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Fuzzy set theory is an effective alternative to probability theory  
in solving many problems of studying processes and systems 
under conditions of uncertainty. The application of this theo­
ry is especially in demand in situations where the system under 
study operates under conditions of rapidly changing influencing 
parameters or characteristics of the environment. In these cases, 
the use of solutions obtained by standard methods of the proba­
bility theory is not quite correct. At the same time, the concep­
tual, methodological and hardware base of the alternative fuzzy 
set theory is not sufficiently developed. The paper attempts to fill 
existing gaps in the fuzzy set theory in some important areas. For 
continuous fuzzy quantities, the concept of distribution density 
of these quantities is introduced. Using this concept, a method 
for calculating the main numerical characteristics of fuzzy quan­
tities, as well as a technology for calculating membership func­
tions for fuzzy values of functions from these fuzzy quantities and 
their moments is proposed. The introduction of these formalisms 
significantly extends the capabilities of the fuzzy set theory for 
solving many real problems of computational mathematics. Using 
these formalisms, a large number of practical problems can be 
solved: fuzzy regression and clustering, fuzzy multivariate dis­
criminant analysis, differentiation and integration of functions 
of fuzzy arguments, state diagnostics in a situation where the 
initial data are fuzzy, methods for solving problems of uncondi­
tional and conditional optimization, etc. The proof of the central 
limit theorem for the sum of a large number of fuzzy quantities 
is obtained. This proof is based on the characteristic functions 
of fuzzy quantities introduced in the work and described at the 
formal level. The concepts of independence and dependence for 
fuzzy quantities are introduced. The method for calculating the 
correlation coefficient for fuzzy numbers is proposed. Examples 
of problem solving are considered
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1. Introduction

The recent increase in the number of publications on 
solving problems in conditions of uncertainty is objectively 
motivated. One of the important reasons for this is an increas-
ingly clear understanding of insufficient validity of the routine 
use of traditional methods and technologies of the probability 
theory in solving practical problems under conditions of uncer-
tainty in economics, technology, sociology, etc. A characteristic 
feature of the problems of studying phenomena and objects 
of the real world is the heterogeneity of the initial data. Due 
to the variability of the most important defining properties 
and characteristics of the environment, practical problems are 
formulated and solved in conditions of small samples of initial 
data, when fundamental provisions, axiomatic foundations of 
the probability theory are violated. A change in the mechanism 
of formation of the randomness phenomenon leads to heteroge-
neity of samples containing a small number of elements that are 
not sufficiently representative of the general population. The 
fuzzy set theory developed in [1] is much less demanding on the 
quality of the initial data, allows solving practical problems and 
drawing fairly reasonable conclusions for real samples.

Uncertainty is an inherent quality of the real world. 
Modern models, methods and technologies for solving prac-
tical problems are based on the implementation of two 
conceptually different approaches to describing this uncer-
tainty: probability theory and fuzzy set theory. Thus, the 
fuzzy set theory (FST) [1–5] is a successful and productive 
alternative to the probability theory (PT) in situations 
where the mechanism of formation of random variables 
changes unpredictably. This precludes the use of PT methods 
for the analytical construction of appropriate distribution 
densities or reconstructing them from experimental data  
in these cases.

At the same time, PT has significant advantages over FST, 
which are determined by the presence of deep and constructive 
probabilistic formalisms [2]: moment theory arising from the 
existence of distribution densities of random variables (RV);  
the possibility to calculate the probabilities of falling of RV in 
given subsets of a set of possible values; calculation of numeri-
cal characteristics of functions random variable functions; use 
of characteristic functions of random variables; the existence 
of the central limit theorem, etc. This circumstance stimulates 
attempts to formally extend the axiomatic base of FST in order 
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to replenish the mathematical framework of this theory for 
solving practical problems.

2. Literature review and problem statement

There are a very large number of papers on the fuzzy set 
theory. These works can be divided into two groups. The 
first one includes works containing a presentation of the fun-
damental foundations of this modern mathematical frame-
work [1–8]. In the works of the second group, the application 
of this theory is considered [9–13]. In recent years, there has 
been an increase in the number of papers that consider exam-
ples of solving various practical problems. At the same time, 
the number of problems solved is impressive. However, many 
of the most serious works [1–4], as well as subsequent works, 
draw attention to the need to improve the axiomatic base of 
the fuzzy set theory. For example, the papers [5, 14–16] on 
the analysis of the mathematical foundations of this theory 
explicitly state the need to continue efforts to improve the 
fundamental principles and applied analytical methods of 
the fuzzy set theory. Other considerations encouraging work 
in this direction draw attention to the following [17–19]. 
Implementation of solutions obtained by traditional methods 
of the probability theory in situations where the basic prin-
ciples governing the possibility of applying this theory are 
violated in the collection of statistical material is incorrect, 
and in many cases even dangerous.

It is clear that throughout the past time, the framework 
of the fuzzy set theory has been continuously replenished.  
At the same time, the main efforts were aimed at developing 
the most often used sections of the theory. These are opera-
tions on fuzzy sets and fuzzy numbers, fuzzy relations, fuzzy 
logic, fuzzy inference systems, simple approaches to solving 
fuzzy optimization problems. However, some important issues 
of the fuzzy measure theory remain insufficiently studied.  
In this regard, using canonized approaches implemented 
in the probability theory, it is advisable to formulate the 
problem of developing a system of conceptual, axiomatic and 
framework formalisms in order to improve the methodologi-
cal and model base, as well as the analytical framework of the 
fuzzy set theory. This concerns, in particular, the following 
issues: calculation of a fuzzy analogue of the distribution 
density of fuzzy numbers and their moments, consideration of 
the concepts of independence and dependence for fuzzy num-
bers, methods for calculating characteristic functions of fuzzy 
quantities, study of the limit characteristics of the sum of  
a large number of independent fuzzy quantities.

3. The aim and objectives of the study

The aim of the study is to extend the conceptual and 
analytical framework of the fuzzy set theory.

To achieve the aim, the following objectives are proposed:
– to develop a scheme for calculating the distribution densi-

ty of a continuous fuzzy quantity, the expected value of the fuzzy 
quantity, the expected value of the fuzzy quantity function; 

– to substantiate the concepts of independence and de-
pendence for fuzzy quantities, derive a formula for calculating  
the correlation coefficient for fuzzy quantities;

– to substantiate the concept of characteristic functions 
of fuzzy quantities;

– to prove the limit theorem for the sum of fuzzy quantities.

4. Methods for solving problems of extending  
the conceptual and analytical framework of the  

fuzzy set theory 

4. 1. Development of a scheme for calculating the dis-
tribution density of fuzzy quantities

Let µ(x) be the membership function of the fuzzy quan
tity x. This function is not normalized, that is:

μ x x( ) ≠
−∞

∞

∫ d 1.  

To solve many practical problems, it is useful to introduce 
a normalized membership function of the fuzzy quantity x by 
the formula:
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The resulting function can be interpreted as the density 
of the uncertainty measure and is naturally called the distri-
bution density of the fuzzy quantity values. Using (1), we 
obtain the distribution function of the fuzzy quantity values 
in accordance with the relation:
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Function (2) has a clear meaning. For a given value of x, 
the value of F(x) determines the chance, degree of confidence 
that the fuzzy quantity u with the membership function µ(u) 
will take a value less than x, that is:

F x P u x( ) = <( ).

The function F(x) has important properties:
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that is, F(x) is a non-decreasing function.
Relation (3) allows calculating the chance of falling of 

the fuzzy quantity u with the membership function µ(u) into 
the range [a, b].
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Note that the given properties of the distribution func-
tion F(x) of the values of the fuzzy quantity x coincide with 
the corresponding properties of the distribution functions of 
random variables, which allows using many important results 
of the probability theory in the fuzzy set theory.

Expected value of fuzzy quantity. The concept of expected 
value of fuzzy quantity as a natural analogue of mathematical 
expectation for the random variable was introduced in [4]. 
We introduce an alternative relation using the distribution 
density of the values of the fuzzy quantity x, which, by analo-
gy with the corresponding formula of the probability theory, 
has the following form:

M x x x x
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x x

[ ] .= ( ) =
( )

( )−∞

∞
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∞
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It is clear that the expected value of the fuzzy quantity 
determined by (4) has all the basic properties of the mathe-
matical expectation of a random variable:

1. If x is a fuzzy quantity with the expected value M[x], 
the expected value of the fuzzy quantity ax is M[ax] = a M[ax].

2. If x and y are fuzzy quantities with the expected values 
M[x] and M[y], respectively, the expected value of the sum 
of these fuzzy quantities is equal to the sum of their expected 
values, that is:

M x y M x M y+[ ] = [ ]+ [ ]. 	 (5)

Example. Let the fuzzy quantity x have the membership 
function:
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We find the expected value of the fuzzy quantity x. We have:
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Example. Let the fuzzy quantity x have the triangular 
membership function:
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We find the expected value of the fuzzy quantity x. We have:
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Relation (6) allows calculating moments of fuzzy quan-
tities. By analogy with the terms of the probability theory, 
we call the quantity M[xm] the initial k-th moment of the 
fuzzy quantity x. By the same analogy, we call the quantity 
am = M[(x–M[x])m] the m-th central moment of the fuzzy 
quantity x. Let φ(x) be the distribution function of the values 
of the fuzzy quantity x – M[x] and g(x–M[x]) = [(x–M[x])2. 
Then, according to (6), we have:
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Example. Let the fuzzy quantity x have the membership 
function:

μ x
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x a b
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We find the initial and second central moments of the fuzzy 
quantity x. Above is the formula for the distribution density of 
the values of the fuzzy quantity x, which has the following form:
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Example. Let the fuzzy quantity x have the Gaussian 
membership function:
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We find the second central moment of the fuzzy quantity x.
We have:
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As a result of substitution u x m= −( ) ,σ  we have:
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Integrating by parts, we get M x M x−  ( )
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Expressions for the moments of fuzzy quantities obtained 
in the examples naturally coincide with the corresponding 
expressions for random analogs of these quantities.

4. 2. Independent and dependent fuzzy quantities
Let the fuzzy quantities x1, x2, …, xn with the membership 

functions µk(xk), k = 1,2, …, n, belong to the corresponding sets 
A1, A2, …, An, that is, xk ∈ Ak, k = 1,2, …, n. We introduce the 
multidimensional quantity X with coordinates x1, x2, …, xn, 
a multidimensional set A = A1 × A2 × … × An, and a scalar mem-
bership function µ(x1, x2, …, xn) of the vector argument X.  
The fuzzy quantities x1, x2, …, xn can be independent or de-

pendent. If they are independent, then to study them it is 
enough to know exactly the set of homogeneous membership 
functions µ1(x1), µ2(x2),…, µn(xn), each of which, for example, 
µk(xk) specifies the degree of membership xk in the corre-
sponding set Ak. In this case, the multidimensional function 
µ(x1, x2, …, xn) can be expressed through a set of one-dimen-

sional functions as follows μ μx x x xn k k
k

n

1 2
1

, , , .( ) = ( )
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∏
Expected value of the product of independent fuzzy quan­

tities. If the fuzzy quantities  x1, x2, …, xn are independent, 
then the expected value of the product of the fuzzy quantities 
is equal to the product of their expected values, that is:

M x x x M xn k k
k
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1 2
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, , , .[ ] = [ ]
=

∏ 	 (7)

Dependent fuzzy quantities. Calculation of the measure of 
connection of dependent quantities. Let’s define the concept 
of a conditional membership function. Let the membership 
function µ(x1, x2,…, xn) be given for the multidimensional 
fuzzy quantity (X1+X2+…+Xm). Let us introduce the con-
ditional function of membership of the component Хi in the 
subset Ai, calculated under the condition that the other com-
ponents of the set (X1, X2,…, Xm) took a certain value. This 
membership function is written as µ(xi, x1, x2,…, xi–1, xi+1, xm) =  
= µ(xi), i = 1,2,…,m. In this case, the value of specific numerical 
values of any components of the fuzzy number X does not af-
fect the distribution of possible values for other components 
of this number.

If fuzzy variables are dependent, then knowledge of 
marginal membership functions is not enough to correctly 
describe them.

Consider the method for calculating the measure of 
connection of dependent fuzzy quantities. The idea of the 
method is extremely simple and especially clear in the 
two-dimensional case. The procedure is based on studying 
configurations of sections of the membership function of the 
multidimensional fuzzy number at several levels. It is clear 
that these configurations will be close to circular if the com-
ponents of the fuzzy number are independent. And, on the 
contrary, they will be the more elliptical, the stronger their 
connection. This connection can be estimated quantitatively 
by calculating the static characteristics of a random variable 
evenly distributed within each of the sections. Let us take 
a closer look at this technology.

Let the joint membership function µ(x, y) of the fuzzy 
quantities X and Y be given. For this membership function, 
we find a set of α – level sections by solving the equations 
µ(x, y) = a1, l = 1,2, …, L. The solution of this equation for  
a specific value of αl defines the two-dimensional domain Dl.  
We now assume that the variables (x, y) ∈ Dl are a pair of 
random variables evenly distributed over the domain Dl. The 
corresponding two-dimensional distribution density is:
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Now, for the fixed value of x, we find the interval 
[d1l(x), d2l(x)] of possible values of y for which (x, y) ∈ Dl. 
Then the conditional distribution density of the variable X is:
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Similarly, for the fixed value of y, we find the interval 
[d1l(у), d2l(у)] of possible values of x for which (x, y) ÎDl.  
In this case, the conditional distribution density of the va
riable Y is:
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Let us determine the values of mathematical expectations 
and variances of X and Y:
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Finally, let us calculate the covariance for the random 
variables X and Y, corresponding to the αl – level section of 
the membership function µ(x, y).

M XY xyf xy x y
s

x x y yl
l X

X

d x

d x

l

l

l

l

[ ] = ( ) =
−∞

∞

−∞

∞

∫∫ ∫d d d d
1

1

2

min

max

( )

( ))

min

max

.

∫

∫

=

= ( ) − ( )( )1
2 2

2
1
2

s
x d x d x x

l
l l

X

X

l

l

d

Then K XY M XY M X M Yl l l l[ ] = [ ]− [ ] [ ].  
We repeat the described procedure for all al, l = 1,2, …, L, 

and obtain the corresponding set of covariance values K1 [XY],  
K2 [XY],…, KL [XY]. Now, as a measure of connection – 
con(X, Y) for two fuzzy quantities X and Y, we take the 
weighed linear combination of the calculated values of  
al – level covariances:

con X Y K X Yl

l
l

L l
l

L

, , .( ) =  

=

= ∑
∑

α

α
1

1

The above values of the variances of the random variables 
X and Y for the α-sections of the membership function µ(x, y) 
allow us to find the value of the relative connection coeffi-
cient – ccon(X, Y) for X and Y:

ccon X Y
K X Y

D X D Y

l

l
l

L
l

l l
l

L

,
,

.
`

( ) =
∑

[ ]
[ ] [ ]( )

=
=
∑ α

α
1

1
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It is clear that in cases where the analytical description of 
the domain Dl is complex, then to obtain the desired result,  

a simulation model can be used to obtain the desired result by 
forming random variables uniformly distributed in Dl.

4. 3. Characteristic function of a fuzzy quantity
By analogy with the concept of the characteristic func-

tion of a random variable, the characteristic function of the 
fuzzy quantity x is the function defined by the relation:

Ψ z M e M zx i zxizx( ) =   = +[ ]cos sin . 	 (8)

For the fuzzy quantity with the distribution density of 
values φ(x), the characteristic function according to (8) is 
calculated by the formula:

Ψ z e x xizx( ) = ( )
−∞

∞

∫ φ d . 	 (9)

Example. For the fuzzy quantity x with the membership 
function:

μ x
x a b

x a b
( ) =

∈[ ]
∉[ ]







1

0

, , ,

, , .

as was shown, the distribution density of values is:

φ x
b a x a b

x a b
( ) =

−( ) ∈[ ]
∉[ ]







1

0

/ , , ,

, , .

Let us find the characteristic function of the fuzzy num-
ber x. We have:

Ψ z
b a

e x
e e
b a iz

izx
izb iza

( ) =
−

=
−

−( )−∞

∞

∫
1

d . 	 (10)

In particular, if the fuzzy quantity carrier is the inter-
val [–a, a], then:

Ψ z
aiz

e e

aiz
za i za za i za

iza iza( ) = −( ) =

= + − +( ) =

−1
2

1
2

cos sin cos sin
siin

.
za

a2

Example. Let the fuzzy quantity x have the Gaussian 
membership function:

μ x
x( ) = −









exp .
2

2

Let us find the characteristic function of this fuzzy quantity.
The distribution density of the values of this quantity is:

φ
π

x
x( ) = −









1

2 2

2

exp .

Then

Ψ z e e x e x
izx

x
izx

x

( ) = =
−

−∞

∞
−

−∞

∞

∫ ∫
1

2

1

2

2 2

2 2

π π
d d .

Further

d z

dz
ixe x

izx
xΨ( )

=
−

−∞

∞

∫1

2

2

2

π
d .
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Integrating the resulting expression by parts, we get:

d z

dz
i

e xe x

i
e e iz e

izx
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izx
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Ψ( )
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
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
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=

= − = − ( )

2

2

2

2

2

d

d
π

Ψ .

Thus, Ψ(z) satisfies the differential equation Ψ Ψ' ,z z z( )= − ( )  
solving which we obtain:

Ψ z Ce
z

( ) =
−

2

2 .  

Since

Ψ 0
1

2
1

2

2( ) = =
−

−∞

∞

∫π
e x

x

d ,

then С = 1 and Ψ z e
z

( ) =
−

2

2 .  Let further:

φ
πσ σ

x
x m( ) = −

−( )











1

2 2

2

2exp .

Let us introduce η σ= −( ) ,x m  whence x m= +ση . Then

φ η
π

η

( ) =
−1

2

2

2e .

Moreover, using (8), we obtain:

Ψη
ση

ση
σ

z M e M e e

e M e e e

izx izm iz

izm iz izm
z

( ) =   =   =

=   =
−( )

( )) ( )

.
2 2

2 2=
−

e
izm

zσ

	 (11)

Note now the important multiplicative property of char-
acteristic functions of fuzzy quantities. Let х1 and х2 be inde-
pendent fuzzy quantities and Ψ1(z) and Ψ2(z) – their charac-
teristic functions. Let us find the characteristic function for 
the sum х1+х2. We have:

Ψ x x M e M e e

M e M e

iz x x izx izx

izx izx

1 2
1 2 1 2

1 2

+( ) =   =   =

=  

+( )

  = ( ) ( )Ψ Ψ1 2z z . 	 (12)

It follows that if x1, x2, …, xn are independent fuzzy quan-
tities, then the characteristic function of the sum x1+x2+…+xn 
of these quantities is equal to the product of the characteris-
tic functions of the terms.

Example. Let x1, x2, …, xn be independent fuzzy quantities 
with Gaussian distribution densities of their values:

φ
πσ σ

φ
πσ

1 1

1

1 1

2

1
2

1

2 2
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x
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n n
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nn n

n

m−( )

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







2

22σ
.

Using the properties of the characteristic functions, we find 
the distribution density of the values of the sum x1, x2, …, xn.

The characteristic functions for each of the terms are de-
termined (11):

Ψk

izm
z

z e
k

k

( ) =
−

σ2 2

2 ,  k n= 1 2, ,..., .

Then the characteristic function of the sum x1, x2, …, xn 
equal to the product of the characteristic functions of the 
terms is as follows:

e
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2
σ σΣ Σ

. 	 (13)

The resulting function according to (13) is the charac-
teristic function of the fuzzy quantity with the distribution 
density of values:

φ
πσ σ

u
u m( ) = −

−( )











1

2 2

2

2
Σ

Σ

Σ

exp .

Thus, if fuzzy quantities have a Gaussian distribution 
density of values, then the distribution density of their sum 
is also Gaussian.

4. 4. Limit theorem for the sum of independent fuzzy 
quantities

Let us show that the sum of a large number of indepen-
dent fuzzy quantities has an asymptotically Gaussian distri-
bution density (an analogue of the central limit theorem of 
the probability theory). Let n independent fuzzy quantities 
ξk, k = 1,2,…n be summed up, with respect to each of which 
the expected value mk and the second central moment σk

2.  
are known. The characteristic function of the k-th fuzzy 
quantity is:

Ψk k
izM e kξ ξ( ) =   .

We introduce centered fuzzy quantities ζk = ξk–mk, where 
k = 1,2, …, n. Now using decomposition:

e
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,
θ 1

1

0 1
 θ < 1,

we write the characteristic function of the fuzzy variable ζk:
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	 (14)

Let the so-called Lyapunov condition be satisfied for the 
set of the summed quantities:

lim .
n k

k

n

M
→∞

=

  =∑ ζ3

1

0
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In this case, (14) takes the form:

Ψ ζ ζ ζ
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iM z
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!

(( )
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where the variable R is bounded from above, R M k
m≤  

+ζ 1 .
Then the generating function for the sum of centered 

fuzzy quantities ζk is determined by the relation:
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Taking the logarithm of (15), we obtain:
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It follows from (16) according to (13) that the sum ζk
k

n

=
∑
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has an asymptotically normal distribution with the parame

ters 0 2, .σΣ( )  On the other hand, since ζ ξk
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, whence:
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which, taking into account (13), corresponds to normal dis-
tribution with the parameters N mΣ Σ, .σ2( )

5. Discussion of the results of extension of the conceptual 
and analytical framework of the fuzzy set theory (FST)

The issues discussed in the work are a very small part of 
many FST problems that need to be worked out. The list of 
those chosen for consideration is, of course, subjective, but 
dictated by the urgent needs of practice.

For continuous fuzzy quantities, the concept of the dis-
tribution density of the values of these quantities, which 
is a natural analogue of the corresponding concept in the 
probability theory, is introduced. The absolute importance 

of this concept is due to the fact that it defines a probabilis-
tic measure for fuzzy quantities. This measure is absolutely 
necessary when solving many problems of assessing the prob-
ability of specific events in the real world. In addition, know
ledge of the distribution density of fuzzy quantities provides 
a calculation of the numerical characteristics of the values of 
these quantities, giving a concise, but rather an informative 
display of the essential features of mathematical models of 
the processes and objects under study. The technology in-
troduced below for calculating the moments for functions 
of fuzzy quantities significantly expands the possibilities of 
using fuzzy mathematics to solve a variety of practical prob-
lems, the parameters of which are not clearly defined. These 
include, in particular, the following problems: linear and 
nonlinear algebraic equations and their systems, differential 
and integral equations, problems of unconditional and condi-
tional optimization; decision making under fuzzy conditions; 
formation of mathematical models of systems functioning in 
a fuzzy environment, etc.

The concepts of independence and dependence for fuzzy 
quantities are considered. For the case of dependent fuzzy 
quantities, the technology for calculating the coefficient, the 
numerical value of which lies in the interval [0; 1], deter-
mines the measure of connection between them, is proposed.

The concept is introduced and the method is proposed for 
calculating the characteristic function for fuzzy quantities.  
A characteristic function is one way to define a distribution. 
It is a very useful and convenient tool for analyzing distribu-
tion densities. Using characteristic functions, the problem of 
finding the result of the composition of distribution laws and 
many other problems are solved.

The limit behavior of the value of the sum of a large 
number of weakly connected fuzzy quantities is considered. 
The important property of the distribution of this value is 
determined – this distribution is asymptotically normal. 
This most important property of the sum of a large number of 
weakly connected fuzzy numbers can be constructively used 
in solving a variety of problems of mathematical statistics. 
These include, in particular, problems of regression and clus-
ter analysis [15, 20], multivariate logistics [21, 22].

Note the following important circumstance. To solve 
problems using the introduced formalisms, a unified ap-
proach can be used, implemented by the following four-
stage procedure. Let, for example, some specific problem be 
reduced to finding a set of fuzzy variables X = (x1, x2, …, xn), 
given by their membership functions µ(x1), µ(x2),…, µ(xn), 
which maximizes the objective function F(x).

At the first stage, the usual problem of maximizing 
F x( ), is extended, X x x xn= ( )1 2, ,...,  – a set of modal values 
of variables. Let X x x xn

( ) ( ) ( ) ( )( , ,..., )0
1

0
2

0 0=  be the solution to  
this problem.

At the second stage, using the membership functions of 
the variables xi, i = 1,2,…,n, their distribution density φ(xi), 
i = 1,2,…,n is formed.

At the third stage, using µ(x1), µ(x2) …, µ(xn), the member-
ship function of the objective function of the problem µ(F(x)) 
and the variance of this fuzzy number D[F(x)] are determined.

At the fourth stage, a compromise criterion for the quali-
ty of solving the problem:

η α αx D F x x x x x
T( ) = ( )  + −( ) −( )( ) ( )

1 2
0 0 ,

is formed, which is minimized.



Mathematics and cybernetics – applied aspects

21

The essence of this operation is clear: the level of fuzzi-
ness of the objective function value is minimized, as well as 
the degree of deviation of the solution from the modal one.

In conclusion, we note that the implementation of the 
computational capabilities of the proposed methods is the 
simplest and the most convenient if fuzzy operands are speci-
fied by membership functions of the (L–R) type. These tech-
niques are applicable in other cases, however, computational 
difficulties increase significantly.

A possible direction for further research is the exten-
sion of the results to the case when the initial data are  
fuzzy [23]. In this case, the approaches proposed in [24] can 
be useful.

6. Conclusions

1. The method for calculating the distribution density of 
a fuzzy quantity is developed, the concept is introduced and 
the method is determined for calculating its expected value.

2. The concepts of independence and dependence for fuzzy 
quantities are introduced and substantiated. The method for cal-
culating the connection of dependent fuzzy quantities is proposed.

3. The concept of characteristic functions of fuzzy quanti-
ties is introduced. The formula for their calculation is proposed.

4. Using the characteristic functions, the central limit 
theorem for the sum of a large number of weakly connected 
fuzzy quantities is proved.
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