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The dynamic behavior in the clamped edge stress 
of structures is not yet fully understood clearly; also, 
clamped structures involve uncertainty. This research 
presents a numerical and analytical study of clamped 
edge stress behavior due to the load imposed by the 
chip-cutting tool on a workpiece. Clamping system, 
which is made of H-13 steel and machining work-
piece made of AISI 8620 steel are analyzed. The maxi-
mum clamped edge stress is analyzed through dynamic 
response, considering the machined part as a cantilever 
beam, involving the constitutive relations as well as the 
compatibility equations. The central differential equa-
tion of motion leads us to determine the modal stresses 
that are a primary characteristic of the structure and 
that are also distributed in it. Once the modal stress has 
been determined as well as the maximum amplitude at 
the free end of the specimen to be machined, it is possi-
ble to calculate the maximum clamped edge stress that 
is generated between both the specimen and the clamp-
ing system. Finally, a numerical analysis of the clamp-
ing jaw is performed for the discretised system and 
analyzed separately using the finite element method. 
Clamped edge stresses are assessed through a modal 
study using a set of numerical simulations to corrobo-
rate the modal stress estimated analytically. The results 
show that the clamped edge stress in the clamping sys-
tem is a considerable influence in the design parame-
ters of the structure. Therefore, complete knowledge of 
the dynamic response of the clamping system will lead 
to better structural design with the possibility of using 
different materials for the same purpose
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1. Introduction 

In mechanical engineering, analysis of mechanical vibra-
tions is significant for the design of mechanical elements. 
Structural vibration behavior is the leading cause of failure 
in the elements because of dynamic loads that induce vibra-
tions in structural elements [1]. The dynamic behavior of  
a structure in a machine is typically analyzed as a cantilever 
beam since it is the simplest model of a structure. Beam mo
dels have solved many engineering problems in the past two 
centuries. The study of the vibration of beams subjected to 
loads is a classic topic discussed in many technical publica-
tions [1, 2]. The natural frequencies of axially loaded beams, 
widely used in many macro and microstructures, are of prac-
tical interest in many applications. For example, for structur-
al health monitoring of structures [3, 4]; for using resonance 
as a sensing mechanism in micro and nano-devices [5];  
for predicting the behavior of microdevices under tempera-
ture or stress variations [6, 7]; for estimating the tension, 
residual stress and other physical parameters from the vibra-
tion response [8, 9]. 

Mechanical vibrations of the workpiece are analyzed 
using its modal shapes fundamentally and its frequency of 

oscillations that are uniformly distributed over it. Dynamic 
response of any structure design is addressed on its elements 
and an appropriate lightness of the structural requirements.

The relevance of this scientific issue is predetermined 
by a method to study the main parameters such as forces, 
displacements and stress in the supports of the structures or 
mechanical elements of machines. Also, to find the dynamic 
response under loads. The study results could be used to ra-
tionalize the design of modern structures.

2. Literature review and problem statement

The main problem with a clamping edge structure is that 
most of the dynamic analysis where it involves the oscilla-
tion frequencies of the structure only considers the elements 
where the forces act directly and do not analyze the clamped 
edge parts of the structure. Resonance of the structure, such 
as a cantilevered beam, is sometimes responsible for high 
values of response, even for small dynamic loads. Formulas 
have estimated these response frequencies instead of ite
ration or numerical processes, which has been the object of  
multiple works.
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In [8], the empirical equations are proposed to estimate 
the cable tension depending on the fundamental frequency 
of the cable, based on the solutions using the energy me
thod and adjusting the exact solutions of the cable vibration 
equations where they take place in counts respectively 
the buckling and the bending stiffness. In this implemen-
tation, the cable clamped edge or clamping stress are not 
taken into account. After all, this is not required because  
the most in this analysis of the cables are the cable tensions 
themselves.

Carpinteri and Manuello [10] experimentally studied the 
evolution of the fundamental frequency in thin steel beams 
subjected to axial displacements at the ends. Three elements 
with different initial curvatures were tested under constraint 
conditions. The results obtained were that the fundamental 
frequency decreases with axial load. In this study, no analysis 
is performed on the clamping of the beams due to metho
dological circumstances.

This analysis is distinguished primarily by the beam 
assembly and testing procedure, primarily for the first beam 
constraint condition.

Zui and Namita [11] propose practical formulas for the 
vibration method taking into account the effects of bending 
stiffness and buckling of a cable. The practical formulas that 
the authors propose in this document are applicable to various 
cables, regardless of length and tension, to the extent that the 
first or second-order mode vibration can be measured. How-
ever, they do not address the analysis of cable clamp stresses 
due to low order modal shapes. The only formula is presented 
using natural frequencies of higher-order modes obtained 
from stationary micro-vibrations for very long cables.

In [12], closed-form solutions are presented for funda-
mental natural frequencies of non-homogeneous vibrating 
beams under axially distributed loads. The shape of the mode 
is postulated to coincide with the static deflection of the asso-
ciated homogeneous beam without distributed axial load. In 
those solutions, the authors do not present embedment stress 
analysis as a relationship with modal stress distribution.  
They only present a linear relationship between the frequen-
cy and a load for all the boundary conditions.

3. The aim and objectives of the study

The aim of the study is to determine in an approximate 
way the clamped edge stresses that are generated in the 
clamping system due to the force applied to the workpiece to 
be machined through the analytical development proposed to 
calculate the maximum modal stress and then validate it with 
a numerical analysis using the main geometric and mechani-
cal parameters of the workpiece.

To achieve the aim, the following objectives have been set:
– using the modal analysis to determine the natural 

frequencies and modal stresses that are distributed over the 
entire workpiece to be machined;

– to determine the clamped edge stress of the workpiece 
by the vibration amplitude of the generalized coordinate, 
using the differential equation of a single degree of freedom;

– numerically analyze the maximum clamped edge stress 
generated in the clamping system.

– to determine the displacement and the maximum clamp-
ing edge stress generated in the clamping system;

– to validate the case study using a finite element com-
puter code.

4. Materials and methods

The maximum clamped edge stress is analyzed by the dy-
namic response using the modal analysis theory in a slender 
beam to determine the natural frequency of the system and 
its vibration forms. Subsequently, the numerical analysis is 
carried out with Ansys software using two materials for tools. 
The first, the clamping system, which is made of H-13 steel 
with a yield stress of 1,380 MPa and the second a specimen 
of AISI 8620 steel, where the load is applied in the machining 
and considering the specimen in cantilever condition and 
using the constitutive relations and compatibility equations. 
The clamping system consists of two clamps that hold the 
material to work with a grip area of 3×40 millimeters in each 
of the clamps. Specimen data in a cantilever condition in an-
alytical and numerical analysis are shown in Table 1.

Table 1
Data for the specimen to be machined

Parameters

L Length (m) 0.2286

b Width (m) 0.0254

h Thickness (m) 0.0254

E Young Modulus (GPa) 205

ρ Mass Density (Nsec2/m4) 7,800

4. 1. Modal analysis to determine the natural frequen-
cies, modal shape and displacement of the workpiece 

The dynamic response of the AISI 8620 steel specimen is 
analyzed to know stresses in the clamped edge. Fig. 1 shows 
the machining.

 
Fig. 1. Machining of the AISI 8620 steel specimen

The excitation force of amplitude F0 = 150 KN and a vari-
able frequency ω at a speed of 8,000 rpm. The primary diffe
rential equation (1) for a uniform beam where the deflections 
are a function of both time and location is [1]:
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A result of a state of equilibrium between the elastic and 
the inertia forces in the area of the cross-section A, and uni-
form beam mass density ρ, so ρA is the mass per unit length 
of the specimen, assuming uniformity. It can be shown that  
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the deflection w(x, t) can be separated into two parts, one 
dependent on location only and the other on time: 

w x t x t, * .( ) = ( ) ( )j η 	 (2)

Then two differential equations are obtained by modal 
function j(x) and generalized coordinate η(t):
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The analysis for the first three natural frequencies of 
vibration calculated for the sample to be machined is shown 
in Table 2.

Table 2

Frequencies of analytical solutions

Frequency (Hz)

Modes Analytical 

1 405.756

2 2498.597

3 5608.345

In Fig. 2, the displacement of the first three mode shapes 
of the specimen of AISI 8620 is shown. It can be seen that 
the maximum absolute value of all the modes is 0.01 m. This 
means that it is the displacement that the workpiece has due 
to the modal shape of vibration without having a previous 
load. The second mode has one additional nodal point, a lo-
cation where the modal deflection is zero and the third mode 
has no deflection.
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Fig. 2. Graph of the first three displacements 	
of the AISI 8620 steel specimen

In the third modal form, the displacement is zero because 
the displacement is relatively minimal in such a way that it 

tends to zero. Fig. 2 shows that there is virtually no movement 
or displacement in the third modal shape of the specimen to 
be machined. The effect of the dynamic load factor (DLF)  
or the amplification factor is entered into the system when 
the deflections are calculated and serves to determine the 
final vibration amplitudes of the workpiece.

4. 2. Development of an analytical model to deter-
mine the stress modes and clamped edge stress using the 
differential equation of a single degree of freedom

Stresses in an elastic structure are uniquely defined by the 
deflection, which means that deflections are obtained, either  
statically or dynamically. For a specific type of structure:

σi ikL w x y t= ( ) , , . 	 (6)

K is a constant depending on the material properties and 
geometry of the specimen:
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From the previous equations, it is possible to write and 
propose a mathematical formulation that represents a linear 
function of the modal shapes and the generalized coordinates:

ψ jj
i

i jKL x= ( )  . 	 (8)

The last equation (8) is for calculating the mode stres
ses ψ j

i ;  there are also features of the structure. Thus, equa-
tion (8) is used to determine mode stresses in the clamping 
of the steel specimen. A modal superposition represents the 
lateral deflection of the specimen, so that a separation of 
variables is executed. The state of mode superposition is in 
effect that the total lateral displacement of the specimen is  
a weighted sum of the modal shapes. Thus, the displacement 
in any location and at any time is calculated:
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Differential equations of motion of a continuous system 
are performed, using Lagrange equations. For a system where 
the damping forces are derived from dissipation, the function:
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where T is the kinetic energy of the system, U is the potential 
energy, D is the dissipation function, and N is the work done 
by the external force in the η generalized coordinate. The 
development of the equation of motion is performed through 
a uniform specimen, for this reason, m is the mass per unit 
measure, EI is the flexural stiffness, c is the damping per unit 
measure, and w(x, t) is the displacement normal to the speci-
men along the x-axis. From equation (9):

′′ ( ) = ′′( ) ( )
=

¥

∑w x t x ti
i

, * .j η
1

	 (11)

Also, from equation (10):

dT
d

mw
dw
d

m x x t x
r r

r i i
i′

= ′
′ = ( ) ( ) ′ ( )









=

¥

∑∫∫η η
j j ηґ * .

1

d 	 (12)



Applied mechanics

17

Being normal modes jj and ji are orthogonal, where Mr is 
the rth generalized mass, thus:
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To find the expression of the work done by the exter-
nal force, some discrete force fn(t) must be applied to the 
specimen.

The virtual work done by the force in a virtual displace-
ment, δW(x, t) is:
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Substituting equation (13) into equation (10) yields  
a set of N uncoupled differential equations for the generalized 
coordinate:

M M M Nr r r r r r r r r r′′+ + =η ζ ω η ω η2 2ґ . 	 (15)

From the complex equation of the transfer function, this 
means that there is a phase difference between excitation 
force and displacement:
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This is the static deflection of a single degree of freedom 
under a static force. Therefore, the dynamic load factor is 
defined as:
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It is assumed that the damping ratio is ζ = 2 % [2]. 
The generalized mass of the first three resonance modes is 
calculated. The amplitude of the generalized coordinate 
is calculated using the differential equation of a single 
degree of freedom and the dynamic load factor at its maxi- 
mum value.

Like the displacements in the third modal shape, the 
modal stresses for the same shape are tiny and ideally tend to 
zero shown in Table 3 and Fig. 3. 

This means that the maximum modal forces are only  
between the first and second modal shape of the specimen 
to be machined. To obtain the stress modes, one naturally 
tends to use equation (8), i. e., to apply the operator L on the 
modal shape.

Table 3
Analytical solutions

Maximum stress modes (MPa)

Modes Analytical

1 1777.245

2 39457.857
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Fig. 3. Graph of the first three modal stresses 	
of the AISI 8620 steel specimen

4. 3. Numerical analysis to determine the displacement 
and the maximum clamping edge stress generated in the 
clamping system

Finite Element Method (FEM) model was built ac-
cording to the dimensions of the clamping system and the 
machined material. The simulation process consists of de-
termining the load imposed on the clamps of the H-13 steel 
system due to the point force at the end of the AISI 8620 
steel specimen that is exerted when machining. The model 
of Fig. 4 is considered with isotropic, homogeneous, conti
nuous, and linear properties.

 

 

Clamping  
system 

Specimen to 
be machined 

F 
 

Fig. 4. H-13 steel material clamping system and 	
AISI 8620 steel workpiece

Subsequently, the displacement and the maximum camped 
edge stress generated in the clamping system for the first 
three modal shapes are determined using modal analysis. 
Higher-order 3D elements are used. SOLID186 element is 
defined by 20 nodes with three degrees of freedom per node, 
translation in X, Y and Z. Only one jaw of the specimen has 
been modelled, due to symmetry (with respect to X-Z and 
X-Y Cartesian planes) and symmetric displacement boundary 
condition has been applied to the corresponding planes and is 
shown in Fig. 5. The stress distribution in the jaw is obtained, 
a three-dimensional finite element model was simulated by 
ANSYS® general finite element code. The meshed model of 
the specimen to be machined consisted of 19,785 nodes and 
the clamp consisted of 44,750 nodes. 

The Poisson ratio NUXY = 0.3, elastic modulus E = 
= 2.1⋅105 MPa, material density DENS = 7,800 Nsec2/m4. The 
most critical holding areas were with a complex mesh. 
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Load transmitted 
over the clamping 

area of the 
workpiece 

Clamp 

Fig. 5. Clamp with free meshing

The analysis was developed into natural frequencies, dis-
placement and stress in the clamping system and has approxi
mated visualization of the effects of applying a harmonic ex-
citation on the specimen. The load imposed on the specimen 
to be machined is transmitted in the jaw system, as shown  
in Fig. 5. Jaw displacement is shown when pressure is applied 
to the workpiece clamping area, as in Fig. 6. The boundary 
constraints assignment (offset) is considered subject at the 
base of the clamping system. 

 

Maximum displacement 
0.478×10–6 m 

Fig. 6. Clamp displacement

The stresses are generated in areas where the model 
geometry is critical; that is, the slack is quite pronounced. 
Therefore, those stresses are shown in Fig. 7. 

 
 

 0.037  0.689    26.5     58       69     97.5   122.5   186     276    359 

Fig. 7. Maximum stress in the critical zone

The maximum values of the generalized coordinate or 
amplitude for the first, second and third modes are shown in 
Table 4. Note that the first response is in a wide frequency 
between 350 and 720 Hz, a range that includes the first fre-
quency computed.

Table 4

Numerical solutions of the ending amplitude

Mode Numerical

1 0.002087

2 0.000053

3 0

The expression for the total generalized coordinate 
should include the phase angle between the response and 
excitation, as shown in Fig. 8, 9.
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Fig. 8. Amplitude of the end of the specimen
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Fig. 9. Generalized coordinate for the first mode 	
at the specimen end

The study also has shown that the amplitude or dis-
placement of the workpiece that is observed in Fig. 9 and 
Table 4 where its value is 0.002080 meters, being limited 
to one centimeter, and finally the estimation of stress due 
to the imposed load on the clamp must be it is 358 MPa, as 
shown in Fig. 10, which is less than the yield strength of both 
materials.

The numerical analysis of the stresses at the clamped 
edge of the first three modal shapes of the clamping system is 
shown in Table 5 and Fig. 10.
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Fig. 10. Clamped edge stress in the clamping system 
calculated from the numerical solution

Table 5

Numerical solutions of clamped edge stress

Mode Numerical

1 359.0

2 202.0

3 0

5. Discussion for the clamped edge stress in a structural 
element under cantilever condition

The analysis proposed to estimate the clamped edge 
stress in the cantilever structures, which could be a new way 
of knowing the dynamic response of a structure under this 
support condition.

This is evidenced by the analytical model proposed un-
der the theory of modal analysis. The results obtained can 
be explained by the possibility of applying the Lagrange 
equations to the calculation of mechanical structures, tak-
ing into account the use of energy in a mechanical system  
or structure.

The presence of modal stresses in the structure leads 
to an analytical formulation to be able to estimate the 
clamped edge stress of the clamping system. Due to equa-
tion (8), it is possible to calculate the stress mode, which 
is a parameter that characterizes the structure and shows 
that the modal stress is a stress distribution throughout 
the structure when subjected to a deflection equal to the  
modal shape.

When analyzing the displacement compartment, it is 
observed that the first displacement mode dominates the 
response and that the forces due to the first mode are practi-
cally those that influence the final result of the embedment 
forces, as shown in Fig. 2, 3.

Fundamentally, the method to calculate clamped edge 
stress algorithmically in six steps was implemented in  
this study.

To implement this method in actual practice for struc-
tures subjected to a cantilevered support condition, it is 
needed to address the following main issues:

1)  calculate the resonance frequencies and mode 
shape. These can be done analytically for simple structu
ral elements or numerically using a fine element computer  
program;

2)  calculate generalized masses using equation (13);

3)  knowing the external loading, calculate the genera
lized forces of the system using equation (14).

4)  assume modal damping coefficients ζ. These are known 
from the nature of the mode.

5)  solve N uncoupled differential equations for the ge
neralized coordinate.

6)  calculate the stress modes behavior using equa-
tion (8). Thus, this equation is used to determine modal 
stresses in the clamping of the steel specimen.

Difficulties in conducting studies on mathematical analy-
sis are mainly related to the following two issues:

1)  the application of the operator L is not always known 
in closed form, although it is possible to express it for  
simple cases.

2)  the modes shapes of the structure are not always avail-
able in a closed-form expression. In many cases, the modes 
are approximated by assumed expressions that satisfy the 
boundary conditions and give a good approximation for the 
resonance frequencies. 

However, these difficulties can be significantly reduced 
by using the numerical analysis, which simulates the move-
ment and clamps edge stress of the clamping system based on 
a combination of results to solve the Lagrange’s differential 
equation and the equations of motion of a point mass, taking 
into account the vibration forms, frequencies and modal 
forms of the system.

6. Conclusions

1. The development of equations of motion is performed 
for a beam as a continuous system using Lagrange equations. 
Because the modal superposition represents the lateral 
deflection of the beam, so, any deflection is a superposition 
of a modal function that depends on the position and the 
generalized coordinate that depends on the time, where the 
weighting functions are the general coordinates.

2. The proposed study showed that the modal analy
sis determines the natural frequency and modal stress. 
Modal stress is a characteristic of the structure and not 
of the load condition, in such a way that it is distributed 
throughout the structure when the latter is subjected to 
a deflection statically equal to the modal shape, with the 
generalized coordinate normalized to one centimeter, as  
shown in Fig. 2.

3. The actual stresses at the clamped edge of the struc-
ture can be obtained by multiplying values of the stress 
modes at that edge with the deflection of the structure tip. 
According to the dynamic analysis of the clamping load 
made on an H-13 steel material, it supports the harmonic 
force imposed by the machining. The maximum stresses 
are near the clamped edge, where usually no accelera-
tions exist. It is interesting to note that the structural 
locations that experience the largest amplitudes are not 
necessarily those in which maximum stresses exist, as  
shown in Fig. 3.

4. The validation of the analytical method is carried out 
through the modal analysis of the LANCZOS method, which 
is the most efficient way to solve the eigenvalue. Moreover, 
the BLOCKLANCZOS method is selected for the charac-
teristics of high precision and computing speed. Natural fre-
quencies, stresses and displacements are determined, based 
on the Finite Element Method, such as ANSYS® software. 
In the first three natural frequencies of the workpiece, there 
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is an approximate variation of 4.7 % between both analytical 
and numerical methods. Fig. 3 shows the modal stress with 
a maximum value of 1,700 MPa. It was found that the maxi
mum modal stress is 1,700 MPa and highlighted that these 
stresses are considered only in the first two modal shapes, 
and for the third, the modal stresses are minimal and practi-
cally tend to zero.
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