, ek, xk, yk (k = 1, …, s) are parameters determined in 
the process of solving the problem, s is the number of bursts.

Without loss of generality, in this work, the infinite 
half-plane (soil massif) will be replaced by a rectangular 
domain (a fragment of the vertical section of the soil massif)  
Gz (Fig. 1, a). The corresponding limits are set by four 
line segments B0B1: x = –a/2, 0 ≤ y ≤ b; B1BpApDpCpC0: y = 0, 
–a/2 ≤ x ≤ a/2; C0C1: x = a/2, 0 ≤ y ≤ b; B1C1: y = b, –a/2 ≤ x ≤ a/2. 
On a part of the boundary (on some equipotential lines) set 
quasipotentials:
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obtained in the process of transmission of electric charges and 
simultaneous measurements, where p = 1,2,… is the injection 
number [9, 10]; j(p) = j(p)(x,y) are quasipotentials; Ap, O*p, Bp,  
B0, B1, p, C1, C0, Cp, Op

* , Dp, p are marked points on ¶Gz;  
a and b – longitudinal and transverse dimensions of the inves-
tigated domain (rectangle); B0Bp, C0Cp and ApDp are impe
netrable boundary lines of currents. Current injection through 
the tomographic cross section, similarly to [9, 10], is modeled 
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The corresponding to the given injection boundary of the 
domain Gz with the given four marked points on it is denoted 
by ¶Gz

p( ) (z(p) = x(p)+iy(p)).

The solution of geological problems by ERT means, 
in most cases [2, 4, 7], occurs with the use of Dirac delta 
functions in the areas of application of quasipotentials.  

a b

Fig. 1. Schematic images: a – cross-section of a fragment 	
of a soil massif Gz

p( ); b – corresponding domains of the complex 
quasipotential G p

w
( )
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In this work, the corresponding formulation, provided that 
the parameters of the CC σ = σ(x,y) are identified and the 
quasipotentials j(p) = j(p)(x,y) are found in the form (1), (2),
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where M is the current point of the corresponding curve; n is 
the unit outward normal vector. Functions
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similar to [9, 10] can be constructed by interpolating their 
experimentally obtained values
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Let’s note that in most practical cases of identification of 
the soil structure by ERT means, there is no possibility to 
obtain (measure) the values of functions

σ
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¶

( )p M

n

in sections of the B0B1C1C0 type. Therefore, the correspond-
ing problems, in particular (1)–(6), have, generally speaking, 
an infinite number of solutions. However, it should be noted 
that they differ little from each other in the subdomain with  
a sufficiently large value of the geometric factor; usually 
these are near-surface soil layers [2, 4].

5. Materials and methods of research (modification  
of problem (1)–(6) and its difference analogue)

A typical approach to solving problems (1)–(6) involves 
the averaging of functions (6) and the introduction of the Dirac 
delta into differential equations (3) [2, 4, 7]. To avoid such  
a rather «rough» simplification, let’s propose, like [8–10], to 
introduce quasiharmonic functions ψ(p)(x,y) (flow functions), 
complex conjugate to j(p)(x,y) and replace ( 3), (4) and (6) on
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Thus, from problem (1)–(6) let’s pass to its generalized 
analogue (2), (5), (7)–(9) onto quasiconformal mappings 
ω = ω(p)(z) = j(p)(x,y)+iψ(p)(x,y) of physical domains 
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to the corresponding domains of the complex quasipotential
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subject to CC identification (1) [8, 10], where dl is the arc 
element of the corresponding curve; j j0
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Taking into account the unconditional advantages [8] of 
passing to back reflections z(p)(ω) = x(p)(j,ψ)+iy(p)(j,ψ) of 
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domains G p
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p( ), let’s write problem (1), (2) 
(5), (7)–(9) in the form [8, 10]:
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subject to identification (1), where x x p= ( )( ) ,j  x x p= ( )( ) ,j  
x x p= ( )( ) ,j  x x p= ( )*

( ) ,ψ  x x p= ( )*( ) ψ  are the functions con-
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3 1
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of discharges at points B1 and C1, respectively. Moreover, for 
an approximate solution of this problem, instead of gene
ralizations of the Cauchy-Riemann conditions (10), it is 
convenient to use generalizations of the Laplace equations at 
all interior points of the domains G p

w
( )  and the orthogonality 

conditions on their boundaries [8]:
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Let’s carry out the CC reconstruction with minimization 
of the functional [10], which does not provide for the use of 
matrix inversion procedures, and therefore does not require 
regularization [3]:
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Here, the summation is carried out over the data at the 
running nodes  x yi j

p
i j

p
,

( )
,

( ),( ) of the corresponding dynamic grid, 
and only at points with a sufficiently large value of the geo-
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is a function that characterizes a certain «iterative-interme-
diate» CC distribution at the p-th injection.

An approximate solution of problem (1), (11)–(14) under 
the condition of minimization of functional (15) is sought, 
similarly to [8, 10], on a uniform grid in network domains
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In this case, let’s write the corresponding difference rep-
resentations in the form [8, 10]:
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Here γ(p,ξ) are quasiconformal invariants [8] for do-
mains G p

w
γ x( , );
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are nodes with discharges

Q
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p p p
1

1 1( ) ( , ) ( , )/ Δ  Δψ ψ  and Q
C

p p p
1

4 4( ) ( , ) ( , )/ Δ  Δψ ψ

through sections pB0 and pC0, respectively; indices and 
values of quasiconformal invariants of formulas (16) and 
(19) are determined in accordance with the Table 1, and 
expressions (19) are taken into account only at nodes with  
a relatively large value of the geometric factor;
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Table 1

Dependencies between indices and values of quasiconformal 
invariants of formulas (16) and (19)

ξ i j γ x( , )p

1, 2, 3, 4 1 1, ( )m p
x − 1 1, ( )n p

x − γ(p,ξ)

1, 4 1 1, ( )m p
x − 0 γ γx x( , ) ( ,( )/ )p p +5 3

2 m p
2
( )

It is worth noting [8] that the difference formula (16) 
was constructed using a «cross» type scheme and is used for 
a relatively quick refinement of the coordinates of the inter-
nal nodes of electrodynamic networks. Expressions (17) and 
(18) are orthogonality conditions and boundary conditions, 
respectively; the first of them are formed using left and right 
first order difference schemes. Minimizing functional (19) is 
intended for direct identification of the СС and is construc
ted from considerations of quasiconformal similarities in 
small curvilinear quadrangles of two similarities.

6. Algorithm for the numerical solution of the difference 
problem (16)–(19)

It consists in the alternate parameterization of quasicon-
formal invariants, internal and part of the limit nodes of net-
work domains and CC, using the ideas of the block iteration 
method [8–10]. First of all, let’s set the following data:

1)  auxiliary parameters q1 and q2, accuracy parameter 
e, number of bursts s, number of injection , approximation 
numbers l = 0 and r = 0 of the sought functions and parameters;

2)  quasipotentials j*
( ),p  j0

( ),p  j*( )p , and discharges Q p
12
( ) and 

Q p
34
( ) in the corresponding sections ApBp and CpDp;

3)  initial approximations of the CC parameters χ( ),l  αk
l( ), 

ek
l( ), xk

l( ), yk
l( ) (k = 1,…,s);

4)  the number of nodes for dividing networks in Fig. 1,
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5)  parameters for specifying key points on the bounda
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6)  width a and height b of the investigated area;
7)  coordinates of boundary (on sections B0B1C1C0):
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on the basis of which the functions is built
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by interpolation.
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on the sections BpApDpCp by formula (17) and quasiconfor-
mal invariants

For p p= 1,   successively iteratively refine the quasicon-
formal invariants γ(p,ξ,l), all internal and some of the limit 
nodes (20) according to formulas (21), (16) and (17), (18), 
respectively, with a simultaneous increase in the parameter l. 
At the same time, it should not be allowed that n

B

p l
1 4( , ) <  and 

n
C

p l
1 4( , ) ;<  the equations of systems (17), (18) must be com-

bined in such a way that the distances between the boundary 
and limiting nodes become as small as possible. Further,  
every q1 iterations, let’s check simultaneously
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then decrease n p l
2
( , ), n p l

3
( , ) and increase n p l

1
( , ), n p l

4
( , ). Moreover, 

every q2 iterations, let’s check the grid nodes are sufficiently 
stabilized, for example, using formulas [8]. In the positive 
case, let’s increase r and refine the CC parameters χ( ),r  αk

r( ), 
ek

r( ), xk
r( ), yk

r( ) (k = 1, …, s) using one of the global optimiza-
tion methods, for example, [11] according to formula (19). 
If |F(r)–F(r–1)|<e (let’s fictitiously set F(0) = 0), then let’s 
complete the iterative process, display the reconstructed 
image and, if necessary, electrodynamic grids, domains of the 
complex quasipotential, fields of current densities, discharges 
Q p p p l

x
x xj γ( ) ( , ) ( , , )/= Δ Δ  ( , ),x = 1 4  and the like. Otherwise, let’s 

start the iterative process again.

7. Results of numerical calculations of CC parameters  
by means of ERT inside a fragment  

of a soil massif

Numerical calculations were carried out on the basis of 
data obtained using a full-range gradient array [2, 4]. In this 
case, the solution of the difference problem (1), (16)–(18)  
is proposed to be performed not in a single domain in 
Fig. 1, a, and in sufficiently large h subdomains with lon-
gitudinal a x xp C

p
B

p= − +( ) ( ) 180 and transverse bp = 0.5ap di-
mensions ( , ).p p= 1   With such a division into subproblems, 
on the one hand, there are sufficiently small values of 
the geometric factor at the boundaries, and on the other 
hand, savings in computer time are provided. Here a = ap,  
b = bp B B C C B B C Cp p p p

0 0 0 0 1 1 1 1= = = =( ), , , .
Fig. 2 shows examples of computational grids for the 1st 

and 200th injection. The procedure itself for specifying net-
work nodes is carried out not for  situational cases of appli-
cation of quasipotentials with a fixed CC, but for  different 
variants of the CC distribution with «block» fixed sections of 
application of quasipotentials.

In this case, in order to speed up the calculations, it 
is worth choosing the initial approximations of the coor
dinates of the nodes of the next injection as calculated 

from the preliminary injection. For 
the convenience of calculations, let’s 
also introduce the parameters w and 

h [2] to designate the total number 
of application areas of quasipoten- 
tials and different application distan
ces, respectively.

a

b
Fig. 2. Examples of computational grids: 	
for a – 1st injection; b – 200th injection

Experimental data on the values of the functions of the 
quasipotential and local current densities along the sec-
tions B A B D C Cp p p p p p

0 0 , for the given CC parameters χ, αk, ek,  
xk, yk (k = 1,…,s) and potentials j*

( ),p  j0
( ),p  j*( ),p  were obtained 

using the program for simulating a physical experiment de-
veloped earlier. At given
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and the known standard Fig. 3, а and the computational pro-
cess turned out to be convergent, and the solution (Fig. 3, b) 
«within reasonable limits» corresponds to the expected 
one. Such results were achieved even if the requirement for 
the depth of research was not met, which, according to [2], 
should not exceed 1/3–1/6 of the maximum distance bet
ween the ApBp and CpDp domains.
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Fig. 3. Tomographic image of the distribution 	
of CC values in grayscale: a – standard with one burst 

(χ = 1.3, α0 = 1, e0 = 120, x0 = 0, y0 = 30); b – reconstructed 
image; c – standard with three bursts (χ = 1, α0 = 0.7, 	

e0 = 20, x0 = –90, y0 = 25, α1 = 1, e1 = 100, x1 = –20, y1 = 35, 
α2 = –0.55, e2 = 50, x2 = 60, y2 = 20); d – corresponding 

reconstructed image

Complicating the structure of the environment by setting 
s = 3 bursts and increasing the amount of input data using the 
parameter h = 4, the image in Fig. 3, d with reference Fig. 3, c.

8. Discussion of the results of an approximate solution to 
the problem of reconstructing the image of a fragment of 

a soil massif by ERT means

As is known [1], when solving problems by ERT means, 
there is no general mechanism for comparing the quality 
of the obtained images with the reference ones. Since most 
often ERT is used only to determine the coordinates of in-
homogeneities in the domain [1, 2, 12], then, similarly to [9], 
as the main criterion, let’s take the residuals of the distances 
between the «peaks» of the CC values.

In Fig. 3, b for the calculated parameters

χ = 1 271533. ,  
α0 0 3321661= . ,  

e0 919 6152= . ,



x0 1 254098= − . ,  


y0 43 75537= . ,

the discrepancy of the coordinates of the bursts is 13.81242. 
With only h = 2, this result can be explained by a small 
number of the sought parameters. At the same time, functio
nal (19) takes the value 58249, which on average corre-
sponds to an error of 0.018 per node, however, obviously, it 
reaches significantly larger values in some areas.

In Fig. 3, d with the calculated parameters

χ = 0 9853642. ,  
α0 0 3160008= . ,  

e0 152 4604= . ,  



x0 8 698875= − . ,  


y0 33 48841= . ,  
α1 0 2597447= − . ,  

e1 27 3199= . ,  


x1 59 79078= . ,  


y1 10 39442= . ,  

α2 0 6426869= . ,  
e2 243 1526= . ,  



x2 62 94914= − . ,  



y2 48 82635= .

discrepancy of the coordinates of the «peaks» of the CC va
lues are as follows: 36.71644, 11.40177, 9.60786. In this case, 
functional (19) takes on the value 194031, which on average 
corresponds to an error of 0.045 per node.

In both cases under consideration, similar dynamics of 
distributions of CC values are observed in comparison with 
the reference ones. Namely: as expected [10], the calculated 
images are blurred, that is, lower CC values were obtained at 
the centers of the bursts at their large scales. In this case, the 
coordinates of the reconstructed «peaks» along the y-axis are 
lower than on the reference. These facts are explained, on the 
one hand, by the properties of functionals of the form (15), 
which minimize the square of the error at a number of nodes 
simultaneously, and, on the other hand, by the errors of the 
method of quasiconformal mappings. The level of the latter 
can be somewhat reduced in one of the following ways:

– increase in the number of sections for the simultaneous 
application of quasipotentials, which, however, can lead to 
too much condensation of the vicinity of a significant viola-
tion of quasiconformality; this can be solved by «replacing» 
the smoothness at the corner points with orthogonality;

– use of precise data types in order to reduce the rounding 
error accumulated in the computational process, which, on 
the other hand, negatively affects the speed of calculations;

– use of accurate meshing schemes, on the other hand, 
will slow down computations;

– prevention of large areas of violation of quasiconformi-
ty around points Bp

1 , C p
1 by changing the shape of equipoten-

tial lines B B C Cp p p p
0 1 1 0  to smoother;

– by setting greater accuracy of the completion of the 
calculation process: both at the stage of simulating a physical 
experiment, and in the process of identifying the CC.

The problems that arise due to the form of functio
nal (15), like [1, 3], can be partially solved by a significant 
change in its form or regularization.

It should be noted that this study concerns isotropic me-
dia with available bursts of CC values. But similarly to [9], 
the corresponding studies can be easily extended to other 
media, including anisotropic ones. However, in the latter 
case, it is necessary to have additional information about the 
structure of the conductivity tensor [1, 6, 9].
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The carried out research is also easy to extend to the case 
of curved soil surfaces [2, 12]. However, it is important here 
that there are conditions for fixing the electrodes in sufficiently 
large areas; otherwise, make a decision on the use of a different 
charge injection scheme [2, 4, 5]. In particular, the permissible 
depth of research substantially depends on the latter [2, 5].

The calculated image is not always easy to interpret correctly, 
primarily due to the similar electrical characteristics of a num-
ber of components of the soil massif. For example [2], lignite, 
depending on its state, has the same CC values as fresh water.

The study, similar to [2], does not concern the reconstruc-
tion of the image of too deep soil layers. Problems also remain 
in identifying the parameters of highly contrasting media.

In the future: transfer of the developed algorithm to 
space [2], anisotropy [1, 6, 9] and cases of piecewise homoge-
neous media [2] using the conditions of non-ideal contact [13]. 
In addition, it is important to develop mechanisms for bringing 
various additional conditions to the studied environment, in 
particular, discrete data from deep soil layers [2, 4, 6]. It is also 
advisable to develop an approach developed for the cases of re-
construction of the image of the middle verdure space [2, 4, 6]. 
An important issue is the parallelization of computations 
like [9], taking into account the large volumes of computations.

9. Conclusions

1. The method developed in [10] for reconstructing im-
ages of solid objects with known additional conditions along 
the entire boundary is transferred in the case of identifying 
the parameters of the structures of fragments of soil massifs 
with uneven setting of additional boundary conditions.  

At the same time, the reconstruction of the image occurs 
only in the subdomain in which the value of the geometric 
factor is relatively large. The peculiarity and advantage of the 
proposed approach is not only to avoid the use of the Dirac 
delta functions, that is, the «pointness» of the electrode 
application areas, but also the use of qualitatively new data 
at the potential application areas. In addition, it is assumed, 
for each of the corresponding injection, the presence on the 
boundary of the domain of only equipotential lines, with  
given functions of local current densities, and streamlines, 
with known distributions of the quasipotential on them.

2. An algorithm for reconstructing the image of a frag-
ment of a soil massif by means of electrical resistivity tomog-
raphy with an uneven distribution of data along the border 
has been developed. It provides for a sequential paramete
rization of the values of quasiconformal invariants, internal 
and part of the limit nodes of network domains and the 
conductivity coefficient, using the ideas of the block iteration 
method. In order to speed up the computations, a modifica-
tion of the above algorithm is also proposed.

3. The prospect of further practical implementation of 
the proposed method follows from its ability to give an 
approximate result at a relatively low cost. In particular, 
although with an increase in the distance from the contact 
electrodes the maximum quality of reconstruction rapidly 
decreases, nevertheless, it is possible to reduce the level of 
error by minimizing the functional. This will allow obtaining 
more accurate solutions, first of all, in the subdomain with 
a sufficiently large value of the geometric factor. This effect 
can be achieved by reducing the size of the quasiconformity 
violation areas, using more accurate data types and difference 
schemes in computer calculations.
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