
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/10 ( 108 ) 2020

14

1. Introduction

At present, there is a big enough global evidence base [1] 
on the impact of air pollution on the health of the popula-

tion [2], and the deterioration of climate across the entire 
planet [3]. According to the World Health Organization, 
the main global threats to humans in 2019 were ambient 
air pollution (AAP) and climate change [4]. A report by the 
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This paper reports the construction of a 
method for calculating the structural func-
tion within a moving window of the fixed size, 
based on measuring the vector of current con-
centrations of arbitrary air pollutants. The use 
of a moving window makes it possible to reveal 
the current moments of the emergence of inho-
mogeneities in the polluted atmosphere. In this 
case, the time shift of the structural function 
reveals the corresponding time scale of this 
heterogeneity. It has been shown that, in con-
trast to the known method, the proposed meth-
od makes it possible to reveal the dynamics of 
the levels and scales of local inhomogeneities 
of the polluted air using only the current mea-
surements of concentration for an arbitrary 
number of pollutants. It is noted that the meth-
od does not use information about the current 
meteorological conditions of the atmosphere 
and the features of urban infrastructure near 
a pollution control point. Therefore, the meth-
od is universal; it could be applied to arbitrary 
control points of atmospheric pollution across 
various territories of states. The efficiency 
of the proposed method was tested using the 
example of actual measurements of the con-
centrations of urban air pollutants involving 
formaldehyde, ammonia, and nitrogen diox-
ide. The reported results generally indicate 
the applicability of the proposed method. It 
has been experimentally established that the 
method makes it possible to identify, in real 
time, the areas of local inhomogeneities char-
acteristic of hazardous air pollution associat-
ed with the absence of dispersion and accu-
mulation of pollutants in the air. In addition, 
the method makes it possible to detect in real 
time both the levels and the scale of inhomo-
geneities in the polluted atmosphere. It has 
been experimentally established that before 
the occurrence of the tested reliable emergen-
cy in a polluted atmosphere, the level of local 
heterogeneity was 0.015 units at its time scale 
corresponding to 8 counts. Next, by the time 
of the emergency, the level of heterogeneity 
decreased to 0.0025 units at the time scale cor-
responding to 2 counts. It has been experimen-
tally established that for this case the forecast 
time of the occurrence of an emergency was 
4 counts or 24 hours
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Organization for Economic Cooperation and Development 
indicates that the AAP could cost the world USD 2.6 trillion 
per year by 2060, including hospital costs, medical bills, and 
reduced agricultural production. Moreover, by 2060, social 
security costs associated with premature deaths related 
to AAP could rise to USD 25 trillion [5]. AAP affect the 
life of society and even endanger the survival of humanity. 
Currently, about 9 million people die every year as a result 
of global AAP [6]. Typically, AAP consist of a mixture of 
gases and particles in harmful quantities that are released 
into the atmosphere as a result of natural or anthropogenic 
activity [7]. The additional hazard of AAP increases signifi-
cantly under conditions of stagnant atmospheric phenome-
na. Today, due to the development of industrialization, the 
increased number of vehicles, and the burning of fossil fuels, 
air quality is deteriorating while its pollution is becoming 
more serious and dangerous. Dangerous air pollutants are 
SO2, NO2, CO2, NO, CO, NOx, PM2.5, and PM10, etc. At 
the same time, there are no currently known levels of AAP 
that would be safe for humans [4]. Consequently, it is now 
accepted to consider effective strategies to minimize the 
current AAP. The non-linear nature of the dose-response 
curves for most health indicators shows the danger of AAP 
at lower concentrations of pollutants than their maximum 
permissible concentrations (MPCs) [8]. Therefore, the pro-
tection of atmospheric air from AAP is becoming one of the 
main issues at the present stage of the safe development of 
civilization [9]. Timely identification of hazardous contami-
nants should be considered important in the implementation 
of the strategy for minimizing current AAP, both during 
the planned activities of enterprises and in the elimination 
of emergency situations (ES). Hence, the methods for de-
tecting dangerous contaminated substances in real time are 
especially relevant.

2. Literature review and problem statement

Work [10] reports the results of a study aimed at iden-
tifying global trends related to the emergence of hazardous 
contaminants over the vast territories of different coun-
tries. To identify these trends, only open data are usually 
used [11], typically averaged over a sufficiently long period 
of time [12]. At the same time, the results of such studies are 
limited mainly to the data for the average annual concentra-
tions of typical AAP [13]. In this case, the task to identify 
current dangerous AAP in real time is not resolved. How-
ever, this problem is especially relevant for the protection 
of the air and the operational control over AAP. The lack 
of solutions is associated with the complexity of the current 
processes of the dispersion and accumulation of AAP, which 
depend on a set of a priori unknown parameters. For this 
reason, there are no methods for detecting current hazardous 
AAPs based on non-traditional views of the AAP system as 
a whole within the conventional hazardous AAP detection 
toolkit. A detailed analysis of existing methods and models 
used to detect AAP is performed in work [14]. Based on this 
work, the known methods for detecting AAP can be divided 
into three main classes: potential methods [15], statistical 
methods [16], and numerical methods [17]. However, the 
known methods and models [15–17] are not universal and 
turn out to be rather complicated. In addition, their imple-
mentation requires a significant amount of a priori data, 
including information on the meteorological parameters of 

the state of the atmosphere. At the same time, some of the 
methods are not robust enough and are sensitive to the type 
and nature of the initial a priori data. Given the limitations 
noted above, the known methods do not allow detecting 
dangerous AAPs in real time for various territories. How-
ever, it is noted in [18] that the issue of detecting AAP in 
real time remains unresolved although it is of paramount 
importance for the implementation of various management 
strategies and preventive measures to protect the atmo-
sphere from AAP. Work [13] focuses on solving the issue of 
processing large amounts of data; it proposes using Bayesian 
networks to tackle the problem. However, such networks 
turn out to be quite complicated to implement and require 
significant computing costs. Therefore, the method reported 
in [13] has limited capabilities for detecting AAP in real 
time. At the same time, the methods given in [13, 15‒17] are 
more suitable for solving the task of identifying global AAPs 
and developing, on their basis, preventive measures over 
the long term, taking into consideration the peculiarities 
of the development of specific territories. Therefore, along 
with [13, 15–17], modern methods for AAP detecting have 
been constructed. Their difference from known methods is 
in representing the polluted atmosphere as a complex and 
nonlinear dynamic system. And the state of such a system is 
determined by many factors that are linked via an unknown 
relation that often changes over time. This makes it possible 
to use the modifications of known nonlinear dynamics meth-
ods for real-time detection of dangerous AAP conditions. So, 
for example, work [19] addresses the application of methods 
based on the state recurrent measures in complex dynami-
cal systems. Among the modern techniques for identifying 
features in the dynamics of states of complex dynamical 
systems is the method of recurrent plots (RP) [20]. A meth-
od for identifying recurrent states in a gaseous medium 
based on the use of the correlation dimensionality of states 
is considered in [21]. However, this method turns out to 
be rather difficult to implement, and its accuracy depends 
essentially on a series of parameters that must be selected 
a priori. The identification of hazardous conditions of the 
polluted atmosphere in industrial cities based on the use of 
RP is considered in paper [22]. In this case, the calculation 
of RP is limited to considering only one of the coordinates 
of the multidimensional state AAP vector. The results from 
applying the RP method for the case of a 5-dimensional 
state vector of wind speeds in five regions of Nigeria were 
considered in [23]. However, the research is limited to con-
sidering the RP method only for the Euclidean metric. At 
the same time, a limitation of the method is the dependence 
of the result of calculating RP on the used recurrence limit, 
determined a priori. The solution to the general issue of 
eliminating artifacts in the RP method using the Euclidean 
metric is considered in [24]. The RP method application for 
the vector of measured states of the Earth’s magnetosphere 
is considered in [25]. However, the results are limited to the 
maximum metric and the Chebyshev metric. The sensitivity 
of the RP method to the value of the selected limit is also 
noted. Work [26] tackles the application of the RP method 
for the recognition and classification of human motor activ-
ity. It is noted that the method demonstrates low reliability 
associated with the threshold uncertainty. To overcome the 
threshold uncertainty, it is proposed to calculate a distance 
matrix instead of RP, which does not depend on the thresh-
old. Based on this matrix, it is possible to recognize and 
categorize movements using a neural network. However, the 
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use of neural networks is associated with certain drawbacks 
and limitations. In this case, the efficiency of the method 
is low. The application of the RP method for revealing the 
features in the performance of bio-systems is considered 
in [27]. It is noted that the reliability of the RP method is 
significantly influenced by the measurement conditions, the 
value of the time delay, the dimensionality of nesting, as well 
as the value of the recurrence threshold. Work [28] reports 
the method for calculating RP under conditions of irregular 
measurements. However, the reported studies are limited to 
considering only a standard distance metric. General recom-
mendations for overcoming the threshold uncertainty of RP 
methods are given in [29]. It is noted that there are general 
recommendations for fixing the threshold depending on the 
specific goal of a study. More specific recommendations are 
given in [30], which argues that the threshold value should be 
some function of the standard deviation in the measurement 
results. However, the type of the function is not specified.

The combination of a multilevel network approach and 
recurrent networks for identifying the features of the states’ 
dynamics of multidimensional complex dynamic systems is 
considered in [31]. In this case, the research is limited to con-
sidering a multidimensional state vector within a space with 
a Euclidean metric. The correlation and structural methods 
for identifying the features of the multidimensional states’ 
dynamics are not considered, nor reported. The peculiarities 
of modern RP methods and their applications are considered 
in [32]. Meanwhile, it is noted that the RP calculation can be 
performed in spaces with different types of metrics. However, 
the issues of the influence of the metric and the value of the 
recurrence threshold on the accuracy of RP mapping are not 
considered. Possible methods of identifying the features of the 
states’ dynamics in complex systems based on principles other 
than RP, for example, correlation or structural, are not dis-
cussed, nor proposed. The results of using RP methods for de-
tecting hazardous states of a gaseous environment in premises 
and their modifications are considered in [33–35]. In [33], the 
use of the RP method for the concentration of carbon monoxide 
in a gaseous environment during early fires in non-air-tight 
premises is considered. In this case, the results are limited to a 
one-dimensional space with standard and power-law distance 
metrics. Correlation or structural methods for detecting early 
fires are not considered. Possible ways to adapt the threshold 
when calculating RP in the case of early fire detection are 
considered in [34, 35]. In [35], it is noted that the threshold 
adaptation is a key procedure in identifying hazardous condi-
tions based on RP. In this case, the correlation and structural 
principles of identifying dangerous states are not considered 
in [33–35]. In addition, the known RP methods are not op-
erational and have a series of application limitations. In some 
cases, the identification of recurrent states based on distance 
does not provide the required display accuracy and is rather 
rough and ambiguous. Study [36] substantiates a method for 
real-time detection of recurrent states of a complex dynamic 
system in the form of a polluted atmosphere, which is based on 
the implementation of the correlation approach. The approach 
from [36] is based only on the current measurements of a state 
vector and does not require the determination of the threshold 
and the procedure for calculating the distance, traditionally 
used in the RP method. However, the method from [36] is lim-
ited to a correlation assessment of the general level of energy 
interaction of state vectors, taking into account their current 
averages and fluctuations. It is known that the correlation ap-
proach is valid only in the case of stationary processes. For the 

case of non-stationary processes, the correlation approach turns 
out to be rather rough, and not applicable for applications. The 
structural approach is not considered in this case although it is 
known that it is applied in the case of non-stationary processes. 
Work [37] reports a study into the fluctuations of states in the 
form of the signs of early detection of dangerous states of a gas-
eous medium. However, the reported results are limited to the 
analysis of the statistics of increments in the basic factors. The 
structural features of the state dynamics of fluctuations are not 
considered. General methods of time-frequency representation 
based on a short-term Fourier transform are considered in 
[38, 39]. The application of a short-term Fourier transform to 
the analysis of real observations is considered in [40]. At the 
same time, the methods from [38–40] turn out to be rather dif-
ficult to implement, and cannot be considered as constructive 
in identifying dangerous states in complex dynamic systems. 
Methods that implement a structural or time-frequency ap-
proach are not considered. Work [41] addresses the develop-
ment of a time-frequency approach for the case of analyzing the 
dynamics of hazardous states of a gaseous medium. Meanwhile, 
the general complexity of the developed time-frequency ap-
proach is noted. An AAP detection method based on the radial 
velocity and delay of measured AAP concentrations is reported 
in [42]. However, the obtained results are limited to the consid-
eration of discrete measurements of AAP concentrations over 
a sufficiently long time interval. In addition, this method does 
not allow detecting dangerous AAP based on the fluctuations 
in a concentration vector, which is the main informational 
attribute of their emergence [37]. That limits the ability to 
detect dangerous AAP conditions. Nevertheless, the structural 
features of fluctuations are not considered in [42].

It follows from our analysis that the known methods of 
global AAP analysis, as well as modern methods of RP, of the 
correlation and time-frequency analysis, have some limitations. 
These constraints prevent using these methods to detect dan-
gerous AAP in real-time. Therefore, an important and unsolved 
part of the problem is the construction of a method for detecting 
various hazardous AAPs in real-time based on a structured 
approach that employs the measurements of the current values 
of the AAP concentration at an arbitrary control point only.

3. The aim and objectives of the study

The study aims to devise a method for detecting arbi-
trary hazardous air pollution in real-time based on a struc-
tural function determined from the current concentrations 
of a set of pollutants.

To achieve the aim, the following tasks were set:
– to construct a method for calculating a structural 

function in real time for an arbitrary set of current concen-
trations of air pollutants;

– to test the efficiency of the proposed method on the ex-
ample of real concentrations of urban atmosphere pollution 
by typical harmful gas pollutants.

4. Construction of a method to calculate the structural 
function in real time

Typically, AAP concentrations are measured at discrete 
times i. In this case, the results of measurements at discrete 
times i over an assigned time interval represent the sequences 
of m-dimensional vectors Zi. The size of such a vector would 
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be determined by the amount of AAP whose concentrations 
are measured at the assigned control point [43]. In this case, 
the m-dimensional vectors Zi of the AAP concentrations 
measured at discrete time points, and considered over the 
assigned observation interval, would represent, in a general 
case, the time realizations of the corresponding non-station-
ary discrete vector m-dimensional random process. This 
process would describe the non-stationary dynamics of the 
states of the polluted atmosphere by the assigned set of AAP 
at a control point. Given the non-stationary nature of this 
process, the analysis of its characteristics is not possible 
based on the correlation approach. It is known that the cor-
relation approach is applicable only in the case of stationary 
processes and assumes the possibility of determining and the 
existence of a fixed mean value over the observation interval.

First, the correlation approach allows evaluating the quan-
titative characteristics of only a specifically known type of 
stationary process. Second, it makes it impossible to answer the 
question about process continuity. Classic illustrations of such 
two restrictions are, for example, two pairs of processes with 
the same covariance functions, such as Poisson and Wiener, in 
which the first is discrete, and the second is continuous. Third, 
if the covariance functions are determined with an error, for 
example, as a result of averaging and centering, then the result 
is significantly distorted. This is due to that the mathematical 
expectation is estimated through the arithmetic mean, which 
in non-stationary conditions is calculated with a shifting error. 
Fourth, the covariance functions do not contain information 
about the dynamic characteristics of processes and are not in-
tended to study the behavior of the dynamics of system states. 
Moreover, they are only the numerical estimates of the statis-
tical correlations between the sections of a stationary random 
process; the current AAP concentrations are not considered to 
be such [44]. When practically identifying the dangerous AAPs 
based on their representation in the form of a complex dynamic 
system, there is usually no data on the factors disturbing the 
system. Therefore, the only initial information for detecting 
AAP is the response of such a complex system in the form of 
the implementation of some non-stationary random process 
determined by the current AAP concentrations at a control 
point. For the case of discrete time, evolutionary changes in 
the polluted atmosphere would be determined by a random 
non-stationary time sequence of the m-dimensional Zi vectors. 
An important class of dynamic stochastic processes reflecting 
evolutionary changes in complex systems, following [45], are 
the processes with stationary increments. Random processes of 
this type belong to the class of non-stationary random process-
es in terms of mathematical expectation. It is known that the 
main characteristic of such processes is the structural function, 
which is invariant to the dynamics of the mean value of the pro-
cess and is functionally related to its spectral properties [46].

A method of structural analysis is based on the a pri-
ori assumption that for the studied nonlinear dynamic 
systems there is an adequate mathematical model within a 
certain class of nonstationary functions. Regarding a ran-
dom non-stationary time sequence of the m-dimensional Zi 
vectors, whose average value changes over time, we shall 
consider a sequence in the following form:

, � ,i i iZ Z Zτ τ= −  �, ,m m
i iZ Z τ∈Ω ∈Ω  0,1,2,..., 1,i N= − 	 (1)

where Zi,τ is the m-dimensional vector of the difference 
between the measurement vector Zi and the measurement 
vector Zi-τ at moment i–τ, for the discrete values  τ=0,1,2,…, 

M–1, under the condition M˂˂N; N is the total number of 
the m-dimensional  Zi vectors, measured over the observed 
interval, and Ωm is the set of all measured vectors.

At small τ values, slow changes in the sequence of vec-
tors Zi would insignificantly affect the values of difference 
vector (1). This means that as a result of suppression of the 
component with very large periods, the sequence of the 
m-dimensional vectors of increments (1) would be station-
ary. Moreover, if Ziτ turns out to be a random stationary 
sequence, then the original sequence of vectors Zi is usually 
termed a random sequence with stationary increments.

Taking into consideration transformations (1), the struc-
tural function for the sequence of m-dimensional Zi vectors 
of AAP concentrations would be determined by the function 
C(τ) of the discrete argument

( ) { }2

, ,i iC E Z ττ = 	 (2)

where Ei{*} denotes the discrete operator for calculating 
the mathematical expectation for a random sequence of the 
m-dimensional vectors, and ǀ*ǀ defines the operator for calcu-
lating the modulus for the corresponding vector.

Structural function (2) reflects the presence and absence 
of oscillating components in the investigated random sequence 
of the m-dimensional Zi vectors. Information on the presence of 
oscillating components can be used to detect the dispersion of 
air pollution [46]. In this case, the information about their ab-
sence could be used to identify the absence of dispersion or the 
accumulation of air pollution. In a general case, the structural 
analysis (2) of nonstationary random processes in a number of 
cases leads to more stable characteristics as compared with the 
correlation analysis [46]. Moreover, the parameters of the struc-
tural functions have the properties of invariance with respect 
to some forms of non-stationarity. In addition, the structural 
function (2) includes correlation characteristics and, for this 
reason, can be considered a result of a more general method of 
correlation processing of random processes. At the same time, 
the practical construction of a structural function is more re-
liable than the correlation function, since it is not affected by 
errors in determining the average value of the process.

It is known that an arbitrary random sequence Zi would 
be a sequence with stationary first increments (1) only if its 
average value is the linear function of time [45]. Therefore, for 
small discrete time intervals τ, the capabilities of the structural 
approach to identifying dangerous real AAPs are significantly 
expanded in comparison with the correlation approach [37]. 
Following [45], an important property of structural func-
tion (2) is that it characterizes the intensity of those fluctua-
tions Zi whose periods are less than or comparable to the value τ 
of the delay. This means that slow, in comparison with the value 
of τ, changes in Zi do not affect the difference (1) and therefore 
do not contribute to (2). Thus, the correlation function equally 
takes into consideration fluctuations of any scale. It is the use 
of the structural rather than the correlation function that turns 
out to be physically justified when large-scale fluctuations in 
pollution do not affect the detection of hazardous AAPs. This 
does not mean the absence of such fluctuations at all. Their 
share in the resulting fluctuations may even be large but, for the 
considered scale of the process of identifying dangerous AAPs, 
they can be considered insignificant.

Considering the specificity of measurements of the m-di-
mensional Zi vectors, the developed method for detecting 
dangerous AAPs in real-time based on the structural func-
tion (2), will be determined, for vectors Zi
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0
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1 , , if , 0, ,
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k

i j
j

C i k i k Z
k − τ

=

 
τ = < + τ + 

∑ 	 (3)

where C1 (i, k, τ) is the structural function of the m-dimen-
sional Zi vectors, determined in the averaging window of the 
size of k counts for a fixed scale τ in the current discrete time 
of their measurement.

Structural function (3), in contrast to (2), depends 
not only on the scale τ of the region of fluctuations of the 
m-dimensional Zi AAP vectors but also on the averaging 
window k, as well as the current measurement time. This 
means that method (3) allows detecting dangerous AAPs 
in real time based on the structural function for the m-di-
mensional Zi AAP vectors, averaged in a window of the 
predefined size, for the fixed values of the time scales of the 
fluctuation region. In this case, a dangerous AAP would 
occur for such time scales for which function (3) is close to 
zero ‒ the region of no fluctuations or the accumulation of 
air pollution.

The limitations of method (3) relate to that for the 
first k+τ discrete measurements, structural function (3) is 
not calculated and, follow-
ing (3), is identically equal 
to zero. However, this sit-
uation can be corrected by 
replacing zero in expres-
sion (3) with a value that is 
different from zero. In this 
case, during the first k+τ 
discrete measurements of 
the m-dimensional Zi vec-
tors, a corresponding accu-
mulation of data is perfor- 
med for the subsequent im- 
plementation of method (3).

5. Testing the efficiency 
of the proposed method 

using the example of 
actual concentrations of 

atmospheric pollution

The efficiency of the 
developed method (3) was 
tested on the example of 
actual AAP concentrations. 
Typical gaseous AAPs from 
vehicles [47], fires [48], and 
accidents at high-risk facilities [49] were 
considered as the main pollutants. The 
concentrations of gaseous pollutants were 
measured at a specific point in the city. 
The close association of AAP with the 
greenhouse effect, acid rains [50], and the 
poisoning of aquifers [51] were considered. 
Therefore, formaldehyde (CH2O), ammo-
nia (NH3), and nitrogen dioxide (NO2) 
were chosen as the measured components 
of the AAP Zi vector. The experimental 
measurement procedure and the charac-
teristics of the equipment are given in [52].

Fig. 1 shows the current values of func-
tion (3), calculated for Zi vectors measured 

at a predefined control point during the entire observation 
interval, from January to October 2018.

The specified function (3) corresponds to k=4 and the 
fluctuation scale τ=8, which is equivalent to 2 days. The 
measurement interval from 480 counts to 608 counts, 
which corresponded to the month of May, was chosen as a 
test method for verifying our method. The right-hand part 
of Fig. 1 shows the excess of the measured concentrations  
(С/MPC) of NO2 and СН2О over the corresponding max-
imum one-time permissible concentrations (MPC). Fig. 2 
shows the AAP dependences of the structural function (3) 
on the current count only for the test interval of monitor-
ing the pollutants СН2О and NO2 for the case k=4 and for 
various scales of fluctuations τ=8, τ=2. An actual emergen-
cy associated with massive disruption to the population 
life activities corresponded to count 508; it is denoted as 
a dangerous AAP in Fig. 2. The structural function (3) in 
the AAP dependence on the current count i and the scale of 
fluctuations τ for the case of the assigned parameter k=4 for a 
test interval in the form of the corresponding sections of the 
constant AAP level is shown in Fig. 3.

Fig. 1. Dependence of structural function (3) on the current count for the entire AAP control 
interval of СН2О and NО2
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Fig. 2. Dependence of structural function (3) on the current count for the test interval of AAP control
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Fig. 3. Structural function (3) depending on the current count i and the scale of 
heterogeneity τ for the test interval of AAP control
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With the aim of a more detailed analysis of the local 
AAP inhomogeneities at the time of the above emergency, 
similar AAP dependences for the interval limited to 500 and 
512 counts are shown in Fig. 4.

Our verification of the proposed method in general has 
shown the possibility of the real-time detection of the areas 
and scales of local homogeneities and heterogeneities of pol-
lution based only on the current measurements of the con-
centrations of an arbitrary set of harmful substances. This 
means that, based on the proposed method and the vector of 
current measurements of AAP concentrations, it is possible 
to identify hazardous and safe AAP inhomogeneities, as well 
as their areas and scales at arbitrary control points.

6. Discussion of results of the experimental testing of the 
proposed method

The reported results, illustrated in Fig. 1, 2 for different 
intervals of experimental measurements, are explained by 
the fact that the components of the vector of the current con-
centrations of gaseous AAP at the considered control point 
are the random non-stationary sequences. The structure and 
nature of these random sequences depend on many factors 
of the probabilistic nature, which are difficult to consider, 
to take into account in practice, or in mathematical models. 
Illustrations of the dependences of structural function (3) 
for the non-stationary measurement data of an AAP vector 
in a moving window, 4 count-wide (daily averaging), and 
two inhomogeneity scales, 2 counts long and 8 counts in 
Fig. 2, are explained by the fact that the AAP experimental 
environment is random and locally heterogeneous over time. 
At the same time, there are areas of the absence of local AAP 
heterogeneity, which are the local areas of pollution accu-
mulation and the harbingers of the occurrence of possible 
dangerous AAPs.

The structural AAP features over a test interval that in-
cludes the moment of the occurrence of a reliable emergency 
(count 508) at a control point (Fig. 2) are explained by the 
fact that at the moment of count 504 preceding the moment 
of the emergency, the local heterogeneity of 0.015 units 
prevailed. The indicated heterogeneity showed the AAP 
dispersion. The time scale of this inhomogeneity was around 
8 counts. The dispersion properties of the atmosphere at the 
time of count 508 decreased to the level of 0.0025 units, 
and a scale of 2 counts. This means that at the moment of 

count 508, the accumulation of the pollutants occurred at 
the control point, which led to the emergence of an emer-
gency. The presence of inhomogeneities of various levels 
and time scales over an AAP monitoring interval indicates 

the presence of eddies. For the considered 
case, the inhomogeneity in the atmospher-
ic air at the level of 0.015 units is 42.8 % 
and 17.6 % relative to the maximum one-
time MPC, respectively, for formaldehyde 
and nitrogen dioxide. In this case, the 
heterogeneity at the level of 0.0025 units is 
7.1 % and 2.9 %, respectively, for the above 
pollutants. This explains the fact that 
AAP irregularities at the moment of count 
504 would have a greater effect on form-
aldehyde dispersion. However, in subse-
quent moments, this effect decreases, and 
the opposite effect of the accumulation of 
formaldehyde concentration occurs, which 
is confirmed by the experimental data 
at the time of count 508 in Fig. 2. At the 
same time, the level of the concentration 

of formaldehyde in the atmosphere almost reaches the value 
of the maximum one-time MPC (Fig. 2). The experimentally 
obtained levels of AAP inhomogeneity shown in Fig. 3 and 
Fig. 4 are explained by the complex and random structure 
of current local inhomogeneities, which are characterized 
by different time scales. Moreover, in Fig. 3, 4, there are 
areas in which the level of inhomogeneity is close to zero 
(the areas of purple and blue). The level of inhomogeneities 
in these areas is less than 0.002 units. Such areas are pri-
marily characteristic of hazardous AAPs associated with 
the lack of dispersion and accumulation of pollutants by the 
atmosphere. A special feature of the proposed method is that 
measuring only the current concentration of AAP makes 
it possible to reconstruct in real time the levels and time 
scales of AAP inhomogeneities. At the same time, the level 
of heterogeneity and its time scale serves as the classification 
indicators for the detection of dangerous AAPs associated 
with the absence of dispersion and their accumulation in 
the atmospheric air. The data acquired indicate that the 
high-level AAP heterogeneities always precede the low-level 
heterogeneities associated with the occurrence of a danger-
ous AAP. This means that it is possible, based on the iden-
tification of high-level discontinuities, to predict dangerous 
AAPs in real time to prevent their occurrence. The reported 
results generally indicate the efficiency of the proposed 
method for detecting hazardous AAPs for the assigned 
set of current concentrations of pollutants in real time.

The limitations of the current study relate to that the re-
sults of the experimental verification of the efficiency of the 
method were performed for a limited number of pollutants 
of actual atmospheric air at the specified control point in a 
specific territory. Therefore, our results are partial. In this 
regard, a broader validation of the method is required, taking 
into consideration other hazardous AAP to humans and the 
environment. Thus, overcoming the noted restrictions can 
be considered a potential advancement of this study.

7. Conclusions

1. A method for calculating a structural function in a 
moving window of the fixed size has been devised for various 

Fig. 4. Structural function (3) depending on the current count i and the inhomogeneity 
(fluctuation) scale τ for the test interval of AAP control linked to an emergency
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scales of temporal inhomogeneity, based on measuring a vec-
tor of the concentration of arbitrary air pollutants. It is shown 
that the proposed method makes it possible, in contrast to the 
known method, to reveal the features in the dynamics of the 
levels and scales of local inhomogeneities of polluted atmo-
spheric air on the basis of current measurements of the con-
centration for an arbitrary number of pollutants only. It has 
been established that the high levels of heterogeneity could be 
used to predict hazardous air pollution, while the low levels of 
heterogeneity ‒ to identify them. It is shown that the method is 
universal since it is based on the current measurements of the 
vector of concentrations for an arbitrary number and type of 
air pollutants at a control point. Therefore, the method could 
be applied to arbitrary control points of atmospheric pollution 
in different territories of different states. It has been found 
that the method does not use information about the meteoro-
logical state of the atmosphere and about the features in the 
infrastructure surrounding the control point.

2. The efficiency of the proposed method was tested on 
the example of actual measurements of the concentrations 
of urban air pollutants with harmful substances in the form 
of formaldehyde, ammonia, and nitrogen dioxide. When 

standardizing the current concentrations, the maximum 
one-time MPC for the specified pollutants was considered. 
The results obtained confirm in general the efficiency of the 
proposed method. It has been experimentally established 
that the proposed method makes it possible to identify in 
real time the areas of the absence of local inhomogeneities, 
characteristic of the occurrence of hazardous air pollution 
associated with the absence of dispersion and accumula-
tion of pollutants in the atmosphere. It was found that the 
proposed method makes it possible to detect in real time 
the levels and scales of inhomogeneities in the polluted at-
mosphere. Since high levels of heterogeneity always precede 
the occurrence of hazardous events, it is possible to predict 
hazardous air pollution in real time in order to prevent it. It 
has been experimentally established that before the occur-
rence of a test emergency in a polluted atmosphere the level 
of local heterogeneity was 0.015 units with a time scale of 8 
counts (dispersion of pollutants). Then, by the time of the 
emergency, the level of heterogeneity dropped significantly. 
The level of local heterogeneity was 0.0025 units at a time 
scale of 2 counts. For a given case, it was found that the 
forecast time of the test emergency was 4 counts or 24 hours.
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