
Information and controlling system

53

In parametric diagnostics of the engine, parameters of 
its working process are processed using the selected method. 
The processing can result in the following:

‒ determination of integral parameters of the engine 
TS (flight performance, thrust in a given mode, specific fuel 
consumption, etc.);

‒ evaluation of the TS parameters of individual GTE 
assemblies (shift of performance characteristics and the 
degree of pressure increase in the compressor, the turbine 

1. Introduction

One of the ways to improve the quality and efficiency of 
diagnosing gas turbine engines (GTE) implies an automated 
analysis of functioning parameters implemented in the form 
of a computer diagnostic system. One of the promising meth-
ods for determining the technical state (TS) of an object 
using elements of artificial intelligence implies diagnosing it 
with the help of a neural network (NN).
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A process of creating a static neural net-
work intended for diagnosing bypass gas tur-
bine aircraft engines by a method of catego-
rizing the technical state of the engine flow 
path was considered. Diagnostics depth was 
"to the structural assembly". A variant of 
diagnosing single faults of the flow path was 
considered.

The following tasks were set:
‒ select the best neuron activation func-

tions in the network layers;
‒ determine the number of layers;
‒ determine the optimal number of neu-

rons in layers;
‒ determine the optimal size of the train-

ing set.
The problem was solved taking into 

account the influence of parameter measure-
ment errors.

The method of structure optimization 
implies training the network of the select-
ed configuration using a training data set. 
The training was periodically interrupted to 
analyze the results of the network operation 
according to the criterion characterizing the 
quality of classification of the engine techni-
cal state. The assessment was performed with 
training and control sets. The network that 
provides the best value of the classification 
quality parameter assessed by the test set 
was selected as the final network.

The PS-90A turbojet engine was selected 
as the object of diagnostics. Diagnostics was 
carried out on takeoff mode and during the ini-
tial climb.

Primary optimization was carried out 
according to the data with no measurement 
errors. It was shown that a two-layer net-
work with the use of neurons having a hyper-
bolic tangent function in both layers is suffi-
cient to solve the problem. The size of the first 
network layer was finally optimized accord-
ing to the data containing measurement 
errors. A two-layer network with eight neu-
rons in the first layer was obtained. The share 
of erroneous diagnoses measured 14.5 %
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throughput, etc. relative to the corresponding standard 
characteristics of the assemblies);

‒ classification of the TS engine as a whole and its indi-
vidual assemblies.

The fact that the algorithm of information processing 
inside the NN is usually a black box even for the method de-
veloper is one of the features of parametric diagnostics using 
NNs. At the same time, the developer collects the data nec-
essary for training the neural network, sets its general struc-
ture, trains the network, and monitors the results obtained. 
As usual, the internal network parameters obtained in the 
course of training are not analyzed. Thus, when creating 
such a diagnostic system, the developer should concentrate 
efforts on the issues related to obtaining data for training the 
network and its optimization.

The second feature of the neural network is the fact that 
before the network can start working, it must be trained 
using previously prepared examples. At the same time, the 
developer does not interfere in the training process itself but 
estimate the quality of training based on the results of the 
operation of the trained NN.

The third feature of the neural network is the flexibility 
of its structure. At the same time, the developer can easily in-
crease the number of network layers, the number of neurons 
in hidden layers, and change the activation function (AF) 
for activating neurons in each layer [1]. The desire to obtain 
an NN with a minimal diagnostic error can easily lead to 
the creation of an unjustifiably complex network which is 
often accompanied by the emergence of the so-called NN 
overlearning effect [1–5].

Taking into account all the above features when design-
ing a network intended for diagnosing gas turbine engines, it 
is necessary to determine its following characteristics:

‒ the nature of the processed information (ordered time 
series of the measured parameters or sets of parameters mea-
sured at independent points in time);

‒ the result of the NN operation (classification of the object 
TS or definition of the parameters that characterize its TS);

‒ the nature of training (training with a “trainer” or 
without a “trainer” [6, 7]);

‒ training method; 
‒ the NN type (network with direct signal propagation, 

recurrent NN, etc.);
‒ the number of layers in the network;
‒ the type of AF for activating neurons in each layer of 

the NN;
‒ the number of neurons in each layer;
‒ the number of neuron connections in a layer and be-

tween layers.
A more detailed description of the NN structure and 

operation can be found in [8–10].
The outlined range of issues is wide enough. This article 

describes the process of creating a static neural network with 
direct signal propagation. The network under consideration 
provides a classification of the GTE TS according to the re-
sults of processing the parameters measured at separate, un-
related points in time. In this case, pre-classified samples are 
used (training with a “trainer”). When building a network, it 
is assumed that all neurons of the input layer are connected 
to all of its inputs. Similarly, all inputs of the neurons in the 
remaining layers are connected to the outputs of all neurons 
in the previous layers. Networks with delay elements, lateral 
and back coupling as well as adaptive neural networks are 
not considered there.

The developed approach makes it possible to obtain 
a neural network of minimum size. At the same time, the 
resulting network provides the best possible quality of clas-
sification of the power unit TS without the occurrence of the 
effects associated with network overlearning. The use of this 
approach in the systems for diagnosing aviation equipment 
will make it possible to more accurately diagnose the GTEs. 
This will result in the growth of the flight safety level.

2. Literature review and problem statement

A number of promising approaches to solving the prob-
lems of diagnosing and predicting the technical state of 
complex technical systems (GTEs, in particular, aircraft 
GTEs) are described in [11–19] which will make it possible 
to conduct more deep studies in the future in order to mini-
mize the likelihood of an erroneous diagnosis.

The studies were carried out in [11] using a genetic algo-
rithm to adapt available engine characteristics to the char-
acteristics of the object considered. As a result of this proce-
dure, new characteristics of compressors were created and a 
more accurate forecast of their changes was ensured. This 
adaptive approach provides an alternative method of creat-
ing mathematical models for analyzing TS of the GTE flow 
path. However, the question remains unresolved concerning 
individual features of characteristics of engine compressors 
taking into account their degradation during operation.

The results of testing artificial intelligence methods 
in solving diagnostic problems based on parameters of the 
GTE working process were presented in [12]. It was shown 
that the presence of such factors as the number of controlled 
and recorded engine parameters and the accuracy of their 
measurement is of great importance. However, the issues 
related to the choice of a mathematical model of the engine’s 
working process taking into account its testability have re-
mained unresolved.

The study conducted in [13] has resulted in a review 
of effective methods for diagnosing gas turbines based on 
analysis of operational characteristics. It was shown that the 
use of these methods makes it possible to assess the technical 
condition of a gas turbine, however, there are still unresolved 
issues related to their use in diagnosing aviation GTEs. This 
is determined by the peculiarities of their functioning and 
operation.

As a result of the studies carried out in [14], special 
attention was paid to the effectiveness of the application of 
existing methods for engine diagnosing, for example, genetic 
algorithms, artificial neural networks, fuzzy sets [15, 16]. It 
was shown that the considered methods have both advantag-
es and disadvantages. However, the results of these studies 
make it possible to conclude that it is advisable to use neural 
network classification when recognizing TSs of an object 
being diagnosed.

The results of studying the use of NN for diagnosing 
objects in transient (unsteady) modes of engine operation 
were presented in [17]. A set of NNs designed to assess in-
dependent changes in parameters of the engine operating 
process caused by malfunctions in one or more structural 
units of a turbofan engine was presented. The approach 
includes the networks for classification and approximation. 
The measured motor parameters were first estimated by a 
trained network. If a malfunction was diagnosed, then an 
in-depth diagnosis was carried out using another network 
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which makes it possible to identify both sensor malfunctions 
and malfunctions in structural assemblies. The disadvantage 
of this approach consists in that the measurement errors are 
not taken into account and coefficients of dynamic charac-
teristics of the engine are not considered.

Application of artificial intelligence methods as a part 
of automated fault detection systems was proposed and 
the main advantages and disadvantages of the methods de-
scribed were considered in [18, 19]. However, the possibility 
of using two or more methods in a complex was not consid-
ered. All this makes it possible to note the need for further 
studies in order to determine rules of making decisions when 
diagnosing GTEs based on an integrated approach using ar-
tificial intelligence methods as a part of automated systems.

In addition, the very process of preparing a neural net-
work is a non-trivial task as well. General issues of increas-
ing speed of preparation, the accuracy of work, and adequacy 
of the obtained NN were considered in [2, 3, 5, 20].

The overlearning effect is one of the problems with 
neural networks. It manifests itself strongly when using 
small-size training samples. The solution to this problem by 
choosing a good initial approximation of the NN parameters 
was described in [2].

The appearance of the overtraining effect can be avoided 
by increasing the network throughput but this requires the 
application of special methods. Regularization methods 
provide an easy way to prevent overlearning for large neural 
networks. The use of an early stop with cutoff is one of the 
recent recommendations regarding regularization [3, 4].

Large-size multilayer neural networks require significant 
computing and memory resources at the stage of prepara-
tion. To eliminate these limitations, a method was developed 
in [5] that makes it possible to reduce by an order of magni-
tude the requirements to the stored data volume and amount 
of computations performed to prepare the neural network. 
Moreover, the use of this method does not affect the result 
itself.

Attention was paid in [20] to determining the NN struc-
ture and the process of building a workflow model based on 
the NN. The model building includes system analysis, data 
collection and preparation, network architecture develop-
ment, network training, and validation. However, there are 
no recommendations on the use of the presented approaches 
to modeling workflows for aircraft GTE turbines of a multi-
shaft and bypass design.

As follows from the analysis of the data presented in the 
above studies, each of the methods has a series of advantag-
es and disadvantages and does not have universality, but 
it allows one to evaluate TS of a gas turbine engine at the 
“serviceable - faulty” level. However, at the present stage of 
development of systems for ensuring and maintaining flight 
worthiness of aircraft and their components, this level of 
diagnosis is not enough, especially at the stage of aircraft 
operation. In this case, it is necessary to pay attention to the 
development of methods for assessing TS of the flow path in 
the GTE with a solution to the problem of diagnostics up to 
the “structural unit”. In this case, the method of pattern rec-
ognition (classification) using the NN for solving problems of 
diagnosing the aircraft GTEs makes it possible to assess the 
GTE technical condition to a given depth and is quite prom-
ising. However, it requires a more detailed study in order to 
increase the probability of correct diagnosis. It should also 
be noted that as a result of analysis of advantages and disad-
vantages of using artificial intelligence methods in assessing 

TS of a GTS, it is obvious that the development of methods 
of an integrated approach (synthesis of methods) in solving 
the problems of diagnosing the aviation GTEs is topical.

3. The aim and objectives of the study

The study objective is to devise a method for preparing a 
static NN intended for the classification of aircraft GTE TS 
according to the parameters measured in operation.

To achieve the objective, the following tasks were set:
‒ develop a method for determining a combination of 

neuron activation functions optimal for solving the problem;
‒ develop a method for assessing the amount of represen-

tative training and control sets which sufficiently fully char-
acterize the object workflow with a given TS nomenclature 
and with an available system for measuring and recording 
the operation parameters;

‒ develop a method for optimizing the number of NN 
layers and the number of neurons in them.

4. The method of optimizing the structure of a neural 
network designed for diagnosing gas turbine engines and 

description of the study object

4. 1. The method of optimizing the structure of a neu-
ral network designed for diagnosing gas turbine engines

When training neural networks, one of the versions of 
the method of two data sets [21–23] is used. When using 
this method, the network is trained using the first (train-
ing) set. Training is periodically stopped and the sec-
ond (control) set is fed to the input of the trained network 
and then the correctness of its recognition is estimated. 
The duration of one such iteration can range from one to 
several thousand training epochs and depends on the train-
ing algorithm used. In this case, the maximum number of 
training epochs Emax is set.

In the process of training such a network, two situations 
may arise:

‒ a overlearning effect appears in the trained network;
‒ the network being trained stops training.
If none of these situations occurs, it is necessary to in-

crease the Emax value.
When the overlearning effect occurs, the trained NN 

begins to accurately describe the data used in its train-
ing (training set) but poorly describes the data that are not 
included in this set (control set). This phenomenon occurs 
if the network is too powerful for the task at hand and the 
volume of the training set is small, the training set is not a 
representative sample, the training and test sets are from 
different populations. The moment of appearance of this 
effect is the moment when the parameter characterizing the 
quality of the NN operation and obtained for the training 
set continues to improve and the parameter obtained for 
the control set starts to deteriorate steadily. If overlearning 
takes place, a further increase in the structure of the neural 
network does not make sense and its optimization ends.

If there is no overlearning effect in the network being 
trained, then the quality of its work reaches a certain level 
and then practically does not change. In this case, the num-
ber of neurons in the hidden layers increases, or the number 
of the NN layers increases. The process of changing the NN 
is completed if the complication of its structure does not 
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lead to an improvement in the quality indicator of its work 
assessed by the results of processing the control set.

The main optimized characteristics of the structure of a 
static NN with direct signal propagation include:

‒ the type of AF of neurons in each layer;
‒ the number of neurons in each layer;
‒ the number of neuron layers.
Quality of work (classification of the GTE TS) of the 

neural network is proposed to be assessed by the percentage 
of obtained erroneous diagnoses (classification errors)

100 %,
EN

N
δ = 	 (1)

where N, NE are the volume of the data set and the number of 
incorrect diagnoses obtained for this data set, respectively. 
The  parameter is assessed separately for the results of the 
work of the trained NN using the training (δТ parameter) 
and control (δС parameter) sets.

The method developed for optimizing the network struc-
ture consists of four stages.

Stage 1. Select AF of activating the network neurons. The 
data that do not contain measurement errors are used. The 
data sets are relatively small and include 100‒200 realizations 
of each class. An NN is trained for each of the considered AF 
combinations. The experiment is carried out with a two-layer 
mesh. The number of neurons in the first layer gradually in-
creases from the minimum value. The increase in the number 
of neurons continues until signs of overlearning appear or until 
the decrease in δТ and δС values stops. An NN combination is 
selected that provides the smallest value of the δС parameter.

Stage 2. Determine the volume of the representative 
training set if this has not been done earlier. The approach 
used to obtain the data sets makes it 
possible to obtain the data sets that 
are practically unlimited in volume. 
At the same time, with an increase 
in the volume of the training set, 
the difference between values of 
the δТ and δС parameters decreases 
significantly and the stability of 
the estimates obtained increases. 
On the other hand, the use of large 
training sets increases the time of 
the neural network training and 
may require a computer upgrade. At 
this and subsequent stages, the data 
containing measurement errors are 
used. To determine the volume of 
a representative training set, it is 
necessary to generate wittingly rep-
resentative data sets. The control 
set is used completely during the 
experiment and the samples having 
gradually increasing sizes are tak-
en from the complete training set. 
With each such sampling, the NN 
which has the structure and size of 
layers determined at the first stage 
is trained. The (δТ–δС)/δС ratio was 
taken as a criterion for determining 
the minimum volume. It was as-
sumed that the size of the training 
set ceases to have a significant effect 

on the diagnosis process at (δТ–δС)/δС<0.01. If the training 
set has already been fully used but the specified condition 
was not met, it is necessary to increase the sizes of the sets 
and repeat the experiment.

Stage 3. Determine the minimum value of the δС pa-
rameter ( )min

Cδ  achievable for the designed network when 
using the available control set. Assessment is carried 
out with a network that has excess size. Such a network 
should be more complex and larger than the network ob-
tained at the first stage. Redundancy is confirmed by the 
appearance of the overlearning effect. If the overlearn-
ing effect does not manifest itself, then the hypothesis 
of redundancy of the NN size should be confirmed at 
Stage 4. To determine the 

min
Cδ  value, such a network is 

trained 5 to 10 times. Training is carried out until the 
overlearning effect appears or until the network training 
stops. The mean min

Cδ  value is taken as the mean δС value. 
Further, the obtained value is used as a basis for assessing 
the quality of all tested networks.

Stage 4. Perform actual optimization of the NN structure. 
The NN that has a minimum number of layers (as a rule, two 
layers) and a minimum number of neurons in the first layers is 
taken as the initial configuration. The constructed network is 
trained. At the end of the NN training, the achieved value of the 
δС indicator is analyzed. The ( )min min/C C Cδ − δ δ  relation is used 
as a criterion. Fulfillment of the ( )min min/ 0.01C C Cδ − δ δ >  
condition indicates the need to complicate the NN. This 
changes the number of neurons n in the first layer. The max-
imum number of neurons nmax is taken equal to the number 
of neurons at which the lowest value of the δС parameter 
was provided at Stage 1. After each change of the network 
structure, the attempt to train the network is repeated. An 
enlarged diagram of the algorithm is shown in Fig. 1.

 
  

 

   Calculation of T, С 

(С – С
min)/ С

min > 0.01  

Overlearning NN training 
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Yes 
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Fig. 1. An enlarged diagram of the algorithm of optimization of the NN layer size
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The fact that an increase in the number of neurons in a 
layer does not lead to a decrease in the ( )min min/ ,C C Cδ − δ δ  ratio 
indicates the need to increase the number of NN layers. If the 
number of layers is NL>2, then the number of neurons in the 
intermediate layers n2–nNL-1 can be specified as an interpola-
tion of their number in the first n and last nNL layers. Further, 
after the optimal value of n is determined, the n2–nNL-1 values 
should also be sequentially optimized using the described al-
gorithm. In this case, the nmax value for the optimized layer is 
equal to the number of neurons in the previous layer.

If the neural network which did not provide the appear-
ance of the overlearning effect was used at Stage 3, then the 
hypothesis of the neural network size redundancy is confirmed 
if the neural network selected at Stage 4 is much simpler than 
that used at Stage 3 (it has a smaller number of layers and 
neurons in them). If the hypothesis is not confirmed, it is nec-
essary to return to Stage3 and complicate the NN.

 
4. 2. The diagnosing object
PS-90A engine (USSR/Russia) [24] (2 rotors, bypass 

type, flow mixing, bypass ratio: 5, takeoff thrust: 155 kN) was 
selected as the diagnosing object.

The method of obtaining initial data for training and test-
ing the neural network was described in [25, 26]. In addition, 
the study [25] provides a training set that was used at Stage 1 
of this study. The test set was obtained in a similar way with 
new initial values of the pseudo-random number generators.

Diagnostics were carried out during takeoff and initial 
climb. Values of the operating parameters of the engine model 
were in the following ranges:

‒ barometric flight altitude H=(−100)...2,500 m above sea 
level;

‒ Mach number M=0...0.5;
‒ total temperature at the engine inlet: * 238...313 K;inT =
‒ relative air humidity: 0.3...1;
‒ fan rotor speed nLP=3,280...4,220 rpm (nominal and 

takeoff modes).
The data sets describe the behavior of the GTEs belonging 

to 6 Classes of TS of the main elements of the flow path:
‒ serviceable engine (Class 1);
‒ contamination, increased roughness, nicks, etc. of the 

fan (Class 2) and compressor (Class 3);
‒ warpage of the combustion chamber, contamination, or 

burnout of injectors (Class 4);
‒ burnout, melting, partial destruction of high-pressure 

turbine blades (Class 5);
‒ coking, carbon formation on low-pressure turbine 

blades (Class 6).
Only the case of single faults was considered.
During the operation of the gas turbine engine, the 

parameters that can be divided into 2 groups were record-
ed. The first group includes the operating parameters of 
the mathematical model of the GTE: * ,inT  M, nLP and total 
pressure * .inP  at the engine inlet. When obtaining the sets, 
the value of the *

inP  parameter was calculated according to the 
given values of M and H. The second group consisted of the 
parameters used for diagnosing:

‒ high-pressure rotor speed, nHP;
‒ total pressure behind the fan, *;FP
‒ total pressure *;FP  and temperature *

CT  behind the com-
pressor;

‒ fuel consumption, GF;
‒ temperature behind the turbine, *;TT

‒ ratio of the total pressure behind the turbine to atmo-
spheric pressure, * .TP ′

Relative diagnostic deviations of the above parameters cal-
culated from dependence (1) in [25] ( ,HPn∆  *,FP∆  *,CP∆  *,CT∆  

,FG∆  *,TT∆  *
TP∆ , respectively) were used for diagnostics.

In addition to the values of diagnostic deviation of pa-
rameters, each design point of the data set included a vector 
of expected outputs of the neural network. For the case 
under consideration (the use of the NN for classification of 
the GTE TS), this vector included markers indicating which 
Class this set point belongs to. The number of the vector 
components corresponded to the number of classes in the 
data set (6 Classes).

4. 3. Description of the neural network used
As mentioned above, the study considered the optimiza-

tion of neural networks with direct signal propagation. In 
this case, the minimum number of the NN layers was taken 
to be two. To train the neural network, the Levenberg-Mar-
quardt algorithm was used [27–29].

The network is intended to perform the classification 
of the input data. The number of neurons nNL in the output 
layer of the NN is equal to the number of diagnosed Class-
es (6 Classes in this case).

Each layer of neurons has a common AF (activation 
function). AFs of different layers may differ. When designing 
the NN, combinations of the following activation functions 
have been tested: linear function (linear, designated as Ln), 
logistic (Log-sigmoid, LS), hyperbolic tangent function (hy-
perbolic tangent sigmoid, HS) [8–10, 20, 29].

When using these functions, the signal at the outputs 
of neurons of the output layer changes smoothly. Its vari-
ation range is from 0 to 1 when using the LS function, 
from –1 to 1 when using the HS. The Ln function is un-
limited. Taking this into account, in the part of the data set 
describing the expected outputs of the neural network, there 
will be 1 in the position corresponding to the expected class. 
In the remaining positions, there is either −1 (when using the 
HS function) or 0 (functions Ln and LS) depending on the 
type of the neuron activation function of the output layer.

The number of the neuron of the output layer which has 
the highest value at its output is taken as the class number 
of the GTE TS.

The network is trained using a representation of training 
accuracy according to the criterion of the mean squared 
deviation of training goals from the network response (mean 
squared error).

5. The results of neural network optimization

5. 1. Determination of the optimal combination of 
neuron activation functions for solving the problem

The task of this stage of the study is the selection of 
AF of the neurons that make up layers of the NN and the 
initial estimation of the number of layers and neurons in 
them which are necessary for TS classification. At this 
stage, the data sets obtained without taking into account 
the influence of measurement errors are used (without 
using dependences (9) to (18) in [25]). The initial data for 
training neural networks are given in the same study. The 
control data set was obtained in a similar way for other 
initial values of the pseudo-random number generators.
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In the course of the study, 5 configurations of two-layer 
NNs were tested: Ln–Ln, LS–LS, HS–HS, HS–LS, LS–HS. 
The number n of neurons in the input layer varied from 2 
to 20. There were 3 attempts to train each neural network. 
Training quality (δТ and δС parameters) was assessed follow-
ing each training epoch. The maximum number of epochs Emax 
depended on the number of neurons in the first layer and var-
ied linearly from 140 with 2 neurons to 500 with 20 neurons. 
The training was carried out until the maximum number of 
epochs was exhausted. The results are shown in Fig. 2.

As can be seen from the data presented, in contrast to 
other networks, neural networks having neurons with the 
HS activation function in the output layer (Fig. 2, c, d), 
show the instability of the training process. However, at 
the same time, if the process is completed successfully, the 
HS–HS network provides the best values of the δТ and δС 
parameters. The best results for such a network were ob-
tained with 15 neurons in the input layer. A further increase 
in their number did not lead to an improvement in training 
quality (the δС parameter has stopped decreasing).

Considering all of the above, the networks that included 
only neurons with AF HS were used for further studies.

5. 2. Determining the optimal training set size
As noted earlier, when training the neural network, 

data that did not contain measurement errors were used. 
The final stage in the creation of a diagnostic neural net-
work implies its optimization using data close to real ones 
and containing measurement errors in the parameters 
used. Therefore, to conduct the study, it is necessary to 
obtain sets containing measurement errors and assess 
the minimum size of a representative training set using  
them.

5. 2. 1. Forming the training and control sets of pa-
rameters containing measurement errors

When forming data sets, the method described in [25] 
was used. In this case, in contrast to the data sets given 
in this study, dependences (9) to (13) given in the same 
study were additionally involved in the same study. Values 
of maximum errors of measurement of operating [∆R] and 
diagnostic [∆P] parameters taken in modeling are given 
in Table 1.

The data obtained as a result of modeling are shown 
in Fig. 3.

 

 
  
 

 
  

 

 
  

а                                                                   b

c                                                                    d

Fig. 2. Dependence of values of the TS, δ, classification error on the number of neurons n in the first layer of the two-layer NN: 
a – The NN configurations: Ln–Ln ; b – LS–LS ; c – HS–HS ; d – LS–HS; e – HS–LS (  is for quality of NN training δТ 
estimated for the training sample;  is for quality of NN training δС estimated for the control sample;  is for the 

first attempt of the NN training;  is for the second attempt;  is for the third attempt); the best δmin values of 
δТ ( ) and δ ( ) parameters achieved at the moment the parameter δС reaches the minimum value (e)

e                                                                     f
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Table 1

Values of the [∆R] and [∆P] parameters for the measured 
parameters of the PS-90A engine operating process

Parameter

[∆R] [∆P]

*
inP *

inT M nLP nHP
*

FP *
CP *

CT *
TT *

TP ′ GF

Units kPa K – rpm rpm kPa kPa K K – kg/h

Measure-
ment error

1.1 0.11 0.02 7.5 20 5 83 5.5 4.5 0.035 200

a                                                      b

c                                                       d

e                                                        f

g

Fig. 3. Values of relative diagnostic deviations in the set 
intended for training the network to recognize 6 classes of 

TS of aircraft GTEs. Each class is represented by 100 points. 
i is the number of the point in the set. Relative deviations of 
the following parameters are shown: a – high-pressure rotor 
speed ;HPn∆  b – total pressure downstream of the fan *;FP∆  

c – total pressure downstream of the compressor *;CP∆  	

d – total temperature downstream of the compressor *;CT∆  

e – fuel consumption ;FG∆  f – temperature downstream 

of the turbine *;TT∆  g – the ratio of the total pressure 

downstream of the turbine to atmospheric pressure *
TP  

As can be seen, when comparing these data and the data 
given in [25], the introduction of measurement errors into 
numerical experiment leads to a significant increase in the 
overlap of classes in the zone of their delimitation.

5. 2. 2. Determining the optimal size of the training set
At the next stage of the study, it is necessary to estab-

lish the optimal size of the training set. In the process of 
optimizing the sample size, a two-layer HS–HS network 
with 15 neurons in the first layer was used. Training 

and control sets were obtained in which each class was 
represented by 10,000 points. The control kit was used 
completely in each experiment. Samples of size V from 
100 to 5,000 points per class were made from the obtained 
training set. The samples were trained three times each. 
The results of the best attempts are shown in Fig. 4, a, b.

As indicated earlier, it was assumed that the size of the 
training set ceases to have a significant impact on the diag-
nostic process at (δТ–δС)/δС<0.01.

a                                             b

c 
 

Fig. 4. Results of optimization of the size of the training set: 	
a – dependence of TS classification error values, δ, estimated 
by training (δТ

, ) and control (δС, ) samples 
on size of the training sample V representing each TS class; 	

b – dependence of the value difference (δТ–δС) on the sample 
size V; c – change in values of parameters (δТ ( ) and 

δС ( ) in the process of training the neural network 	
(E is number of the training epochs)

As seen from Fig. 4, a, the difference between values 
of δТ and δС parameters is in the range of 1–3 % (the ra-
tio (δТ–δС)/δС is 0.07–0.2) with small sizes of the train-
ing sample (up to 1,000–2,000 points per class). With 
an increase in the volume of more than 3000 points, this 
difference steadily decreases to about 0.1–0.14 %. The ra-
tio (δТ–δС)/δС is 0.007–0.0096.

It can be concluded from all that has been said that 
with the adopted characteristics of the TS classes (Table 2 
in [25]) and metrological characteristics of the parameter 
measurement system given in Table 1, the training set can 
be considered representative if each class is represented by 
4,000 or more points.

Fig. 4, c shows the process of training neural networks 
for 200 epochs using a training set in which each class is rep-
resented by 4,000 points. Analysis of these data shows that 
there are no clear signs of overlearning. In this case, values 
of the δ and δС parameters practically cease to change after 
150 training epochs.
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5. 3. The results obtained by optimizing the structure of 
the neural network

5. 3. 1. Determination of the min
Cδ  parameter value

Before starting the actual optimization, it is necessary 
to determine the minimum value of δС which can be reached 
by NN of the type used ( )min

Cδ  when analyzing the data de-
scribed in Section 5. 2. 1. To this end, nine attempts were 
made to train a three-layer HS–HS neural network which 
has 25 neurons in the first layer and 15 in the second layer 
during 1,000 epochs. The training was unsuccessful in 3 at-
tempts (values of δТ and δС parameters were above 80 %). 
In other attempts, the NN stopped training after complet-
ing 600–800 epochs. Fig. 5 shows the change in δС and δС 
parameters during the best training attempt (δС=14.51 %).

The value of the δС parameter obtained in the course of 
successful training attempts was at a level of 14.51–14.7 % 
and the value of min ,Cδ  calculated from them was 14.55 %.

5. 3. 2. The results of neural network optimization
When optimizing, a two-layer HS–HS network contain-

ing from 2 to 15 neurons in the first layer was considered. 
Duration of network training increased in proportion to 
the number of neurons in the input layer. The network with 
2 neurons was trained during 500 epochs and the network 
with 15 neurons was trained during 930 epochs. The train-
ing was carried out without taking into account the min .Cδ  
value. For each network, 3 training attempts were made. The 
results of the best attempts are shown in Fig. 6, a.

As can be seen, the δС parameter decreases quite steadily 
with an increase in the number of neurons up to 8. With a fur-
ther increase in the network size, the quality of its work prac-
tically did not change remaining at a level of 14.48–14.55 %.

To check the influence of duration of the network training 
on the result of its operation, 8 attempts were additionally made 
to train the HS–HS network with 8 neurons of the first layer. 
The training was conducted during over 3,000 epochs. As a re-
sult, the values of the δС parameter were obtained in the range 
of 14.43–14.51 %. At the same time, 3 out of 8 attempts ended 
in failure when the δС parameter level was above 29 %. The aver-
age value of the parameter calculated from successful attempts 
was 14.47 %. Fig. 6, b, c shows a successful training process for 
such a network. As can be seen, the network reached the level of 
14.58 % for δС values after 1000 training epochs, and then the 
training process did not lead to a significant change in this pa-

rameter. At the same time, there were no unambiguous signs of 
overlearning. The data obtained indicate that a neural network 
of this size actually stopped training after 1,000 epochs when 
the value of the δС parameter was in the range of 14.43–14.51 %.

а 

b	
	

Fig. 6. Results of neural network training: a – dependence of 
parameters δT ( ) and δС ( )  on the number 
of neurons n in the first layer of a two-layer neural network; 	

b – change in values of parameters δT ( ) and 	
δС ( )  in the process of training a two-layer neural 
network with 8 neurons in the first layer (E is the number of 

training epochs)

The value of min ,Cδ  obtained at Stage 3 was greater than 
the average value of the δС parameter obtained in this ex-
periment (14.47 %). This confirms the hypothesis about 
the redundancy of size of the NN used at the third stage 
and indicates the inexpediency of transition to a NN with a 
three-layer structure.

An attempt was made at the final stage of NN optimi-
zation to reduce the obtained value of the δС parameter. 
Therefore, an attempt was made to train a two-layer HS–HS 
network with 8 neurons in the first layer using a vector of 
training goals varying within –0.5–0.5 and 0–1. Such a 
change in the target vector did not provide a decrease in the 
value of the δС parameter.

6. Discussion of the results obtained during the 
optimization of the neural network

The developed method is based on the use of a mathemati-
cal model of an engine for the formation of training and control 

 
  

Fig. 5. Change in parameters δС ( ) and δС ( ) in the 
course of the best attempt to train a three-layer HS–HS–HS neuron 

network (E is the number of training epochs)
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samples of any size. This circumstance has made it possible 
to determine the minimum volume of the training set which 
can be considered representative. The results obtained show 
(Fig. 4) that each class in such a set should be represented 
by at least 4,000 points. This large volume of training data 
is explained by the need for a fairly complete presentation of 
various combinations of engine assemblies having various 
functional characteristics within the same TS class.

When choosing the optimal combination of neuron 
activation functions, it was shown that it is best to use a 
hyperbolic tangent function in both layers (Fig. 2). It should 
be borne in mind that the use of such a combination leads 
quite often (in about 30 % of cases) to the impossibility of 
NN training with an acceptable level of accuracy (Fig. 2, d). 
A possible solution to this problem may imply changing the 
training algorithm used.

A rather high proportion of erroneous diagnoses (about 
14.5 %, Fig. 6) which in turn is a consequence of the presence 
of errors in measuring the parameters which are used in di-
agnostics is one of the main problems of using the proposed 
approach. Various averaging and filtering methods can be 
used to minimize the impact of errors.

Static neural networks with direct signal propagation 
and fixed interneuron connections were used in the study. 
In the future, in order to reduce the proportion of incorrect 
diagnoses, it is planned to test dynamic, recurrent, radi-
al-basis, and adaptive neuro-fuzzy neural networks [30].

The neuron number which has the highest value at the 
output is also taken in the considered method as the diag-
nosis number. In this case, outputs of the remaining neurons 
are not checked for the proximity of their output signals to 
the signal of the winning neuron, and proximity to unity 
of the value at its output is not analyzed. Such an analysis 
would make it possible to single out doubtful diagnoses into 
a separate group for in-depth analysis.

The approach used provides for a diagnosis in the form 
of assigning an engine to a specific TS class. This approach 
greatly simplifies work for an expert in the express analysis 
of the results obtained but does not provide information 
on the degree of defect development. In addition, when the 
characteristics of the classes change, the network must be 
retrained for correct TS classification. A transition from 
direct TS classification to the definition of parameters that 
numerically characterize the TS nodes can be a possible solu-
tion to this problem. For example, values of displacement of 
functional characteristics of a particular node relative to the 
reference can be used as such parameters.

Another problem of the considered method is the use of 
diagnostic deviations (dependences (1) and (2) in [25]) as 
input information of the NN. The use of this representation 
of diagnostic parameters makes it possible to significantly 
simplify and speed up the process of preparing the NN due 
to the fact that there is no need to include the GTE operating 
parameters in the data sets. However, in its turn, this leads 

to the fact that in order to calculate diagnostic deviations, it 
is necessary to include a block for calculating parameters of a 
standard engine into the diagnostic algorithm. Therefore, it 
is necessary to consider the option of diagnosing directly by 
the measured parameters as a prospect for the development 
of the proposed approach.

To conclude, it should be pointed out that the considered 
approach has been tested on the sets representing single 
defects. Here, the case of the simultaneous appearance of 
several defects of the flow path is quite frequent. According 
to the data given in [31], more than one defective unit was 
found in approximately 9–12 % of cases of detecting defects 
in the flow path. In its turn, this indicates that the classes 
describing the operation of an engine having significant 
defects simultaneously in two or more assemblies should be 
included in the data sets.

7. Conclusions

1. A method of assessing the minimum size of the training 
and control samples has been developed. The method implies 
training a neural network of large size which ensures a guar-
anteed manifestation of the overlearning effect for solving 
the task at hand. Training is carried out up to a stable appear-
ance of the overlearning effect and determination of the dif-
ference between δТ and δС. The training is carried out using 
a sufficiently large control set. The size of the training set is 
considered representative if the value of the δТ–δС difference 
obtained with its use is significantly less than the minimum 
value of δС obtained at the moment the parameter δС reaches 
its minimum value. When checking the method, it was found 
that the minimum size of the training sample should be 
4,000 points per class for a given TS nomenclature and with 
an available system of measuring and recording the engine 
operating parameters. In this case, the ratio (δТ–δС)/δС  
is about 0.01.

2. A method of determining the optimal combination of 
neuron activation functions has been developed. The method 
implies testing the networks that have various neuron acti-
vation functions. The best is the network that provides the 
lowest value of the δС parameter. Network training is carried 
out with the sets having parameters with no measurement 
errors. It was shown for the considered case that the HS–HS 
combination is the best combination of neurons.

3. A method of optimizing the neural network size has 
been developed. The method implies testing the networks 
of various configurations and assessing the value of the δС 
parameter. In this case, such a limit of network complexity is 
sought that the δС parameter value ceases to decrease after 
exceeding this limit. The search is carried out with the sets 
having parameters with measurement errors. For the consid-
ered case, a two-layer network with 8 neurons in the input 
layer is the optimal choice.
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