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This paper proposes a theoretically substan-
tiated and universal new method to calculate 
the three-dimensional stressed-strained state of 
the statically loaded multi-link orthotropic shell 
of arbitrary thickness, made of heterogeneous 
material (a composite). The numerical-ana-
lytical RVR method used in this work is based 
on the Reissner principle, Vekua method, the 
R-function theory, as well as the algorithm of  
two-way assessment of the accuracy of approxi
mate solutions to variational problems. In con-
trast to the classical principles by Lagrange and 
Castigliano, the application of the mixed varia
tional Reissner principle yields an increase in the 
accuracy of solving boundary-value problems 
due to the independent variation of the displace-
ment vector and the stress tensor. Vekua me- 
thod makes it possible, as a result of expanding 
the desired functions into a Fourier series based 
on Legendre polynomials, to replace a solution 
to the three-dimensional problem with a regu-
lar sequence of solutions to the two-dimensional 
problems in the process of refining the models 
of shells. The R-function theory that takes into 
consideration, at the analytical level, the geo-
metric information on boundary-value problems 
for multi-relationship regions is necessary to 
build the structures of solutions that accurate-
ly meet different boundary conditions. When 
studying spatial boundary-value problems, the 
constructed algorithm for a two-way integrated 
assessment of the accuracy of approximate solu-
tions makes it possible to automate the search 
for such a number of approximations at which 
the process of solutions’ convergence becomes 
persistent. For an orthotropic spherical shell 
made from the material of non-uniform thick-
ness and weakened by the pole holes, the RVR-
method capabilities are shown on the numerical 
examples of solving the relevant boundary-value  
problems. The results of the reported research 
have been discussed, as well as the features 
typical of the new method, which could be effec-
tively applied when designing responsible shell-
type elements of structures in the different sec-
tors of modern industry
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1. Introduction

The widespread use of composite materials whose struc-
ture is heterogeneous in the various sectors of modern 
industry is one of the promising areas for improving exist
ing structures, as well as for designing new ones. The in-
tensive increase in the application of composites is due to 
a significant decrease in the mass of responsible elements 

in articles, as well as an increase in their performance and  
reliability.

Engineering practice also often involves such structural 
elements as the elastic shells, weakened by holes (cutouts), 
whose strength and rigidity may affect the performance and 
reliability of a structure in general. In this regard, we note 
that the mechanics of a deformable solid still consider relevant 
those issues that relate to solving the boundary-value problems  
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for multi-connected anisotropic shells in a three-dimensional  
statement. Solving such problems is typically associated with 
significant mathematical and computational complexity, which 
must be overcome when performing specific calculations. 
Therefore, it is a relevant and practically significant scientific 
task to devise effective and reliable methods for calculating the 
strength and rigidity of anisotropic shells of inhomogeneous 
thickness with holes of arbitrary shapes and sizes.

2. Literature review and problem statement

Studying the spatial boundary-value problems involving 
heterogeneous shells weakened by holes is immeasurably 
more difficult than similar problems for homogeneous shells. 
This is primarily due to that the solving equations include 
variable coefficients, which depend on the coordinates of 
the study area. At the same time, significant progress in re-
solving the issue of calculating the stressed-strained state of 
structures made from heterogeneous materials (composites) 
is impossible without the use of reliable methods involving 
the basic ratios from a three-dimensional theory of elasticity.  
Thus, study [1] analyzes the interlayer normal stress in 
curved layered components considering the need for manda-
tory use of the three-dimensional model. The three-dimen-
sional stressed state of a multi-layered composite rod under 
the influence of torque was investigated in [2], whose authors 
applied a layered displacement method while their numerical 
results are compared with the analytical solutions based on 
the Kantorovich method. The three-dimensional analysis of 
stresses in plate structures under conditions of instability 
is reported in work [3]. The behavior of nonlinear stability 
of rigid multi-layered composite sloping shells is estimated 
in [4] by using a new semi-analytic method.

It is known that the construction of direct approximate 
algorithms to solve the boundary-value problems in a shell 
theory has increasingly involved different variational me
thods [5]. Study [6] reported a Jacobi-Ritz approach for the 
dynamic analysis of composite sloping shells with arbitrary 
boundary conditions. The functions of each segment dis-
placement for shells are represented by the Jacobi polyno-
mial function while the Ritz method, used for the solution 
procedure, is based on the energy approach. The new results 
of the free oscillations of layered shells are reported; the 
accuracy and reliability of the methodology are confirmed 
by comparing it with the scientific literature. Paper [7] uses 
the Ritz method to investigate the free oscillations of com-
bined spherical and cylindrical shells of a heterogeneous 
thickness. The energy method and the theory of the defor-
mation of the first order displacement were used to derive 
a semi-analytic solution. At the same time, to prove the 
validity of the reported results, they are compared with the 
results obtained by using a finite-element method (FEM) 
and experiments.

Study [8] suggests a generalized finite-difference me
thod (GFDM) to analyze the stresses of three-dimensional 
composite elastic materials. In the authors’ calculations, the 
composite material is split into several sub-regions, along 
the boundaries of which the conditions of compatibility of 
movements and the balance of efforts are imposed. It is noted 
that such an approach leads to a system with sparse matrices 
containing up to 500,000 unknowns; the reported numeri
cal example is solved using the developed GFDM code.  
A new element of the continual shell is proposed in [9] for 

the three-dimensional simulation of multi-layered shell-type 
structures of arbitrary geometry when using FEM.

The boundary-value problems on shells whose structure is 
heterogeneous for thickness are tackled in [10, 11]. In particu-
lar, the Vekua method [12] was applied in [10] to derive equa-
tions of the equilibrium of the heterogeneous isotropic sphe
rical shell of constant thickness; [11] investigated the strained 
state of a sloping transversal-isotropic spherical shell with  
a circular opening. It should be noted that the presence of holes 
in the designed anisotropic article leads to the need to take 
into consideration the significant impact of stress concentra-
tors on the carrying capacity of the examined shell-type struc-
ture [13]. In particular, the results of work [14] show that that 
the exact three-dimensional characteristic of tense states is im-
portant for assessing the structural integrity and predicting the 
fatigue growth of end-to-end cracks emanating from the hole.

In the mechanics of a deformable solid, of relevance are 
the issues related to solving boundary-value problems for 
anisotropic shells with holes of arbitrary shapes and sizes in 
a three-dimensional statement [15]. One of the promising 
possibilities of the new numerical-analytical method (termed 
an RVR-method), proposed in work [15], is its application to 
calculate heterogeneous multi-link shells for the case when 
the dependences of elastic characteristics of the material are 
known. The RVR method, which was theoretically substan-
tiated in [16, 17], is based on the Reissner principle [18–20], 
a Vekua method [12], the R-function theory [21, 22], as well 
as a two-way algorithm for assessing the accuracy of appro
ximate solutions to variational problems. The application of 
the mixed variational Reissner principle, in contrast to the 
classical principles by Lagrange and Castigliano, leads to an 
increase in the accuracy of solving boundary-value problems 
due to the independent variation of the displacement vector 
and the stress tensor. The Vekua method makes it possible 
to replace a solution to the spatial boundary-value problem 
from the linear theory of elasticity [23] with a regular se-
quence of solutions to the two-dimensional tasks in the soft-
ware-implemented algorithm for refining the models of shell 
deformation. The R-function theory mathematical apparatus 
is necessary to create the analytical structures of solu-
tions that precisely meet different variants of the boundary  
conditions set on the boundary surfaces of the shells. It is 
important to note that the effectiveness of the proposed RVR 
method for deriving reliable results was tested in resolving 
a large number of technical tasks studied by other authors. 
In particular, paper [13] shows a satisfactory match between 
the RVR-based numerical values of the stress concentration 
factor and the experimental data reported in the scientific 
literature for an isotropic cylinder with an elliptical hole.

3. The aim and objectives of the study

The aim of this study is to calculate the stressed-strained 
state of a statically loaded orthotropic spherical shell of in-
homogeneous thickness with holes based on the variational 
RVR-method.

To accomplish the aim, the following tasks have been set:
– to build the structures of solutions that precisely meet 

all the boundary conditions of the examined area of a hetero-
geneous shell with holes;

– by using the RVR-method, derive numerical results 
to assess the effect of the heterogeneity of the material of 
a spherical thick-walled shell on its stressed-strained state.
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4. Materials and methods to study the orthotropic 
spherical shells of inhomogeneous thickness with holes 

4. 1. Examples of the dependences of a shell’s elastic 
characteristics when considering a one-dimensional va
riant of the material’s heterogeneity

Consider an elastic shell whose Poisson coefficients νij 
are constant; the moduli of elasticity Ei and shear Gij (at 
i ≠ j = 1,2,3) are the arbitrary functions of the coordinate ζ 
along the thickness of the shell (at |ζ| ≤ 1):

E E f ni i i= ( )0 , , ;δ ζ  G G f ni j i j i j= ( )0 , , ,δ ζ 	 (1)

where the constant quantities Ei
0, Gi j

0  are the values of elastic 
characteristics of a homogeneous shell; n, δ are the parame-
ters of heterogeneity of the material.

Note that functions (1) belong to the most common 
one-dimensional variant of heterogeneity reported in the 
scientific literature [10, 11]. When applying an RVR me
thod [15], considering the dependence of elastic shell charac
teristics on two or three coordinates could only create 
time-cost-related difficulties in the numerical implementa-
tion of the set boundary-value problem. For the material of 
a particular heterogeneous shell, the functions fi(n, δ, ζ) and 
fij(n, δ, ζ) in ratios (1) take a different form. Consider the 
following analytical dependences Ei (similar to Gij):
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Here, the distribution of the Ei value along the thickness 
of the shell corresponds to the power (2a), exponential (2b), 
exponential-power (2c), and logarithmic (2d) laws of change.

4. 2. Deriving an analytical expression of the Reissner 
variational equation for orthotropic spherical shells

To improve the accuracy of solving boundary-value prob-
lems, it is advisable to independently determine parameters of 
the stressed and strained state, which could be implemented  
by applying the variational Reissner principle with the func-
tional IR [18–20]. This functional has the property that the ui 
components of the displacement vector u and the σij compo-
nents of the stress tensor σ could be set arbitrarily disregard-
ing the implementation of boundary conditions, equilibrium 
equations, and continuity conditions. In this case, due to 
the independent approximation of u and σ, the variational 
Reissner equation δIR = 0 yields a system of differential equa-
tions of the first order relative to the desired quantities. In 
turn, the equations of classical variational statements have  
a higher order, require laborious mathematical operations, 
and significantly complicate the structures of solutions that 
accurately meet the boundary conditions of the problem.

The numerical implementation of the Reissner variational  
statement was significantly hindered by difficulties in assess-
ing the accuracy of solutions caused by the lack of an extre-
mum at the stationary point of the Reissner functional IR.  
This issue was resolved by the theorem proven in stu
dies [15, 16]: «The sequences of Ritz method coincide with 
the exact solution to a boundary-value problem stated on the 

basis of the Reissner principle if the structures of the solu-
tions accurately meet all boundary conditions». Therefore, 
the RVR-method employs R-functions [21, 22] to account, 
at the analytical level, for the geometric information of the 
examined boundary-value problems for multi-linked regions 
and to build the structures of solutions that precisely meet 
different variants of the boundary conditions.

We shall use the RVR-method to calculate the stressed-
strained state of an orthotropic spherical shell with two 
coaxial circular holes of the same radius r0, loaded by the 
constant internal pressure of intensity q0 [24]. We introduce 
a system of curvilinear coordinates ϑ, j, and z ϑ in the middle  
surface Ωs of the radius R of the shell with a structure h 
heterogeneous in thickness (Fig. 1). Here, ϑ is the angle bet
ween the normal n to Ωs and the rotation axis; j is the angle 
between the fixed meridian plane and the meridian plane 
passing through the point in question Ωs; z is the distance 
along the normal n (–h/2 ≤ z ≤ h/2). At the same time, the 
elastic-equivalent directions of the orthotropy of the mate
rial coincide with the lines of the main curvature of the 
spherical shell (its meridians and parallels).

Let ϑ0 = π/2 be the angle that determines the plane 
against which the pole holes are symmetrical. We place 
at the intersection between the middle surface Ωs and the 
plane ϑ0 = π/2 the origin of the dimensionless coordinate 
ϑ = (ϑ–ϑ0)/(ϑ0–ϑ1). The ϑ value interval is determined by 
the expression | ϑ|≤1 when the ϑ angle changes from ϑ = ϑ1 
to ϑ = ϑ2 (respectively, the equations of the lateral surfaces of 
the two circular holes). Due to the symmetrical arrangement 
of holes relative to the ϑ = ϑ0 plane and the axisymmetric 
loading of the shell, its calculation comes down to studying 
the meridian section Ω. In this case, the analytical form of the 
Reissner variational equation (a stationarity condition of the 
functional IR) in the coordinate system {ϑ, j, z} (Fig. 1) takes 
the following form at u2 = 0, σ12 = 0, and σ23 = 0 (at χ = 1+z/R):
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where ν12, ν13, ν23 are the Poisson coefficients; E1, E2, E3 
are the Young moduli in the main directions of the shell’s  
orthotropy; G13 is the shear module.
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Fig. 1. The estimated elastic area of a spherical shell

5. The results of studying  
the stated boundary-value problems

5. 1. Building the structures of solutions to the exami
ned problems

The entire surface of the spherical shell under study 
consists of the side surfaces Γs (ϑ = ϑs, s = 1.2) of two pole 
circular openings and an internal Г‑ (z = –h/2) and an exter-
nal Г+ (z = h/2) surfaces, whose equations are determined by 
the functions Ωs and Ω‑, Ω+ (at ζ = 2z/h, |ζ|≤1):
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Introduce a dimensionless coordinate ϑ = [(ϑ2–ϑ1)ϑ+ 
+ϑ1+ϑ2]/2 at |ϑ| ≤ 1. Then, it is possible to replace the func-
tions Ω1 and Ω2 that determine the equations of the surfa
ces  Гs (s = 1, 2), in the case of similar holes (ϑ2 = π–ϑ1), when 
displacing the coordinate origin to section ϑ = π/2, with one 
function Ω12 = 1–ϑ2. The structures of solutions for the in-
dependently variable, in the Reissner functional IR, desired 
components of the displacements ui and the stresses σij would 
be represented, for the set axisymmetric problem, by the fol-
lowing finite series:
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where ai
ni , aij

nij are the desired constants; Сp(ϑ) and Sp(ϑ) 
are the even and odd approximating functions of the coor-
dinate  ϑ; Pk(ζ) are the Legendre polynomials of the coordi-
nate ζ; Ωζ = Ω+Ω‑; ni = k(mi+1)+p+1; ni→nij .

Consider a common case in technology when the holes 
are closed with lids that transmit to the shell only the action 
of the cutting force Qθ

∗ whose magnitude could be determined 
from a lid equilibrium condition:

2 00 0 0
2π πθr Q q r∗ + = . 	 (6)

The function σ13
∗  in structure (5), due to the asymmetry of  

the transverse tangent stress value σ13 relative to the ϑ coor-
dinate, is set in the following form:

σ ζ ϑ ζ ϑθ
13

2 0 0 23
2

1
3

4
1∗

∗

= − −( ) = −( )Q
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Note that at the surface Гs of the hole (ϑ = ±1) the stress 
σ σ χ13 13= ∗  is statically equivalent to an integrated charac
teristic – the force Qθ

∗. The analytical expression of the func-
tion σ33

∗  in (5) takes the following form:
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The boundary conditions on the holes’ surfaces Гs (s = 1,2),  
as well as at the face internal Г– (ζ = –1) and external Г+ (ζ = 1)  
surfaces of the shell:
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Similarly to works [13, 15], in structures (5), the num-
bers l1, lii (i = 1,2), l13, l33 of the approximations of the desired 
displacements and stresses for the shell thickness determine 
its shift model when setting a combination of quantities 
(l1, l3, lii, l13, l33). In this case, l1 is the number of terms held in ex-
panding, along the z coordinate, the meridian displacement u1;  
l3 – the normal displacement u3; lij – tangential stresses σij; 
l13 – the transverse tangential stresses σ13 and l33 – the trans-
verse normal stress σ33. In the [12] terminology, in case l1 = lij, 
the value N = l1–1 is a parameter that characterizes the order 
of the N-th approximation in the considered theory of shells.

5. 2. Deriving numerical results to assess the effect of 
the heterogeneity of a spherical thick-walled shell’s mate-
rial on its stressed-strained state 

After fitting a solution structure (5) to the Reissner varia
tional equation (3) and following the numerical integration 
of double integrals, the examined boundary-value problem 
is reduced to solving a system of linear algebraic equations 
relative to the desired constants ai

ni  and aij
nij . Using their 

derived values, we determine all the characteristics of the 
stressed-strained state of the estimated area of a shell of in-
homogeneous thickness.

Consider the orthotropic spherical belt with the follow-
ing parameters:

R = 0 6. ;m  θ π1 4= ;  θ π2 3 4= ;  q0 1= MPa. 	 (10)

In this case, the Poisson coefficients are constant (νij = 0.3), 
and the moduli of elasticity Ei and shear G13 are the functions 
of the coordinate ζ of form (2), where the constant quanti- 
ties Ei

0 and G13
0  accept the values of the elastic characteristics 

of a homogeneous shell:

E E1
0

3
0 20= = GPa;  G13

0 1= GPa. 	 (11)

According to expressions (2), we shall focus on the fol-
lowing distribution options, used in the calculations (at the 
assigned n and δ values), of the functions f E Ei i iζ( ) = 0 (simi-
lar to f G Gij ij ijζ( ) = 0) along the thickness of the shell:
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A visual illustration of the fi(ζ) function distribution 
along the shell’s thickness (|ζ|≤1) is shown in Fig. 2 for the 
case of a change (increase or decrease) in the elasticity mod-
ule in half. For a convenient comparison and analysis of the 
results obtained, the δ parameter accepts a value for each 
considered function fi(ζ) at which equality E Ei iζ=

=
1

02  (or  
E Ei iζ=

=
1

00 5. ) holds. The letter designations s1, s3, e2, es1, 
and  ln1 next to charts in Fig. 2 correspond to the linear (12a), 
cubic (12b), exponential (12c), exponential-power (12d), 
and logarithmic (12e) laws of change in the ratio E Ei i

0 .
 
 

 

fi(ζ) 

Fig. 2. Distribution charts of functions fi (ζ) (12) 	
for the shell thickness

Introduce the reduced displacements ui and stresses σij , 
as well as the dimensionless coordinate rϑ:

u
u

hi
i=

100
;  σ

σ
ij

ij

q
=

0

;  r
r R

rθ

θ θ θ θ
θ

=
+ −( )

= +
−0 1

0

1

1

1
sin

. 	 (13)

The quantities ui  and σij  accept, when calculating them 
at ζ = –1, ζ = 0, and ζ = 1, the form of ui

− , ui
0 or ui

+ (similarly, σij
− , 

σij
0 , or σij

+). Designate p0 = q0R/2h, then σ11 σθ( ), and σ22 σj( ) 
coincide with an accuracy to the multiplier 2h/R with the 
following coefficients of the concentration of the meridian kϑ 
and circumferential kj stresses:

k
p q

h
R

h
Rθ

θσ σ
σ= = =

0

11

0
11

2 2
 ;

k
p q

h
R

h
Rj

jσ σ
σ= = =

0

22

0
22

2 2
 . 	 (14)

At ζ = –1, ζ = 0, and ζ = 1, quantities (14) take the form 
kθ

− , kθ
0  and kθ

+ (similarly, kj). Following the numerical imple-
mentation of the problem, Fig. 3, 4 show, for an orthotropic 
(E2 = 0.5E1) thick-walled (h/R = 0.2) shell, along the rϑ coor-
dinate, the displacement charts of u1

0, u
3

0 (13) and coefficients 
kθ

− and kj
+ (14) for the case of using a shell’s model of the fifth 

approximation at l1 = lii = 5 in (5).
Symbols 1, 2, 3, 4, and 5 next to the charts correspond 

to the dependences s1 (12a), s3 (12b), e2 (12c), es1 (12d), 
and ln1 (12e), built in Fig. 2; the bar line shows the chart for  
a homogeneous spherical shell.

    
a b

Fig. 3. Displacement distribution charts: 	
a – for u1

0;  b – for u3
0

     
a b

Fig. 4. Coefficient distribution charts: a – for kθ
− ;  b – for kj

+

6. Discussion of results of calculating  
the stressed-strained state of a heterogeneous  

spherical shell with holes

By using the proposed RVR-method we derived numerical 
results of solving complex spatial problems for a heterogeneous 
spherical shell under different laws of continuous change in the 
elastic characteristics for thickness. The calculations were per-
formed when considering the linear, cubic, exponential, expo-
nentially-power, and logarithmic laws of change in the elastici-
ty module. It follows from the shown graphic results (Fig. 3, 4)  
that the degree of heterogeneity of the elastic shell’s material 
significantly affects its strength. In particular, it was found 
that the stressed-strained state of the examined shell signifi-
cantly depends on how much the law of a continuous change 
in the elastic characteristics of the shell material for thickness 
would differ from their linear distribution.

It should be noted that the means of verifying the validity 
of the results reported in our study was a software-implemented  
algorithm of a posteriori integrated double assessment of the 
accuracy of approximate solutions to mixed variational prob-
lems [17]. Its employment in the variational RVR-method 
allows for the automated search, within structure (5), of such 
a number of approximations at which the process of solutions’ 
convergence is robust while the ultimate results become reliable.

Note that this work reports the calculation of a heteroge-
neous spherical shell. The next stage to advance the possibi
lities of the proposed RVR-method implies the study of a shell 
of an arbitrary Gaussian curvature (in particular, numerical 
computation of cylindrical and torus-shaped shells).
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7. Conclusions

1. Based on the non-extreme Reissner principle, we have for-
mulated a variational statement of spatial boundary-value prob-
lems for a statically loaded heterogeneous orthotropic spherical 
shell weakened by the curvilinear holes of arbitrary shape and 
size. For the shell in question, the analytical expressions have 
been given for a Reissner variational equation and for the struc-
tures of solutions that accurately meet all the boundary condi-
tions of the examined elastic area of a shell of arbitrary thickness.

2. By using the RVR-method, we have demonstrated 
the numerical calculations that are of interest to engineer-

ing practice when assessing the effect of the heterogeneity 
of the spherical shell’s material on its stressed-strained 
state. The analysis of these results confirms the effective 
use of the RVR-method [13, 15] in solving complex spa-
tial problems on the heterogeneous shells with holes, the 
concentration of stresses near which could significantly 
affect the carrying capacity of structures. The new nu-
merical-analytical RVR-method for calculating non-thin 
homogeneous and continuously heterogeneous shells with 
holes could be used in the design of responsible shell-type 
elements of structures in the various sectors of modern 
industry.
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This paper reports the synthesized two-mass antiphase 
resonance vibratory machine with a vibration exciter in the 
form of a passive auto-balancer. In the vibratory machine, 
platforms 1 and 2 are viscoelastically attached to the sta-
tionary bed and are tied together viscoelastically. A passive 
auto-balancer is mounted on platform 2. 

It has been established that the vibratory machine has 
two resonant frequencies and two corresponding forms of 
platform oscillations. Such values for the supports’ para
meters have been analytically selected at which:

– there is an antiphase mode of motion at which plat-
forms 1 and 2 oscillate in the opposite phase and the prin-
cipal vector of forces acting on the bed (when disregarding 
the forces of gravity) is zero; 

– the frequency of platform oscillations under an anti-
phase mode coincides with the second resonance frequency.

The antiphase mode occurs when the loads in an 
auto-balancer get stuck in the vicinity of the second reso-
nance frequency, which is caused by the Sommerfeld effect. 

The dynamic characteristics of a vibratory machine 
have been investigated by numerical methods. It has been 
established that in the case of small internal and external 
resistance forces:

– there are five theoretically possible modes of load 
jamming; 

– the antiphase (second) form of platform oscillations 
is theoretically implemented under jamming modes 3 and 4; 

– jamming mode 3 is locally asymptotically stable 
while jamming mode 4 is unstable;

– for the loads to get stuck in the vicinity of the second 
resonance frequency, the vibratory machine must be pro-
vided with the initial conditions close to jamming mode 3, 
or the rotor must be smoothly accelerated to the working 
frequency; 

– the dynamic characteristics of the vibratory machine 
during operation can be controlled in a wide range by 
changing both the rotor speed and the number of loads in 
the auto-balancer.

The reported results are applicable for the design of 
resonant antiphase two-mass vibratory machines for gen-
eral purposes

Keywords: inertial vibration exciter, resonant vibra-
tions, antiphase vibratory machine, auto-balancer, two-
mass vibratory machine, Sommerfeld effect
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1. Introduction

Among the vibratory machines for various applications, 
resonance vibratory machines appear promising [1]. In them, 
vibration exciters of lower mass generate vibrations at a greater 

amplitude, thereby improving the energy efficiency, reliability, 
and durability of vibratory machine operation. The basic prin-
ciples of designing such machines were considered in [1, 2].

The inertial vibration exciters of a lower mass excite more 
intense vibrations compared to electromagnetic vibration  




