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This paper reports a study into the methods for recog­
nizing the type of an air object on a digital image acquired 
from an air situation video monitoring system. A method  
has been proposed that is based on the application of  
a specific neural network, which solves the problem of cate­
gorizing multidimensional complex vectors of objects’ fea­
tures based on complex calculations. In this case, a feature 
vector for recognizing the type of an air object is built on 
the basis of a Fourier transform for the sequence of coordi­
nates of its two-dimensional contour. A technique has been 
proposed to train a neural network to recognize the type 
of an air object based on three image classes correspond­
ing to three projections. This makes it easier to solve the 
classification problem owing to a more compact arrange­
ment of the multidimensional feature vectors. The architec­
ture of an air situation video monitoring system has been 
suggested, which includes an image preprocessing module 
and a module of a complex-valued neural network. Pre-
processing makes it possible to identify an object’s contour 
and build a sequence of normalized descriptors, which are 
partially independent of the spatial position of the object 
and the contour processing technique. Existing methods 
of air object recognition require significant computational  
resources and do not take into consideration the specificity  
of recognizing objects with three degrees of freedom or do 
not account for the complex nature of the numerical rep­
resentation of a contour. This study has shown that the 
reported results make it easier to train a neural network 
and reduce the hardware requirements in order to solve the 
task of air situation video monitoring. The proposed solu­
tion leads to increased mobility and extends the scope of 
application of such systems, including individual devices
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1.  Introduction

Advanced development of air objects increases the com-
plexity of tasks related to their detection and recognition. 
Solving these tasks fast at high quality is of great importance 
for civilian applications in air traffic control, airport air situ-
ation monitoring, as well as military activities. Until recently, 
various classes of aircraft were the target of air recognition 
tasks. Currently, the list of types of aircraft objects has been 
significantly expanded through the use of unmanned aerial 
vehicles (UAVs), quadcopters, cruise missiles, and helicopters.  
That has fundamentally changed the range of detectable 
parameters of air objects, starting from shape and size, to the 
dynamic characteristics of the movement. Therefore, optical 
video surveillance systems are increasingly being used to 
detect aerial objects. Such an approach makes it possible to 
reduce the dimensions of detection systems, produce them 
at lower costs, and, therefore, to render more mobility to 
them. Video monitoring also avoids problems related to the 
masking of characteristics of air objects in the radar detection 
area (stealth technology, small size, etc.). Harnessing new 

technologies shifts the weight of air-recognition tasks into 
the field of digital video processing and automated object 
recognition.

In the area of computer vision, the tasks of determining 
the type of image refer to classification problems. Solving 
them is typically based on the use of deep convolutional 
networks. Such a solution is too universal, not taking into 
consideration the specificity of the subject area. It should be 
taken into consideration that in the area of recognition of the 
type of air objects, the contours of the object yield enough 
information to solve the problem. The issue is that the re-
sulting numerical characteristics of the contour should be 
invariant relative to the geometric distortion (displacement, 
orientation, scale) of the object’s image. For air objects, this 
is especially relevant due to the three degrees of freedom in 
determining the position and is an important area to study.

One of the most effective and commonly used approaches 
to numerical description of the geometric shape of a flat object’s 
contour is the application of a Fourier transform procedure.  
This approach is particularly interesting because it generates 
a unique one-dimensional identification sequence of the  
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standard size, termed as Fourier descriptors, for all examined 
objects. It solves not only the problems of invariance but also 
filtering for noisy images.

However, the Fourier descriptors that are complex in 
their nature are used to solve the task of classifying multidi-
mensional vectors on multi-layered neural networks, which, 
in the classical version, are based on real calculus. Recently, 
there has been an increased interest in the application of 
complex-valued neural networks because they operate with 
a related phase and the amplitude of the input signal. Study-
ing the applicability of such neural networks for specific 
classification tasks is important not only because it is most 
adequate to the representation of input vectors. It appears to 
be modeling a process that is close to the actual mechanisms 
of brain image recognition.

The deep convolutional networks that are used in labo
ratory image recognition experiments are too heavy both at 
the training stage and at the operational stage. For actual 
application, including mobile devices, methods that require 
fewer computing resources are in demand. This is confirmed 
by works [1–3] that address the use of object recognition me
thods based on feature vectors, including Fourier descriptors, 
acquired from a contour analysis. However, known solutions 
involving these methods either do not use complex-valued 
neural networks or, at the stage of training a neural network, 
do not parse the contours of objects into classes correspond-
ing to three different projections. This suggests the relevance 
of our research into the application of complex-valued neural 
networks to recognize air objects in an arbitrary spatial posi-
tion, based on the Fourier descriptors of the contour.

2. Literature review and problem statement

Study [4] gives a detailed overview of the significant 
advances in the use of deep convolutional neural networks 
to recognize arbitrary images. However, as shown in pa-
pers [5, 6], deep learning methods require a large number of 
training sets and significant computer time to train a network.  
Work [7] described the application of these approaches in the 
field of air object recognition but it does not overcome these 
shortcomings.

It is shown in [8] that the use of transfer training may 
become an option to overcome the heaviness of deep net-
work training from scratch. This method assumes that a pre-
trained universal network additionally learns from specific 
images of air objects.

The application of transfer training makes it possible 
to bypass the limitations associated with the training time. 
However, some questions remain open. First, there is the issue 
of the redundancy of a universal approach based on deep neu-
ral networks when it comes to the recognition of types of air 
objects. Second, there is an issue related to the division of ob-
ject classes, each of which is represented by too different (due 
to spatial orientation) images of objects on a flat image.

It should also be taken into consideration that explaining 
the recognition process in deep networks is based on high-
lighting the hierarchy of attributes in the image. In the first 
layers of the network, these features are special points (in-
cluding the points of the contour). In the subsequent layers, 
these attributes are merged in groups that become a feature of 
the next level, etc. The hierarchy of attributes makes it pos
sible to generate numerical descriptors of objects in the image.  
These descriptors underlie the classification problem tackled 

by the last layers of the network, which, in essence, are a classic  
multi-layered perceptron.

This means that the network learning process involves 
over-training the network, including for generating the 
contours’ attributes, although this can be solved more effec-
tively, as shown in work [9], by classical methods of image 
processing.

Describing an image of an object by its contour is suf-
ficient for the task of recognizing the types of air objects; 
it utilizes much less information than when analyzed using 
deep neural networks, which allows for a series of advantages. 
Studies [10, 11] report various methods for the mathematical 
notation of a contour; work [12] shows the use of these me
thods to recognize the types of air objects.

When recognizing 3-dimensional objects by their 2-di-
mensional image, there is an issue related to deriving a nu-
merical descriptor invariant relative to the orientation of the 
object and its size in the image. The work cited earlier [1] ap-
plied various characteristics of a plane’s contour, acquired by 
using Hu moments, Zernike moments, as well as wavelet mo-
ments, to solve this task. However, the most interesting for 
solving the problem of air object type recognition is the use 
of Fourier descriptors, based on the application of a discrete 
Fourier transform to the function that describes the contour 
of the object. Fourier transforms in the tasks of describing 
geometric shapes were first applied by Cosgriff in 1960.  
As shown in papers [10, 11], this method is based on the 
representation of a closed flat curve by a sequence of points 
whose coordinates are considered complex numbers. The 
application of a Fourier discrete transform to this sequence 
generates a unique one-dimensional identification sequence 
of standard size values called Fourier descriptors, which pos-
sesses a series of interesting properties that are discussed in 
detail below in terms of contour description. Similar to how 
the spectrum of an audio signal, derived from a Fourier trans-
form, identifies this signal, the Fourier descriptors identify 
the closed contour of the flat shape. In fact, this sequence is  
a digital passport of the shape.

Fourier descriptors partially resolve the issue of inva
riance in relation to the rescaling and rotation in the image 
plane. However, direct use of all the information derived from 
a Fourier transform is not possible as the phase component of 
the descriptors depends on the choice of the starting point of 
the contour. This issue requires a separate study.

The task of recognizing aircraft types based on feature 
vectors derived from the Fourier descriptors has been solved 
since the 1980s by using a variety of classification methods. 
Work [13] applies methods of correlational analysis, distance 
assessment, support vector machine; paper [14] explored  
as a separate direction the use of neural networks to solve the 
task of categorizing objects by their descriptors of a Fourier 
contour.

A conventional method for solving the problems to 
classify objects described by the multidimensional vector of 
numerical values is the use of classic multi-layered neural 
networks. In the case of Fourier descriptors, the characteris-
tics vector is described in a complex space while the network 
operates with physical arithmetic.

The idea of using complex neural networks whose ope
ration involves the transformation of input values within  
a complex space is more appropriate for the task being solved. 
Complex neural networks have been studied since the 1970s, 
starting from work [15]. There are two main approaches to 
this area of study. The first (complex-valued neural network –  
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CVNN) follows the same principles as modern real-valued  
neural networks. In this case, they choose, as shown 
in [16, 17], a specific activation function, and use Clifford’s 
algebra to train a network by a gradient method of back-
propagation. Paper [18] reports a comparative analysis of 
classification tasks for the real-valued and complex-valued 
multi-layered neural networks; the authors show the advan-
tages and limitations of this type of network.

The second approach, proposed in [19–21] for complex-va
lued neural networks with multi-valued neurons (MLMVN), 
employs a specific activation function and does not need to 
be differentiated for training. This approach to solving classi-
fication problems has shown some computational advantages 
over real-valued neural networks. An important factor in the 
application of this approach, as shown in [19], is also that its 
computational model more accurately describes physiolo
gical processes in the brain when solving a recognition task.

Work [21] demonstrates the application of complex-
valued neural networks to model tasks that have a known 
solution for real-valued networks. In the cited work, the 
author shows that the complex-valued networks successfully 
categorize all the Boolean functions with two inputs, as well 
as a classification task for a two-spiral problem.

A review of the results of the above studies reveals the 
following shortcomings in existing approaches to solving 
a task of air object recognition. First, deep convolutional 
network methods are excessively heavy and do not take into 
consideration the specificity of air object recognition. Sec-
ond, methods that classify feature vectors, based on the con-
touring of an object, do not use all the information received 
from Fourier descriptors. Third, the neural-network classi-
fication methods do not take advantage of complex-valued 
neural networks and do not take into consideration the possi-
bility to simplify learning when dividing the training sample 
into subclasses corresponding to three different projections.

All this suggests that it is appropriate to construct an air 
object recognition method that would combine the advan-
tages of a contour analysis based on Fourier descriptors and 
complex-valued neural networks in order to overcome the 
above shortcomings.

3. The aim and objectives of the study

The aim of this study is to construct an air object recog-
nition method based on the Fourier descriptors and neural 
networks with a complex calculus, which would make it 
possible to effectively recognize the type of air object without 
the excessive cost of computer resources.

To accomplish the aim, the following tasks have been set:
– to investigate the dependence of changes in different 

attributes formed from a contour analysis of images, and de-
termine the structure and size of feature vectors based on the 
processing of a digital representation of the contour of a 2-di-
mensional object projection that would be best suited to the 
task of recognizing the examined set of types of aerial objects;

– to define the architecture of a complex-valued neural 
network, develop a training sample, and train the network; 

– to develop algorithmic maintenance for an air situation 
video monitoring system, which includes auxiliary modules 
to generate a training sample and the main module that 
solves the task of recognizing types of air objects based on 
the normalized contour descriptors and a complex-valued 
neural network.

4. Studying the dependence of changes in the descriptors 
of the contour of air objects on an angle 

4. 1. The study input data
The task of analyzing the air situation by means of visual 

observation is composed of a series of tasks: the detection of 
a mobile flying object; determining the characteristics of an 
object (range, size, speed, maneuverability, etc.); the recogni-
tion of the type of air objects. These tasks can be addressed 
both in stages and at the same time. This study assumes that 
the moving object would first be detected and localized in  
a video image, and then the task of categorizing it as a cer-
tain class could be solved. It is also assumed that the image 
of an air object can be represented as an ordered sequence of 
z(k) = (xk, yk), k = 0,…, N–1 points that describe the contour.

4. 2. Exploring the properties of Fourier descriptors
A one-dimensional Fourier transform of the real func-

tion f(t):

F f t e ti tω ω( ) = ( ) −

−∞

∞

∫ d 	 (1)

makes it possible to derive a continuous spectrum of this 
function in the frequency domain normally used to analyze 
time signals. For the case of the discrete sequence N of points 
z(k) of the examined signal (1) takes the form of a discrete 
Fourier transform and leads to the calculation of the discrete 
spectrum:
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In this case, formulae (1) and (2) can be used for the 

case of complex f(t) and z(k), respectively. The result of the 
Fourier transform is also complex. It is important that this 
transform allows for a reverse operation – an inverse discrete 
Fourier transform:
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, 	 (3)

that restores the original sequence. 
The sequence of complex values derived from decompos-

ing (2) is termed the z(k) sequence Fourier descriptors. They 
possess a series of important properties that explain their 
use in describing the contours of objects in two-dimensional 
images: invariant under shift, rotation, and scaling, as well as 
orderliness.

A two-dimensional contour can be represented by an 
ordered sequence of the coordinates of its points {(xk,yk)} and 
reduced to the complex form z(k) = (xk, yk) = xk+iyk. Assuming 
that some reference view of the object has been selected, the 
shift, rotation, and scaling of the object in a video frame can 
be interpreted as an arithmetic operation involving the Fou-
rier descriptors of the reference image contour. The contour 
scaling and rotation can be reduced to multiplying by a cer-
tain complex number τ j= rei ,  where r determines a scaling 
factor, and j is the rotation angle.

Indeed, if z′(k) and z(k) are the Fourier descriptors for 
the transformed and reference contour, respectively, and 
z′(k) = τz(k), then the descriptors are additionally multiplied 
by the same value of τ:
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The contour shift can be reduced by adding the contour 
coordinates to the complex number σ = σx +iσy, where σx 
and σy is the image shift along the х and у axes, respectively, 
that is, z′(k) = z(k)+σ. Such a transformation leads to a  cor-
responding additive change (shift) of the zero-frequency 
descriptor:
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Thus, all coefficients except F(0) are invariant to the 
shift, and the coefficient itself, as demonstrated in (2), shows 
the position of the center of gravity of the contour.

Fourier descriptors are sensitive to the choice of the 
starting point of the contour during the procedure of  
a contour’s discrete line processing. When the starting point 
of the contour changes, the phase spectrum of the curve 
changes, although the amplitude spectrum does not change. 
One can show that the initial point shift by k0 results in the 
following:
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Let m = k–k0. Then
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This means that the change in the phase spectrum de-
pends not only on the selection of the starting point but also 
on the descriptor number. This effect makes it difficult to di-
rectly use the phase component of the descriptors to identify 
the contour.

There are also problems with arbitrary affine transfor-
mation. Such a transformation is one of the simplest, which 
roughly describes the distortion of the shape of a flat image of 
a contour when a 3-dimensional object is at an arbitrary angle 
relative to the plane of the camera. These cases are the most 
interesting when recognizing real objects. The affine trans-
formation of a flat shape can be recorded as c′ = Ac+b, where 
c, c′∈R2 are the two-dimensional vectors of the coordinates 
of the object’s points before and after the transformation, re-
spectively, A is the non-degenerate matrix 2×2 with constant 
coefficients (detA≠0), b is the two-dimensional shift vector. 
It is easy to see that because of the linearity of transform (2), 
the Fourier descriptors are also subjected to the same affine 
transformation, but, in this case, the module and phase in 
relation to the reference contour change non-linearly.

The most important useful feature in terms of contour 
identification is the orderliness of the descriptors by the 
degree of their importance to the image. It is known that 
in the frequency spectrum, such as an audio signal, the 
high-frequency components do not have much influence on 
the shape of the signal and the sound quality. This makes it 
possible to discard (zero) the high-frequency components 

without losing signal quality. This signal processing process 
is termed filtering. Similarly, in the sequence of the Fou-
rier descriptors for a flat shape, the information about the 
shape of the contour is delivered by the first few elements of  
the sequence.

An inverse Fourier transform makes it possible to assess 
the degree of recognition of the shape at zeroed high-fre-
quency components. The image contour shown in Fig. 1, a 
contains about 2,000 points. Accordingly, a Fourier discrete 
transform would result in the same number of descriptors. 
The inverse transform would result in an accurate (prob-
ably with few computational errors, given the integer 
representation of pixel coordinates in the image) contour 
restoration.

 
                a                       b                        c                        d

Fig. 1. Illustration of the image contour filtering effect 
involving a Fourier transform: a – original object contour; 

b, c – the object contour, restored after zeroing the 
descriptors of high frequencies, except for 64 and 32, 

respectively; d – the object’s contour, restored 	
by 32 low-frequency descriptors

The zeroing of the descriptors above some of the filter’s 
chosen boundary frequency results in a decrease in the details 
in the image at inverse transform while the object’s recogni-
tion is retained. Shifting the filter’s boundary frequency to 
the high-frequency domain leads to an increasingly accurate 
display of the contour. A shift of the boundary frequency to 
the low-frequency domain would make the image rougher 
still, reducing it to the image of an ellipse in the most extreme 
informative case. Fig. 1, b, c shows the contour restored after 
zeroing all but 64 and 32 low-frequency descriptors, respec-
tively. Fig. 1, d shows an image obtained for the same original 
contour by discarding all descriptors except 32 for the rapid 
derivation of only 32 points of the restored image with linear 
interpolation between them.

4. 3. Choosing a feature vector 
In a general case, the Fourier descriptors F(n) can accept 

different values for different images of the flat contour of 
the same object. Their magnitudes depend on the scale r, 
the rotation angle j, and the choice of the contour starting  
point k0, as shown by (4) and (7). 

Assuming that some reference value of the descriptors 
F*(n) has been selected, the calculated F(n) sequence) for the 
recognized object can be represented as follows:

F n re e F ni i
nk

N( ) = ⋅ ( )−j
π2 0

* . 	 (8)

One can convert the Fourier descriptors to a form that 
lacks the influence of these factors. Consider the normalized 
descriptors according to [22]:
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1 1

12 . 	 (9)



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 ( 108 ) 2020

52

It is then possible to show that:
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where N*(n) are the normalized coefficients, corresponding 
to the reference set of the Fourier descriptors F*(n). 

It is easy to see that the normalized descriptors N(n) (9),  
unlike Fourier descriptors, are independent of the above 
factors and can serve as an adequate sequence to describe the 
reference image of the contour.

4. 4. Computational experiment to investigate the de-
scriptors of the contour of a 2-dimensional projection of an 
air object in an arbitrary position

We have investigated the dependence of Fourier descrip-
tors (2) and the normalized descriptors (9) on the angles 
of spatial position for four different types of aerial objects: 
aircraft, unmanned aerial vehicle, helicopter, quadcopter. 
In accordance with the filtering properties of a Fourier 
transform shown in Fig. 1, it was determined that the first 
32 descriptors would suffice to represent the shape of the air 
objects being examined to solve a classification problem.

One can see (Fig. 2) that even similar profiles of the 
aircraft and helicopter have different «patterns» in terms of 
the amplitude component for their Fourier descriptors. The 
phase component, as discussed above, is not representative 
because of the uncertainty of choosing the starting point of 
the contour. However, this difference is especially noticeable 
for normalized descriptors where both the amplitude and the 
phase component are important.

          
 

 
 

 

125 
100 
75 
50 
25 
0 

-10         0        10 

0.0   2.5  5.0  7.5 10.0 0            5          10 0.0   2.5  5.0  7.5 10.0 0            5          10 

a

d e f g

b c

Fig. 2. Difference in the shape of the objects 	
represented by their Fourier descriptors and normalized 

descriptors: a – a binary image of the A380 aircraft profile; 
b – the same for the Apache helicopter; c – amplitude 

characteristics of Fourier descriptors (solid line – for A380, 
dotted line – for Apache); d, e – the amplitude and phase 

characteristics of the normalized descriptors for A380; 	
f, g – the same for the normalized descriptors for Apache

When recognizing the type of any three-dimensional 
object in a two-dimensional image, there is an issue of the 
mutual location of the object and the video camera, that is, the 
angle of the image. Regardless of the classification method, 
whether it is a method of comparison with the reference 
or classification methods involving neural networks, the 

proximity of the view of the contour of the real image  (or 
describing its descriptors) and some reference remains 
important. It is obvious that for most objects that do not 
have specific symmetry properties, images and corresponding 
descriptors can vary greatly from different angles. This is 
a particularly important issue for aerial objects that have 
the freedom to rotate around any of the 3 axes in three-
dimensional space.

Specific terms are typically used for aircraft rotation 
angles. The rotation around the longitudinal axis when one 
wing falls and the other rises is termed a roll. The rotation 
around the vertical axis at which the aircraft turns the nose 
left or right is termed yaw. The rotation around the transverse 
axis when the plane lowers and lifts the nose is called a pitch.

There are a series of simplifications. One can assume that 
the video plane is parallel to the XY plane of the system of 
coordinates of the aircraft (the x axis coincides with the flight 
direction; the y axis passes along the wings (Fig. 3)). At the 
same time, the aircraft can be simplified to present as a model in 
the form of flat surfaces (Fig. 3, a). Then it is obvious that the 
roll of the aircraft (rotation around the x axis) would result in 
an easy computed change in the contour of the wing projection 
in the image. In this case, for each point of this contour relative 
to the contour at a zero roll, the y-th coordinate would change 
proportionally to the cosine of the roll angle.

     
a b c

Fig. 3. Change in the aircraft projection when its position 
changes: a – model representation of the aircraft 	

by two planes; b – an aircraft projection at a zero roll; 	
c – change in the aircraft projection at roll

One can more accurately describe the change in the coor-
dinates of a rotating object. If one designates via α and β a ro-
tation angle along the x and y axes, respectively, the 3-dimen-
sional transformation matrices can be described as follows:

Tα α α
α α

= −

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
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And since of interest is a change in the x and y coordi-
nates, one can finally record:
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where x’ and y’ are the coordinates of the new position of the 
arbitrary point of the object at coordinates x and y. 

If we follow the assumption that an object can be rep-
resented by flat surfaces, and, when the angles change, the 
projection contour is still determined by the faces of these 
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surfaces, this transformation can roughly represent a change 
in the observed contour in the image.

If one uses the matrix version of ratios (7) and (9), it is 
easy to show that due to the linearity of a Fourier transform, 
the proposed normalized descriptors (9) do not depend not 
only on such a change of angles (10) but, in general, on an 
arbitrary affine transformation.

Studying the dependence of Fourier descriptors (2) and 
normalized descriptors (9) on the spatial angles for the exa
mined air objects has shown that when the angle of the roll 
increases from 0 to 90 degrees, the side image (profile projec-
tion) smoothly transitions into the image from below (hori-
zontal projection) (Fig. 4), while the Fourier descriptors and 
the normalized descriptors are smoothly transformed into the 
horizontal projection descriptors.

 
Fig. 4. Change in the shape of the A380 aircraft’s projection 

when the angle of the roll changes from 0° to 90°

However, in practice, the representation of an aircraft 
in the form of flat surfaces is too rough; the descriptors of 
different frequencies perform differently during this transfor-
mation. Table 1 gives the results of a change in the amplitude 
of the first few normalized descriptors.

Similar studies have been conducted for other types of 
aircraft (Fig. 5).

It is generally accepted that the sequence of Fourier 
descriptors is invariant not only to the change in scale and 
displacement but also to the rotation of the yaw if the shoot-
ing is carried out from the surface of the earth, as this rota-
tion can be compensated for by the argument of a complex 
multiplier. And only the roll and pitch influence the change 
in the two-dimensional projection of the three-dimensional 
silhouette of an aircraft.

Our analysis revealed that in the case when the shooting 
point is not directly under the plane, even yaw is not a pure 
image rotation, which can be compensated for when process-
ing the descriptors.

Changing the yaw angle distorts the aircraft contour as 
the silhouette is determined by the projection of a 3-dimen-
sional curve – the boundary of the observation cone. And the 
simplistic idea of changing the shape of the contour when 
one changes the angle of rotation according to the affinity 
transformations is too rough.

Thus, even in the trivial case, if one studies the contour 
of a cube or parallelepiped, at a yaw rotation the quadrangle 
contour can change to hexagonal.

 
Fig. 5. Change in the projection shape for the helicopter, 

UAV, and quadcopter

The result of studying the contours of 4 types of objects: 
passenger plane, helicopter, unmanned aerial vehicle, quadcop-
ter has established that the normalized descriptors N(n) (9)  
even for low frequencies are sensitive to changes in the posi-
tion of the object in space. That necessitates the use of sepa-
rately normalized descriptors for each of the three orthogonal 
projections of the object as class references.

Therefore, three orthogonal projections as separate clas
ses are used when solving a classification task and building  
a training set in this study, although this increases the num-
ber of classes to 11 for the 4 selected types of objects (the 
quadcopter has two projections that match).

Table 1

Change in the amplitude of the normalized contour descriptors when the angle of the A380 aircraft roll changes

Roll angle 0° 20° 40° 60° 90°

Amplitude of the first 
few low-frequency 
descriptors

0.07135509 0.04448492 0.01938495 0.00362799 0.00180103

0.00028499 0.00136822 0.00125024 0.00160868 0.00307285

0.00008098 0.00202573 0.00415826 0.00566903 0.00723830

0.00033568 0.00129310 0.00155052 0.00151954 0.00264811

0.00002451 0.00018371 0.00073380 0.00074591 0.00054625

0.00014459 0.00047944 0.00052269 0.00094067 0.00106715

Amplitude charts 
starting at 2
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It should be taken into consideration that both the ampli-
tude and the phase components are stable for the normalized 
descriptors, which makes the complex-valued neural network 
an adequate classification module.

5. Studying complex-valued neural networks in the task 
of recognizing air objects by contour descriptors 

5. 1. Complex-valued neural networks in a task of multi
dimensional classification

The development of complex neural networks has recent-
ly shown good results in working with complex real signals 
that have a phase and amplitude (for example, images or audio  
signals). Therefore, it is natural to study such networks to 
analyze data that are complex numbers in the sequence of 
Fourier descriptors for the contour of an object.

The mathematical model of a complex-valued neuron can 
be built in accordance with the classical real analog:

y S z w wj j
j

n

= +





=
∑ 0

1

, 	 (14)

where S is the activation function applied to the linear com-
bination of the input vector z∈C n and the integrated weights 
vector w∈Cn with a w0∈C shift.

This change in the model leads to new properties of its 
performance. Even a single neuron does not just scale the input 
vector, as in a real case. It turns it around, due to a well-known 
geometric interpretation of complex multiplication. And this 
cannot be achieved by a single neuron with a real calculus if 
one represents a complex number by a pair of real values. In 
the real case, to rotate a two-dimensional vector, you would 
have to use multiplication by a 2×2 transformation matrix.

There are two fundamentally different approaches to 
determining the activation function.

That leads to issues related to differentiation when build-
ing training using gradient descent.

The first approach to determining the activation func-
tion [17] follows the classic scheme with a sigmoid function 
or hyperbolic tangent but applied separately to the real and 
imaginary part. The second approach [21] employs a funda-
mental property of rotating complex multiplication and in-
troduces the concept of a multi-valued neuron (MVN) with 
an activation function that maps a linear combination of the 
input signal with weight coefficients:

net z w wj j
j

n

= +
=

∑ 0
1

	 (15)

onto a point at a unit circle:

S net e
net
net

i net( ) = =⋅ ( )arg . 	 (16)

To avoid the redundant term w0 in designations (15) and 
to be able to consider the weighted sum as a scalar product of 
two (n+1)-dimensional vectors, one can write down:

net z wj j
j

n

= = ⋅
=
∑

0

z w, 	 (17)

assuming the use of an extended input n+1-dimensional vec-
tor z at z0 = 1. 

In the case of the discrete activation function, the map-
ping is rendered onto one of the k sectors in a unit circle:

S net e
i

j
k

k
j( ) = ≡

2π

ε ,  
2 2 1π πj
k

net
j

k
≤ ( ) <

+( )
arg , 	 (18)

where ε
π

k

i
ke=

2

 is the main value; the set 1 2 1, , ,...,ε ε εk k k
k−{ } 

forms a complete group of the complex root of power k from 
unity. The selection of k determines the order of the so-called 
«k-values threshold function», which makes it possible to 
solve classification problems with k classes by comparing 
the circle sector to one of the classes. The activation func-
tion  (18), as in the first approach, is not differentiated, which 
does not make it possible to use gradient descent as a training 
procedure. Instead, two non-differentiated learning rules are 
proposed, which is another advantage of this approach.

Inference of one of the two rules is based on the follow-
ing considerations. Assuming that w* is the proper value of 
weights, the err error in the value of the argument would be:

err z w z w z wj j
j

n

j j
j

n

j j
j

n

= − =
= = =
∑ ∑ ∑* ,

0 0 0

Δ 	 (19)

which means that each component of the vector Δw w w= −*  
contributes to the overall error. Assuming (for the lack of 
more accurate information) that each component makes an 
equal contribution, we obtain:

z w
err

nj jΔ =
+1

. 	 (20)

Then one can obtain a simple ratio:

Δw
err

n
zj j=

+
−

1
1, 	 (21)

that, given that z j = 1,  and, therefore, z zj j
− =1  of the conju-

gated value, we finally obtain the learning rule:

Δw
err

n
zj j=

+
⋅η

1
, 	 (22)

where η is the «learning speed» factor, as in the real case, 
used to control the adjustment step. 

The proposed MVN learning algorithms are not con-
sidered to be a task of minimizing error functionality. For 
the same reason (the absence of the minimization task), the 
training does not face the problem of getting stuck in local 
minima, which is typical for the gradient optimization rules 
of training in a real case.

Based on the mathematical model of a single com-
plex multi-valued neuron, it is possible to build multi-lay-
ered neural networks (MLMVN) with the rule of learning  
using a  method of error backpropagation without a gra
dient  descent.

5. 2. Training a complex-valued neural network
To train a neural network, we used grid three-dimensio

nal models of air objects, generated in the editor of 3-dimen-
sional graphics. The prepared training set included images to 
recognize 11 classes of images for 4 types of air objects: air-
craft, UAV, helicopter, quadcopter, for 3 classes for each type 
according to three orthogonal projections (the quadcopter 
has two projections that match).
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For each orthogonal projection, which corresponds to 
the direction along one axis, we used a variation of rotation 
angles around the other two, ranging from –45° to +45°.

Training dynamics metrics were applied to assess the 
quality of classification: training accuracy and validation 
accuracy.

Training accuracy is the accuracy of image classification, 
which the neural network used for training; validation ac-
curacy is the accuracy on images that were not used to train 
the neural network. Therefore, validation accuracy is a more 
reliable measure of how accurate the model is.

The architecture of a multi-layered neural network with 
multi-values coding of neurons MLMVN has a topology of 
15-100-1, that is, 15 input neurons, 100 neurons in one hid-
den layer, and an output layer with one output neuron, the 
complex output of which is divided into 11 sectors (k = 11). 
As a set of reference outputs, we apply Rk k k k

k= { }−1 2 1, , ,..., ,ε ε ε  

where ε
π

k

i
ke=

2

.

All neurons have continuous ins and outs. Therefore, (16) 
is used as an activation function. As the initializing values of 
all neurons (real and imaginary parts), random numbers were 
taken from the interval [0, 1]. MLMVN training is based on 
an error backpropagation algorithm that differs from the 
classic method for real networks in that there is no need to 
calculate the gradient to change the weights.

The training process is as follows:
1. Perform the procedure of direct transmission of the 

signal. To this end, for each input vector from the training 
sample, first for the neurons from the hidden layer, one 
calculates, according to (15), a weighted sum, and then the 
outputs according to (16). After that, one performs the same 
procedure for a single output neuron. 

2. Form the value of a network error. To this end, after 
passing through the network of each training vector, one 
forms a partial error:

errl
j= −( )arg arg mod ,ε ε πα α 2 	 (23)

where εα j  is the expected output for the j class; εα is the 
output obtained as a result of the direct transmission of the 
signal. After a batch of 32 instances of training vectors, the 
total batch error err is calculated as the rms value of all par-
tial errors.

3. Update the weights of the neural network. To this end, 
according to (21), one determines separately the value for 
adjusting the weights of the output neuron and the neurons 
from the hidden layer. In the error backpropagation proce-
dure, the weight adjustment is performed in accordance with 
the principle of equal separation of responsibility for error 
between neurons [21]. This means that the error must be 
multiplied by the inverse values of the corresponding weight. 
This is an important difference between the MLMVN train-
ing procedure and the classical backpropagation algorithm 
for real neural networks.

4. Terminate a training procedure. The criterion for stop-
ping is either a set number of learning epochs or an achieve-
ment of the predefined error.

The process of assessing the quality of classification and 
error during the training is shown in Fig. 6.

The classification accuracy chart confirms the correct-
ness of the proposed approach to solving the problem of 
recognizing the types of air objects.
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Fig. 6. Assessment chart of the accuracy of classification 
during training (dashed line – the score on the training set, 

solid line – on the validation set)

6. Algorithmic maintenance of an air object  
recognition system

The recognition task solved in this work is an integral 
part of the hardware and software complex of detecting 
moving aerial objects and determining their characteristics. 
The algorithmic maintenance, suggested as a study result, 
includes an auxiliary module to train a neural network at the 
preparation stage and the main module. An auxiliary module 
is needed to form a training set for neural network training. 
In addition, during the study phase of the behavior of con-
tour descriptors, it was necessary to have an extensive set 
of model images of air objects from different angles. To solve 
this task, a tool has been developed for computer-generated 
images of aerial objects based on grid 3D models, employing 
the three-dimensional animation library.

The support module software’s algorithm is as follows:
1. The initial position of an air object model is set, corre-

sponding to one of its three orthogonal projections. This fixes 
one of the three rotation axes. 

2. Change the position of the image around the other two 
axes in the predefined range at the preset angle step. 

3. A two-dimensional image on the screen is copied to an 
external file with a name that includes information about the 
angles of the current position.

For a given task, we used three-dimensional images of 
various models of air objects to determine one of the classes: 
aircraft, UAVs, helicopter, quadcopter.

The main module is designed to recognize types of air 
objects in real time as part of the hardware and software 
complex for detecting moving air objects. In this module, the 
recognition task is solved in such a way that in the first stage 
an object or objects must first be detected as moving in video 
sequences and localized in video images. In the second stage, 
the task of categorizing each object on the frame to a certain 
class is solved.

To obtain the contour’s numerical characteristics, a loca
lized image (Fig. 7, a) must first be brought to a black-and-
white view (Fig. 7, b). One then needs to highlight a set of 
the contour points (Fig. 7, c) and represent it as a sequence. 
This problem, while not trivial, can be solved by standard 
image processing tools included in the OpenCV library.

The result of our analysis of different approaches to the 
task of air object recognition described above is the following 
proposed algorithm for solving it:

1. Download a color image and highlight a rectangle cover-
ing the region of interest (in OpenCV terms) based on the coor-
dinates determined from the task of detecting a moving object.
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2. Transform it into a black-and-white image with an 
adaptive cut-off threshold, which is calculated according to 
the Gaussian function.

3. Search for the object’s contours under the mode of ob-
ject external contour search as an array of two-dimensional 
points. The result of this processing is the image of an air 
object represented as an ordered sequence of points, which 
is a discrete representation of a continuous two-dimensional 
curve describing the contour.

4. Derive a sequence of Fourier descriptors for the con-
tour and truncate it to 32 complex values.

5. Generate 15 complex normalized descriptors. 
6. Solve a classification problem using a pre-trained 

complex-valued neural network that assigns a 15-dimen-
sional complex vector to one of 11 classes. Each of the four 
types of aerial objects is matched with 3 contour classes for  
3 orthogonal projections, except for a quadcopter whose  
two projections match.

 
Fig. 7. Image pre-processing steps: a – the original image 	

of a localized object; b – black-and-white image; 	
c – a contour image of an object

                      a                                b                               c

7. Discussion of results of studying the proposed method 
for recognizing the type of images of air objects

Our results of the convergence of the training proce-
dure (Fig. 6) indicate that the proposed approach to the 
selection of normalized contour descriptors as the vectors of 
object attributes in order to solve the task of recognizing the 
types of air objects using a complex-valued neural network 
makes it possible to build an effective recognition subsystem 
for the complex of moving air object detection. Indeed, Fig. 6 
shows that the validation accuracy achieved on images that 
were not used to train the neural network reaches 99 %.  
It should be noted, however, that the effectiveness of solving  
a classification problem is attained by dividing the training 
set into classes that correspond to 3 different projections of 
the object. This leads to a simplification of the training pro-
cedure as the neural network does not have to attribute to 
the same class different images of the same object in different 
angles and, therefore, having very different multidimensional 
features, as it follows from Table 1. In addition, the choice of  
a complex-valued neural network makes it possible to con-
duct the training procedure without the use of gradient me
thods, which does not lead to the effect of getting stuck in lo-
cal minima. This is due to the choice of network architecture, 
built on a complex calculus, which is most consistent with the 
representation of feature vectors in a complex space. This rep-
resentation is dictated by a comprehensive form of a Fourier 
transform method used to calculate normalized descriptors. 
The application of normalized descriptors avoids the issues 
commonly encountered in the contour analysis of Fourier de-
scriptors, depending on factors such as distortion of the shape 

of the object’s contour due to the mutual spatial location of 
the video camera and aerial objects, as well as the choice of the 
initial point of the contour when processing the image. That 
is why the proposed variant of air object class recognition, 
described in chapter 6, should be considered promising.

The proposed approach to solving the task of recognizing 
digital images of air objects, based on the use of normalized 
contour descriptors as the feature vectors of an object, in 
conjunction with the application of a complex-valued neural 
network, has the advantage that it avoids the use of a heavy 
apparatus of deep neural networks, which is typically used to 
solve this problem.

The application of the proposed method is associated 
with a series of limitations in terms of its practical use. For 
example, solving the task implies, first, that an air object is 
large enough to detect a contour that can be used to calculate 
15 normalized descriptors. Second, it is assumed that the im-
age of the object is not distorted by fog or partially closed by 
clouds. The removal of these restrictions could be partially 
implemented by the pre-processing of the image and is the 
subject of further research.

It should be noted that the use of a complex-valued 
neural network to solve the recognition task is a new direc-
tion in this subject area and requires additional research. 
Another promising direction is research aimed at calculating 
the parameters of affine transformation and determining the 
real spatial location of air objects on a separate frame based 
on the derived descriptors, which would make it possible to 
determine the nature of their maneuver in a video sequence.

8.  Conclusions

1. A computational experiment involving model images 
was performed to investigate the dependence of change in 
Fourier descriptors and the normalized contour descriptors 
of images of 4 types of air objects on the angle of the object’s 
rotation relative to 3 axes. It is shown that the use of normal-
ized descriptors has a series of advantages over the Fourier 
descriptors. It has been established that to simplify the recog-
nition task, one needs to parse the training set for each type 
of object into 3 classes corresponding to 3 orthogonal projec-
tions. This makes it easier to solve the classification problem 
owing to a more compact arrangement of multidimensional 
feature vectors for shapes with similar images.

2. We have studied the possibility of using a complex- 
valued neural network to solve the task of recognizing the 
types of air objects. The study results have made it possible to 
propose the configuration of a multi-layered neural network 
with multi-valued coding of neurons MLMVN with 15 input 
neurons, 100 neurons in one hidden layer, and one output 
neuron. The validation accuracy of recognition is 99 % at the 
training stage.

3. Algorithmic maintenance for an air situation video 
monitoring system has been developed. Imaging techniques 
that pre-process the image in the following sequence have 
been investigated. The examined localized image of the ob-
ject is reduced to a binary view (a black-and-white image) 
to make it easier to detect its contour. The object’s contour 
is highlighted in the form of a sequence of the coordinates 
of points. A Fourier transform of this sequence is calculat-
ed, followed by the selection of 32 low-frequency Fourier 
descriptors. They are used to compute 15 complex-valued 
normalized descriptors, which are a numerical representation 
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of a two-dimensional contour suitable for use in the classi-
fication problem. The task of recognizing the type of an air 
object is tackled by a pre-trained neural network with a spe-
cific architecture based on complex calculus. The validation 
detection accuracy is as high as 99 %. This confirms that the 
proposed method of building a system for recognizing the 

types of air objects could simplify the requirements for the 
implementation of hardware while improving the accuracy 
when solving a task of air situation recognition. That, in 
turn, creates the preconditions for the increased mobility 
and extended scope of application of such systems, including 
individual detection devices.
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