
Information technology

29

1. Introduction

Debugging is one of the most important, complex, and
time-consuming tasks in software development. The IEEE
Standard Glossary of Software Engineering Terminology
defines debugging as an operation to detect, localize, and
correct bugs in computer programs [1]. Developers typically
spend at least 30 % of their time debugging and use an inte-
grated development environment (IDE), such as Microsoft
Visual Studio [2].

Improvement of the quality of coding and debugging
by students and beginning developers is the foundation for
training in programming. Papers [3, 4] presented the toolkit
for automatic monitoring and visualization of the code pro-
duction process. These approaches are also proposed to be
extended to debugging processes.

Development of effective debugging skills is especially
important for beginners: they are still learning the syntax
and semantics of the programming language are more likely
to create a wrong code, have limited skills of understanding
programs and effective debugging, which often leads to diffi-
culties in comprehending and resolving errors [5, 6].

Empirical research into software development is most of-
ten based on the data extracted from version control systems
and bug tracking tools, but not from the IDE because they
do not record developers’ actions. Process Mining methods
make it possible to analyze process-oriented data, including
the automatic discovering process models and checking the
compliance of event data conform to a reference model [7].

Programming requires many competencies, and their
training is a central problem in computer science education.
In this regard, research aimed at forming new approaches
and developing tools to improve the quality of students’
training in programming is relevant. Students must not
only understand programming concepts but also be able to
find independent solutions when faced with bugs. Checking
programs for bugs, finding, and correcting them are the main
competencies of professional developers.

2. Literature review and problem statement

First, let us consider approaches to studying debugging
processes.

Copyright © 2020, V. Shynkarenko, O. Zhevaho

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0)

DEVELOPMENT
OF A TOOLKIT

FOR ANALYZING
SOFTWARE

DEBUGGING
PROCESSES USING
THE CONSTRUCTIVE

APPROACH
V . S h y n k a r e n k o

Doctor	of	Technical	Sciences,	Professor*
E-mail:	shinkarenko_vi@ua.fm

O . Z h e v a h o
Postgraduate	Student*

E-mail:	marakonec@gmail.com
*Department	of	Computer		

and	Information	Technologies
Dnipro	National	University	of	Railway	Transport	

named	after	Academician	V.	Lazaryan
Lazaryana	str.,	2,	Dnipro,	Ukraine,	49010

Constructive-synthesizing modeling and the Process
Mining methods in a toolkit to monitor and analyze the soft-
ware debugging process were applied. Methods for monitor-
ing the development and debugging processes are the basis for
improving the level of practical training of students, reducing
the time that is used irrationally in the process of software
development by a student, and in monitoring the processes of
performance of tasks by a teacher. The process of software
debugging is seen as a sequence of actions when dealing with
relevant tools. Using the methodology of constructive-syn-
thesizing modeling, a constructor for forming a debugging
actions log was developed. Based on the constructive model,
the extension to the integrated development environment
(IDE) Microsoft Visual Studio, in which all debugging actions
are recorded in an event log, was designed. During debug-
ging in the IDE, event logs are collected and then a con-
formance checking of these logs with regard to the refer-
ence model is performed. To do this, the ProM (Eindhoven
Technical University, Netherlands), a platform for Process
Mining methods, is used. By checking compliance, it is pos-
sible to compare different debugging processes and recognize
behavioral similarities and differences. The main purpose of
the developed toolkit is to collect debugging actions from the
developer’s IDE. By better understanding how students grasp
and deal with errors, one can help novices learn to program.
Knowing how programmers debug can encourage researchers
to develop more practically directed methods, enable teach-
ers to improve their debugging curricula and allow tool devel-
opers to adapt the debugger to the actual needs of users. It is
practically suggested to use the prepared tools in the software
engineering course

Keywords: Process Mining, debugging, constructive-syn-
thesizing modeling, training, software engineering

UDC 004.9
DOI: 10.15587/1729-4061.2020.215090

Received date 06.09.2020

Accepted date 22.10.2020

Published date 30.10.2020

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (107) 2020

30

Successful debugging usually depends on a proper under-
standing of the syntax and semantics of a program. The level
of understanding of a program and previous experience with
such bugs are two key aspects that distinguish a beginner
from an experienced debugger [8, 9]. Debugging can greatly
improve understanding of a program, as it requires that
developers could read and understand a code. In paper [10],
developers were interviewed to understand how they explore
programs. The result showed that programmers spend most
of their time reading and understanding a source code. The
most effective tool for understanding a code, in their opin-
ion, is multiple running of an application using a debugger.
This supports the hypothesis that debugging is used not only
to localize bugs but also to understand a source code.

A lecture with a learning support system was developed
in article [11] to help students debug using exercises. The
drawback of the system is that doing proposed exercises
requires a fairly high level of skills and not all the tested can
study the debugging process. In addition, training based
on three exercises cannot show actual skills. There was no
experiment to assess the effectiveness of the debugging
training system. The eight most common errors of beginner
developers were studied in article [12]. Eight short pro-
grams, each representing one type of a bug, were written,
and the tested had to match the program with the type of
the detected bug. The experiment involved 59 second-year
students from Kent State University. The experiment was
designed to track the order, in which a participant corrected
errors, in addition to the time spent on each of the bugs. The
results make it possible to identify the bugs that are more
complex. However, they do not give an opportunity to assess
the level of students’ debugging skills and do not determine
what methods and debugging tools were used.

The tools for computing thinking, one aspect of which is
debugging, were developed in the study [13]. The Light-Bot
(Canada) training game is used to explain its structure. The
downside of Light-Bot is that it is used solely to teach pro-
gramming and debugging skills, rather than analyze them.
In addition, it has a very limited set of debugging tools and
when moving to a professional IDE, it will be necessary
to carry out the learning process again. The authors of re-
search [14] collected and analyzed 450 bugs that students
cannot solve and on which they turn to teachers for help. To
collect the data, a web application, where students provide
a brief description of an assignment and the problems they
faced, was developed. After that, the teacher reviews a code
with a student and helps him understand the problem. The
most common types of bugs are discussed in class. The main
result of the study is that approximately 22 % of problems
are related to problem-solving skills, while the rest are as-
sociated with a combination of logical and syntax errors.
Understanding the errors students face makes it possible
to teach them the necessary debugging skills. Teachers use
these data to continuously improve the syllabus. Information
on the effectiveness of this approach is not given. The down-
side of this approach is that students should visit the site on
their own and describe the problems they face, instead of
collecting this information directly from the IDE.

In article [15], modern trends in software debugging
methods were considered. A systematic debugging proce-
dure was proposed in research [16]. The study shows that
only a few students took a structured approach, but quickly
returned to an unstructured one. Students were asked to
find defects in a code analyze and fix them. In addition, stu-

dents were asked to document their approach. As a result,
in order to improve students’ debugging skills, a systemic
approach to debugging was developed. The drawback of this
approach is that the conclusion about the skills is based on
the approach documented by a student himself and manually.

Based on a study of the BlueJ-Blackbox dataset, the
errors that Java beginners typically encounter are presented
in paper [17]. Empirical studies show that semantic errors
are more common than syntax ones, especially among ex-
perienced developers. Based on compilation events from
250,000 students from around the world, the debugging
frequency and time were analyzed. The downside is that
only compilation errors are analyzed and only from the BlueJ
IDE, which is used to teach programming and is radically
different from professional environments. As a result, after
the transition to modern, professional IDE, it will be neces-
sary to repeat the learning process.

Article [18] studied the debugging methods of experi-
enced software developers through short interviews and
observation of each of eight participants for several hours
during one working day. The most common method among
the respondents is “intuitive”. They formulate hypotheses
about a program and then do simple experiments to test them.
Based on the obtained results, a questionnaire for a debugging
survey was created. The results of the study are not subject
to generalization. The main problem is a small scale, eight
developers. Another problem is a limited period. The results
of the study do not bear practical value for teaching students.
In research [19], a study on how programmers set breakpoints
was organized. Analyzing the operators, by which developers
set breakpoints, it was found that 53 % of breakpoints were
set in call operators and only 1 % in cycles. These data are also
supported by study [20]. The conclusion of this study is that
setting breakpoints and the step-by-step execution of a code
are the most commonly used debugging methods.

As we can see, multifaceted research in debugging pro-
cesses is not based on models of processes and does not make
it possible to study the debugging process of each particular
software developer.

Secondly, let us look at how the programming environ-
ment is used to study debugging processes.

A practical guide to the use of IDE is provided in re-
search [21]. The research is based on the idea that the tools
collecting data on the IDE use provide a more detailed un-
derstanding of the work of developers than it was previously
possible. The paper describes approaches to mining data from
different development environments, and some of these ap-
proaches are used in the developed extension. The dataset,
which contains more than 600 hours of interaction between
a programmer and the IDE, of which more than 26 hours are
accompanied by computer screen video recordings and oral
comments by developers, was presented in paper [22]. The
drawback of this approach is that only events during code
writing, without debugging it, were analyzed, and logged. In
addition, no information is mined from the received videos,
so their analysis can only be manual. The way users spend
their time working at Microsoft Visual Studio was considered
in [23]. Like in the developed extension, data on software devel-
opment and debugging processes are extracted from the IDE.
However, information on debugging is limited to breakpoints.
In addition, the mined information is not analyzed in any way.

Hidden Markov Models (HMM) are also used as a means
of mining developer’s behavior from the data on the interaction
with the IDE. According to this approach [24], a series of de-

Information technology

31

bugging sessions, involving about 200 professional developers
from ABB, Inc., was studied. The developed debugging model
records the developers’ behavior during setting breakpoints,
beginning of debugging, and step-by-step execution of a code.
The drawback of the proposed approach is that it collects data
on only a few debugging tools and that it is semi-automatic.
The HMM debugging process is manually constructed by an
expert. In addition, only debugging data are extracted from the
IDE without the development process. In paper [25], the paths
chosen by students when debugging using the HMM were cho-
sen. The downside of the work is that the described approach is
only theoretical and there are no examples of its even potential
use. In addition, the debugging process is considered very su-
perficially, fixing only the run of a program in the debugging
mode, without information about the tools used.

Swarm Debug Infrastructure (SDI), providing tools to
collect, exchange and mine debug activities, was implement-
ed [26]. Programmers can use the overall experience of pre-
vious debugging sessions. SDI was evaluated in an empirical
experiment with 10 engineers. SDI is only designed to collect
and share information about established breakpoints and de-
bugging paths. It does not implement the analysis of the debug-
ging process and the skills of developers. Paper [27] presents an
online tool, Ladebug (Digital Equipment Corporation, USA),
designed to support debugging skills training. In this tool,
students use a systematic debugging process to identify and
correct errors in preset exercises. The presented tool is used
only to teach the basics of debugging and does not analyze the
students’ skills. In addition, the debugging process takes place
inside a tool that is only used for learning with a very limited
set of tools. When they move to a professional IDE, students
will have to go through the learning process using actual, not
educational tools. The cognitive processes of students while de-
bugging applications that use eye-tracking were studied in arti-
cle [28]. The students’ eye movements were recorded to see how
high- and low-efficiency students behave during debugging.
The study found that beginners in programming followed a lin-
ear line-by-line approach when debugging computer programs,
while students with prior programming experience followed a
more logical and strategic approach. Thus, we decided to divide
students into groups according to their success, creating an
environment, in which they can think out loud. The downside
of this approach is that it is impossible to analyze the debugging
process during individual work.

At last, thirdly, explore how Process Mining tools are used.
Over the past decade, the application of the Process Min-

ing has been effective in analyzing processes based on event
data. The goal of Process Mining is to discover, monitor, and
enhance processes by using the data from an event log from the
information system [29]. The IEEE Task Force has released the
Process Mining Manifesto [30]. The Manifesto was supported
by 53 organizations and 77 Process Mining experts. It is aimed
at promoting Process Mining. In addition, by determining a set
of rules and listing critical issues, this manifesto should serve as
a guide for software developers, scientists, and end-users.

Process Mining can be equally applied to software [31].
Using Process Mining methods, in paper [32], they stud-
ied how programmers interact with software repositories.
In study [33], the records in issue tracking systems were
examined. The general drawback of these papers is that
the data are extracted from the systems that do not make
it possible to assess the student’s contribution to the result
because they do not provide information about the process
of software writing and debugging. In article [34], the com-

pliance check was used to test the behavior of developers.
The actions performed by 40 beginners-developers executing
coding actions in five development sessions were assessed.
The work mainly focuses on using a compliance-based ap-
proach, comparing the execution of processes recorded in
event logs with some of the expected behaviors presented as
a process model. The disadvantage of the proposed approach
is that the development and the debugging process are seen
as a single process. A similar approach was introduced in
research [35], but there was only a basic concept, leaving its
implementation and verification for subsequent work.

The systematization of research results suggests a lack of
knowledge of how programmers fix problems in the software
debugging process. All of this makes it possible to argue that
a study on the development of tools for tracking, modeling,
and analyzing software debugging processes is appropriate.

3. The aim and objectives of the study

The aim of this study is to develop tools to monitor and
analyze software debugging processes. By analyzing how
developers use the IDE, one can discover the patterns of
programmers’ behavior during debugging and identify the
problems they face.

To accomplish the goal, the following tasks were set:
– to develop a constructor to form an event log that dis-

plays the debugging process;
– to develop the tools to record debugging events from

the developer’s IDE;
– to form the model of a debugging process using the

Process Mining methods.

4. Construction of an event log with data on the IDE use
during debugging

Constructive-synthesizing modeling (CSM) was applied
to formalize the process of collecting data on the IDE use
during debugging. The basics of the CSM are shown in pa-
pers [37–40]. The CSM can be used to model and formalize
any structures and constructive processes. The CSM tools
were used to solve problems such as:

– creating the timetable of a university course [41];
– simulating lightning flashes in the thunderstorm

front [42];
– representation of geometrical fractals [43];
– modeling the adaptation of compression algo-

rithms [44];
– formalization and automation of the process of docu-

ments’ comparison to detect text borrowings [45] and many
others.

A wide range of these tasks demonstrates the versatility
and prospects of using the CSM to address the challenges of
various subject areas. These works reveal the versatility and
high commonality of this modeling method.

The first stage of development is the specialization of
the generalized constructor [37]. Specialization determines
the semantic nature of the carrier, the purpose of the con-
struction, the final set of operations, their semantics and
attributes, the order of execution, and limitations [37, 38].

In an informal form, the ontology of the generalized con-
structor is presented in papers [37, 38]. The main provisions
of the ontological accompaniment of the CSM are presented

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (107) 2020

32

in articles [46, 47]. The work presents only those compo-
nents that are necessary for further presentation.

The goal of a constructor is to create an event log that
displays the debugging process.

Initial conditions are non-terminal σ, from which the
inference begins.

Completion conditions – all events were processed.
Specialization of the generalized constructor:

, , , , ,S L L L LC C= Μ Σ Λ = Μ Σ Λ (1)

where S is the specialization operation (performed by an
external executor), ΜL is the heterogeneous replenishable
carrier, including a set of terminals and non-terminals,
∑L is the signature of relations and corresponding opera-
tions, ΛL is the information support of construction.

Terminals and their attributes:
– id, sdt, fdt, ss, el, d, ps is the debugging session, id is its iden-

tifier, sdt, fdt are the time of its beginning and ending, ss is
the array of snapshots (snapshot is a file of a program code at
the moment of time) at the beginning of a session, el is the ar-
ray of events during the debugging session, d is the informa-
tion about a developer, p is the information about a project;

– attributes el (), :
e index l el index is the index of event e in

an array, l is the array size;
– id, t, cdt, fp, ln, contexte are the events during the debugging

session, id is the identifier, t is the type, cdt is the time of
event emerging, fp is the path to a debugged file, ln is the
line of the code, with which an event is connected, context
is the event context, an object of the dynamic structure with
information about the event environment (the IDE, project,
developer, file), the object structure can be different for var-
ious events;

– attributes d (id, name d): id is the identifier, name is the
developer’s name;

– attributes p (id, name p): id is the identifier, name is the
project name;

– contextsdse is the event of debugging run from an exter-
nal executor (IDE);

– contextde is the debugging event from the IDE;
– contextedse is the event of debugging completion from

the IDE;
– traceslog is the file of an event log in eXtensible Event

Stream format, traces is the array of sequences (events)
with attributes (), :

trace index l traces index is the index of trace
sequence, l is the size of the traces array;

– id, sdt, fdt, p, d, events trace is the array of events at a single
process execution, events is the array of events during the
debugging session.

The constructor has the following operation over the
attributes:

– ⸰(t) is assigning the value to terminal t by an external
executor;

– (sdse, s) is the creation of debugging session s on
event sdse;

– (s, de) is addition of event de to debugging session s;
– ≅ (s, edse) is the completion of the debugging session

s on event edse;
– (did, pid, log) is the creation of the file of an event log

log for project pid and developer did;
– (de, s, log) is the transfer of event de from debugging

session s to the file of event log log;
– ≈(log) is saving a file of an event log.

Signature { }, , , , ,LΣ = Ξ Q Φ → ↵ Ψ contains a set of op-
erations and relations, where { },:Ξ ⊃ • is the operation and
transformation of the carrier’s elements, { }, | , ||Q = ⇒ ⇒ ⇒ is
the substitution and output operations, Ф are the operations
over attributes, as well as relations of substitution ()→ and
attribution (),↵ { }: ,i i i

s gΨ = ψ is the set of substitution
rules, si is the sequence of substitution relations, gi is the
sequence of operations over attributes.

Interpretation is linking the algorithms implementing a
certain algorithmic structure (algorithm constructor) with
signature operations. In the interpretation process, the mod-
els of the constructor and the internal performer are related.
The result is a constructive system that is capable and has
construction tools [37, 38].

To interpret CL, it is necessary to refine the basic algo-
rithmic structure (BAS) [37, 38].

Assume that there is the following BAS:

, , , , ,, , , ,A L A L A L A L A LC V= Μ Σ Λ (2)

where VA,L is the finite set of basic algorithms |
Yi

i Xi
A of an

internal construction executor with a set of input and output
data Xi и Yi.

The following algorithms implement operations over
attributes:

1 | ,t
tA 2 ,| ,s

s sdseA 3 ,| ,s
s deA 4 ,| ,s

s edseA

log
5 , ,log| ,did pidA log

6 , ,log| ,de sA log
7 log| .A (3)

Create a constructive system:

, , , , ,

, , ,
,

, , ,

L L L L

A L A L A L A L A L

C M

C M V

= Σ Λ

= Σ Λ

, , , ,, , ,I I L I L I L I LC M= Σ Λ

() () ()
() ()
() ()

1 2 , 3 ,

log
, 4 , 5 , ,log

log log
6 , ,log 7 log

| , | , | ,

| , | , ,

| , |

t s s
t s sdse s de

s
I L L s edse did pid

de s

A A A

A A

A A

 ↵ ↵ ↵
 Λ = Λ È ↵ ≅ ↵

↵ ↵ ≈

 (4)

where I is the interpretation operation.
The specification of the constructor implies determining

specific rules of substitution, limitations, initial conditions,
and conditions of construction completion, basic elements of
a carrier with their properties, and property values. After the
interpretation and specification operations performed by an
external executor, the constructive system has everything
necessary for the autonomous creation of structures [37–40].

Specify constructor CL to create a debugging log:

, , , , , , ,, , , , ,I L I L I L I L L K L K L K LK
C M C M= Σ Λ = Σ Λ 〉 (5)

where K is the specification operation.
The substitution rules are presented below (6) to (9).
Rule s1 is applied if event sdse was obtained from an ex-

ternal executor. As a result of following the rule, debugging
session s is created

()1 • ,s sdse= σ → α () ()1 , , .g sdse sdse s= (6)

Information technology

33

Rule s2 is applied if the event de is obtained. As a result,
event de is added to debugging session s

2 ,s de= α → •α () ()2 , , .g de s de= (7)

Rule s3 is applied if event edse is obtained. As a result,

debugging session s is closed

3 ,s edse= α → •β () ()3 , , .g edse s edse= ≅ (8)

As a result of keeping to rule s4, an event log file log is
created. The file will be filled with the events from the pre-
vious debugging sessions of a developer for this project or
it is empty and is filled from the current debugging session

4 ,s log= β→

() ()4 , , , , , .g id d s id p s log de s log= ↵ ↵ ↵ ↵ (9)

The implementation, carried out by an internal execu-
tor of the system, consists of the formation of a structure of
carriers-elements by performing the algorithms related to
substitution operations. Only the constructor, which was
previously specialized, interpreted, and specified, can be
implemented. The result is the formation of a debugging
log file.

5. Development of the tools to record debugging events
from the developer’s IDE

Based on the constructive model, an extension for Mi-
crosoft Visual Studio, in which all debugging activities are

recorded in event logs, was developed. To save and control
the tracked events, a data model that matches previously
presented terminals with their attributes was created. Fig. 1
shows the proposed model as a class diagram.

The class diagram is based on the event model of the
debugging process. Events occur when a programmer
performs some actions during a debugging session. They
contain the type, time, context, and path to a debugging
file with the line number on which the event occurred, if
necessary. We save not only simple information about exe-
cuted commands, but also specific data (a dynamic struc-
ture object with information about the event environment,
context), depending on the type of event. Developer is the
user who runs and performs debugging sessions. Project
is a solution from a set of components. Session is a debug-
ging session. It contains information about a developer, a
project, and debugging events. Each event is related to a
specific type. Each event type is represented by a specific
class, which is the implementation of the abstract basic
class Event. The EventType listing contains all possible
types of events that are being tracked.

Fig. 2 shows the architecture of a top-level, developed
software tool.

Fig. 2 shows two main components: Debug Event
Tracker and Debug Event Analyzer. Debug Event Tracker
is an extension to Microsoft Visual Studio, written in C#.
The component is responsible for collecting data from the
current project debugging sessions and sending them to a
remote server. The extension not only records what events
occur in the IDE but also stores relevant contextual infor-
mation about them. Debug Event Analyzer is responsible
for analyzing debugging operations using the Process
Mining methods.

Fig.	1.	Diagram	of	classes	of	the	model	of	data	for	saving	and	controlling	event	tracking

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (107) 2020

34

6. Processing an event log using the Process Mining
methods

Process Mining purposes to discover, check, and en-
hance actual processes by mining the information from event
logs that ensure understanding of the process. The result of
Process Mining can range from a complete model of a pro-
cess to the most frequent process paths or deviations.

The starting point of Process Mining is an event log.
Each event in such a log refers to an action that can be
performed on a resource at a specific time and for a partic-
ular session. An event log is usually structured as a set of
traces, where each trace makes a chain of actions created
by a single process run (session). As a minimum, event
recording includes an identifier of the process session, to
which an event, time, and a series of additional attributes
are applied. A description of the attributes of an event log
is shown in Table 1.

An event log is formed in the eXtensible
Event Stream (XES) format [36], which
is the standard format for Process Mining
developed by the IEEE working group to
record events.

The first method of Process Mining is discovery.
The discovery method takes a log of events, consisting
of recording all the actions that occur during a software
debugging process, and forms a model that represents
how and in what order the process was executed. ProM is

used to discovery a debugging process model from
an event log. ProM is a common open source frame-
work, the de-facto standard for Process Mining
implementation [48].

Table	1

Attributes	of	events

Attribute Level Description

Name Trace
Identifier of debugging

session

StartedDateTime Trace
Time of beginning the

debugging session

FinishedDateTime Trace
Time of finishing the

debugging session

Project Trace Project identifier

Developer Trace Developer’s identifier

Activity Event Event name

Timestamp Event
Time of event

occurrence

Context Event Event context

Resource Event Path to debugged file

LineNumber Event
Number of line,

to which an event is
related

The event logs of five debugging sessions in the XES
format, tracked with the use of the IDE, and during the
software debugging process were imported into the ProM
to show in detail how the debugging process was per-
formed. Fig. 3 presents the traces, where each trace rep-
resents one debugging session.

The structures of representation of the debugging pro-
cess, ensuring a reciprocal unambiguous match (representa-
tion and process) for the first two traces (10) to (11).

1 3 4

,
s s s

sdse sdse edse sdse edse logσ⇒ •α⇒ • •β⇒ • • (10)

ProM’s Inductive Miner Visual [49], which represents
the direct-follow graphs (DFG), was used to form a debug-
ging process model. The DFG represents the actions in the
form of rectangles and relations of actions if one of them
directly follows the other. In addition, each edge has a weight
indicating the number of entries in the event log. The result
of this stage is the process model shown in Fig. 4.

Fig.	2.	The	architecture	of	the	tool	for	debugging	process	
monitoring	and	analysis

Fig.	3.	Traces

1 2 3 4

.
s s s s

sdse sdse de sdse de edse sdse de edse logσ⇒ •α⇒ • •α⇒ • • •β⇒ • • • (11)

Information technology

35

The second method of Process Mining is the
conformance checking. By compliance checking,
one can match different process implementations
and find out behavioral similarities and differ-
ences. In the study, we conduct the conformance
checking twice: when the detected model is re-
produced on an event log and when measuring the
deviation between a predetermined model and a
detected model. The fitness feature [30] is used to
match the check. A model has excellent suitability
if all the tracks can be reproduced by a model from
start to finish. Fitness is characterized by the
number from 0 (very bad) to 1 (excellent).

A predetermined model shows which transi-
tions between actions are possible (Fig. 5).

The ProM toolkit contains plug-ins that
makes it possible to calculate suitability by a
model and by an event log file, as well as suit-
ability by two models. Conformance checking
are performed using the Visualize deviations
ProM plug-in [49]. The suitability of a log file,
formed using the extension to Visual Studio, in
relation to the resulting model is equal to unity,
which proves reliability and adequacy of the
resulting model.Fig.	4.	The	debugging	process	model	discovered	using	Inductive	Visual	Miner

WatchVariable

Fig.	5.	Admissible	transitions

Ex
ce

pt
io

n
St

ep
O

ve
r

St
ep

In
to

St
ep

O
ut

St
ep

Ba
ck

Start
Exception
StepOver
StepInto

St
ar

t

StepOut
StepBack

InspectVariable
InspectCallStack

WatchVariable
ChangeCode

ModifyVariableValue
EvaluateExpression

ResumeProgramExecution
SetNextStatement

InspectAutosWindow
InspectLocalsWindow

RunToClick
AddBreakpoint

ChangeBreakpoint
RemoveBreakpoint

EnableBreakpoint
DisableBreakpoint

HitBreakpoint
Stop

In
sp

ec
tV

ar
ia

bl
e

In
sp

ec
tC

al
lS

ta
ck

W
at

ch
V

ar
ia

bl
e

Ch
an

ge
Co

de
M

od
ify

V
ar

ia
bl

eV
al

ue
Ev

al
ua

te
Ex

pr
es

sio
n

Re
su

m
eP

ro
gr

am
Ex

ec
ut

io
n

Se
tN

ex
tS

ta
te

m
en

t
In

sp
ec

tA
ut

os
W

in
do

w
In

sp
ec

tL
oc

al
sW

in
do

w

D
isa

bl
eB

re
ak

po
in

t
H

itB
re

ak
po

in
t

St
op

Ru
nT

oC
lic

k
A

dd
Br

ea
kp

oi
nt

Ch
an

ge
Br

ea
kp

oi
nt

Re
m

ov
eB

re
ak

po
in

t
En

ab
le

Br
ea

kp
oi

nt

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (107) 2020

36

7. Discussion of results of studying the developed tools
for analyzing software debugging processes

Three components of the research were developed:
– an extension to Visual Studio that enables getting

information about events when coding and debugging pro-
grams. Visual Studio environment offers the opportunity of
getting information about the programmer’s actions linked
to the program’s text. The functionality of the plug-in, which
enables gathering information about the debugging process,
is shown in Fig. 2;

– the expansion of plug-in functionality associated with
linking events to software essences became possible based on
the formalism of the constructor (1) to (9);

– Process Mining (ProM) tools and methods for track-
ing and analyzing processes. The formation of a model of a
particular process is shown in Fig. 3, 4. The analysis is based
on a generalized process model as shown in Fig. 5.

Several approaches [8–28] are used to improve de-
bugging and debugging training processes. Only a part
of them [21–28] are based on objective information from
software development and debugging tools. The process is
analyzed manually. As a part of this study, it was possible to
automate the analysis of the debugging process by using the
known tools and methods of Process Mining. Match checks
are performed using the Visualize deviations ProM plug-in.

The results of the study, which analyzed the event logs
of five debugging sessions using the Process Mining toolkit,
were presented. After applying the Process Mining methods
to event logs, we obtained a model of the software debugging
process. The results show that Process Mining methods are
useful for understanding how programmers perform debug-
ging activities and what difficulties they typically face.

Thus, by developing the tools and methods of collecting
information on debugging processes proposed in [21‒28]
and by automating the formation, verification, and analysis
of process models, a complete technological cycle of process
quality assessment was developed. This study enables both
a teacher and a trained programmer to obtain additional

information about the debugging process and its quality,
thereby expanding the capability to effectively manage the
debugging process and improve skills. As it is known, the
more information is known about the process, the more ef-
fective management can be.

The results show that Process Mining methods are
useful to understand how programmers perform debugging
activities and what difficulties they typically face.

Based on the research results, adaptive training methods
can be applied for students with varying degrees of academic
performance.

Naturally, the proposed approach is not universal. Thus
far, it only applies to a specific development environment –
Visual Studio. For other development environments, only
the extension needs to be improved.

This article is the first step to understanding debugging
skills. The ultimate goal is to improve developers’ debugging
skills. In the future, it is supposed to develop a recommen-
dation system for teachers and those learning the software
debugging processes.

8. Conclusions

1. A constructive and production modeling approach is
used to formalize the process of collecting data on the use
of the IDE during debugging. A constructor aimed at the
creation of a file of a log of debugging activity in the XES
format was developed.

2. Based on the constructive model, an extension for Mi-
crosoft Visual Studio, in which all debugging activities are
recorded in event logs, was developed. Analyzing the inter-
action between programmers and the IDE helps researchers
interpret the behavior of developers.

3. The Process Mining methods were used to construct a
model of the debugging process and validate it. The experi-
ment was conducted using an open code platform ProM. The
results showed that the software debugging process could
be effectively analyzed using the Process Mining approach.

References

1. IEEE Standard Glossary of Software Engineering Terminology (1990). doi: https://doi.org/10.1109/ieeestd.1990.101064

2. LaToza, T. D., Myers, B. A. (2010). Developers ask reachability questions. Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering - ICSE ’10. doi: https://doi.org/10.1145/1806799.1806829

3. Shynkarenko, V., Zhevago, O. (2019). Visualization of program development process. 2019 IEEE 14th International Conference on

Computer Sciences and Information Technologies (CSIT). doi: https://doi.org/10.1109/stc-csit.2019.8929774

4. Shynkarenko, V., Zhevaho, O. (2020). Constructive modeling of the software development process for modern code review. In IEEE

2020 15th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2020.

5. Denny, P., Luxton-Reilly, A., Tempero, E., Hendrickx, J. (2011). Understanding the syntax barrier for novices. Proceedings of the

16th Annual Joint Conference on Innovation and Technology in Computer Science Education - ITiCSE ’11. doi: https://doi.org/

10.1145/1999747.1999807

6. Denny, P., Luxton-Reilly, A., Carpenter, D. (2014). Enhancing syntax error messages appears ineffectual. Proceedings of the 2014

Conference on Innovation & Technology in Computer Science Education - ITiCSE ’14. doi: https://doi.org/10.1145/2591708.2591748

7. Pegoraro, M., van der Aalst, W. M. P. (2019). Mining Uncertain Event Data in Process Mining. 2019 International Conference on

Process Mining (ICPM). doi: https://doi.org/10.1109/icpm.2019.00023

8. Bers, M. U., Flannery, L., Kazakoff, E. R., Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early

childhood robotics curriculum. Computers & Education, 72, 145–157. doi: https://doi.org/10.1016/j.compedu.2013.10.020

9. Lee, G. C., Wu, J. C. (1999). Debug It: A debugging practicing system. Computers & Education, 32 (2), 165–179. doi: https://doi.org/

10.1016/s0360-1315(98)00063-3

10. Maalej, W., Tiarks, R., Roehm, T., Koschke, R. (2014). On the Comprehension of Program Comprehension. ACM Transactions on

Software Engineering and Methodology, 23 (4), 1–37. doi: https://doi.org/10.1145/2622669

Information technology

37

11. Yamamoto, R., Noguchi, Y., Kogure, S., Yamashita, K., Konishi, T., Itoh, Y. (2016). Design of a learning support system and lecture

to teach systematic debugging to novice programmers. In ICCE 2016 – 24th International Conference on Computers in Education:

Think Global Act Local – Main Conference Proceedings, 276–281.

12. Alqadi, B. S., Maletic, J. I. (2017). An Empirical Study of Debugging Patterns Among Novices Programmers. Proceedings of the

2017 ACM SIGCSE Technical Symposium on Computer Science Education. doi: https://doi.org/10.1145/3017680.3017761

13. Gouws, L. A., Bradshaw, K., Wentworth, P. (2013). Computational thinking in educational activities. Proceedings of the 18th ACM

Conference on Innovation and Technology in Computer Science Education - ITiCSE ’13. doi: https://doi.org/10.1145/2462476.2466518

14. Bryce, R. C., Cooley, A., Hansen, A., Hayrapetyan, N. (2010). A one year empirical study of student programming bugs. 2010 IEEE

Frontiers in Education Conference (FIE). doi: https://doi.org/10.1109/fie.2010.5673143

15. Ghosh, D., Singh, J. (2019). A Systematic Review on Program Debugging Techniques. Smart Computing Paradigms: New Progresses

and Challenges, 193–199. doi: https://doi.org/10.1007/978-981-13-9680-9_16

16. Bottcher, A., Thurner, V., Schlierkamp, K., Zehetmeier, D. (2016). Debugging students’ debugging process. 2016 IEEE Frontiers in

Education Conference (FIE). doi: https://doi.org/10.1109/fie.2016.7757447

17. Altadmri, A., Brown, N. C. C. (2015). 37 Million Compilations. Proceedings of the 46th ACM Technical Symposium on Computer

Science Education - SIGCSE ’15. doi: https://doi.org/10.1145/2676723.2677258

18. Perscheid, M., Siegmund, B., Taeumel, M., Hirschfeld, R. (2016). Studying the advancement in debugging practice of professional

software developers. Software Quality Journal, 25 (1), 83–110. doi: https://doi.org/10.1007/s11219-015-9294-2

19. Petrillo, F., Mandian, H., Yamashita, A., Khomh, F., Gueheneuc, Y.-G. (2017). How Do Developers Toggle Breakpoints? Observational

Studies. 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS). doi: https://doi.org/

10.1109/qrs.2017.39

20. Beller, M., Spruit, N., Spinellis, D., Zaidman, A. (2018). On the dichotomy of debugging behavior among programmers. Proceedings

of the 40th International Conference on Software Engineering. doi: https://doi.org/10.1145/3180155.3180175

21. Snipes, W., Murphy-Hill, E., Fritz, T., Vakilian, M., Damevski, K., Nair, A. R., Shepherd, D. (2015). A Practical Guide to Analyzing IDE

Usage Data. The Art and Science of Analyzing Software Data, 85–138. doi: https://doi.org/10.1016/b978-0-12-411519-4.00005-7

22. Yamashita, A., Petrillo, F., Khomh, F., Guéhéneuc, Y.-G. (2018). Developer interaction traces backed by IDE screen recordings

from think aloud sessions. Proceedings of the 15th International Conference on Mining Software Repositories - MSR ’18.

doi: https://doi.org/10.1145/3196398.3196457

23. Bellman, C., Seet, A., Baysal, O. (2018). Studying developer build issues and debugger usage via timeline analysis in visual

studio IDE. Proceedings of the 15th International Conference on Mining Software Repositories - MSR ’18. doi: https://doi.org/

10.1145/3196398.3196463

24. Damevski, K., Chen, H., Shepherd, D., Pollock, L. (2016). Interactive exploration of developer interaction traces using a hidden

Markov model. Proceedings of the 13th International Workshop on Mining Software Repositories - MSR ’16. doi: https://doi.org/

10.1145/2901739.2901741

25. Piech, C., Sahami, M., Koller, D., Cooper, S., Blikstein, P. (2012). Modeling how students learn to program. Proceedings of the 43rd

ACM Technical Symposium on Computer Science Education - SIGCSE ’12. doi: https://doi.org/10.1145/2157136.2157182

26. Petrillo, F., Soh, Z., Khomh, F., Pimenta, M., Freitas, C., Gueheneuc, Y.-G. (2016). Understanding interactive debugging with

Swarm Debug Infrastructure. 2016 IEEE 24th International Conference on Program Comprehension (ICPC). doi: https://doi.org/

10.1109/icpc.2016.7503740

27. Luxton-Reilly, A., McMillan, E., Stevenson, E., Tempero, E., Denny, P. (2018). Ladebug: an online tool to help novice programmers

improve their debugging skills. Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer

Science Education - ITiCSE 2018. doi: https://doi.org/10.1145/3197091.3197098

28. Lin, Y.-T., Wu, C.-C., Hou, T.-Y., Lin, Y.-C., Yang, F.-Y., Chang, C.-H. (2016). Tracking Students’ Cognitive Processes During

Program Debugging – An Eye-Movement Approach. IEEE Transactions on Education, 59 (3), 175–186. doi: https://doi.org/

10.1109/te.2015.2487341

29. Van der Aalst, W. (2012). Process Mining. ACM Transactions on Management Information Systems, 3 (2), 1–17. doi: https://doi.org/

10.1145/2229156.2229157

30. Van der Aalst, W., Adriansyah, A., de Medeiros, A. K. A., Arcieri, F., Baier, T., Blickle, T. et. al. (2012). Process Mining Manifesto.

Lecture Notes in Business Information Processing, 169–194. doi: https://doi.org/10.1007/978-3-642-28108-2_19

31. Rubin, V. A., Mitsyuk, A. A., Lomazova, I. A., van der Aalst, W. M. P. (2014). Process mining can be applied to software too!

Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement - ESEM ’14.

doi: https://doi.org/10.1145/2652524.2652583

32. Poncin, W., Serebrenik, A., Brand, M. van den. (2011). Process Mining Software Repositories. 2011 15th European Conference on

Software Maintenance and Reengineering. doi: https://doi.org/10.1109/csmr.2011.5

33. Sebu, M. L., Ciocarlie, H. (2014). Applied process mining in software development. 2014 IEEE 9th IEEE International Symposium

on Applied Computational Intelligence and Informatics (SACI). doi: https://doi.org/10.1109/saci.2014.6840098

34. Ardimento, P., Bernardi, M. L., Cimitile, M., Maggi, F. M. (2019). Evaluating Coding Behavior in Software Development

Processes: A Process Mining Approach. 2019 IEEE/ACM International Conference on Software and System Processes (ICSSP).

doi: https://doi.org/10.1109/icssp.2019.00020

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 (107) 2020

38

35. Caldeira, J., Abreu, F. B. e. (2016). Software Development Process Mining: Discovery, Conformance Checking and Enhancement.

2016 10th International Conference on the Quality of Information and Communications Technology (QUATIC). doi: https://doi.org/

10.1109/quatic.2016.061

36. Verbeek, H. M. W., Buijs, J. C. A. M., van Dongen, B. F., van der Aalst, W. M. P. (2011). XES, XESame, and ProM 6. Lecture Notes

in Computer Science, 60–75. doi: https://doi.org/10.1007/978-3-642-17722-4_5

37. Shynkarenko, V. I., Ilman, V. M. (2014). Constructive-Synthesizing Structures and Their Grammatical Interpretations. I. Generalized

Formal Constructive-Synthesizing Structure. Cybernetics and Systems Analysis, 50 (5), 655–662. doi: https://doi.org/10.1007/

s10559-014-9655-z

38. Shynkarenko, V. I., Ilman, V. M. (2014). Constructive-Synthesizing Structures and Their Grammatical Interpretations. II. Refining

Transformations. Cybernetics and Systems Analysis, 50 (6), 829–841. doi: https://doi.org/10.1007/s10559-014-9674-9

39. Shynkarenko, V. I., Ilman, V. M., Skalozub, V. V. (2009). Structural models of algorithms in problems of applied programming. I. Formal

algorithmic structures. Cybernetics and Systems Analysis, 45 (3), 329–339. doi: https://doi.org/10.1007/s10559-009-9118-0

40. Shynkarenko, V. I., Ilman, V. M., Skalozub, V. V. (2009). Structural models of algorithms in problems of applied programming. II.

Structural-algorithmic approach to software simulation. Cybernetics and Systems Analysis, 45 (4), 544–550. doi: https://doi.org/

10.1007/s10559-009-9122-4

41. Shinkarenko, V. I., Zhevago, O. O. (2019). Generating university course timetable using constructive modeling. Radio Electronics,

Computer Science, Control, 3, 152–162. doi: https://doi.org/10.15588/1607-3274-2019-3-17

42. Shynkarenko, V., Lytvynenko, K., Chyhir, R., Nikitina, I. (2019). Modeling of Lightning Flashes in Thunderstorm Front by

Constructive Production of Fractal Time Series. Advances in Intelligent Systems and Computing, 173–185. doi: https://doi.org/

10.1007/978-3-030-33695-0_13

43. Shynkarenko, V. I. (2019). Constructive-Synthesizing Representation of Geometric Fractals. Cybernetics and Systems Analysis,

55 (2), 186–199. doi: https://doi.org/10.1007/s10559-019-00123-w

44. Shynkarenko, V. I., Vasetska, T. M. (2015). Modeling the Adaptation of Compression Algorithms by Means of Constructive-

Synthesizing Structures. Cybernetics and Systems Analysis, 51 (6), 849–862. doi: https://doi.org/10.1007/s10559-015-9778-x

45. Kuropiatnyk, O., Shynkarenko, V. (2020). Text borrowings detection system for natural language structured digital documents. In

CEUR Workshop Proceedings, 2604, 294–305.

46. Skalozub, V., Ilman, V., Shynkarenko, V. (2017). Development of ontological support of constructive-synthesizing modeling of

information systems. Eastern-European Journal of Enterprise Technologies, 6 (4 (90)), 58–69. doi: https://doi.org/10.15587/

1729-4061.2017.119497

47. Skalozub, V., Ilman, V., Shynkarenko, V. (2018). Ontological support formation for constructive-synthesizing modeling

of information systems development processes. Eastern-European Journal of Enterprise Technologies, 5 (4 (95)), 55–63.

doi: https://doi.org/10.15587/1729-4061.2018.143968

48. Van der Aalst, W. (2016). Process mining: Data science in action. Springer. doi: https://doi.org/10.1007/978-3-662-49851-4

49. Leemans, S. J. J., Fahland, D., van der Aalst, W. M. P. (2018). Scalable process discovery and conformance checking. Software &

Systems Modeling, 17 (2), 599–631. doi: https://doi.org/10.1007/s10270-016-0545-x

