
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (108) 2020

32

DEVISING A METHOD
OF FIGURATIVE

TRANSFORMATIONS FOR
MINIMIZING BOOLEAN

FUNCTIONS IN THE
IMPLICATIVE BASIS

M . S o l o m k o
PhD, Associate Professor

Department of Computer Engineering
National University of Water and Environmental Engineering

Soborna str., 11, Rivne, Ukraine, 33028
E-mail: doctrinas@ukr.net

I u . B a t y s h k i n a
PhD, Associate Professor*

E-mail: yuliia.batyshkina@rshu.edu.ua
I . V o i t o v y c h

Doctor of Pedagogical Sciences, Professor*
E-mail: ihor.voitovych@rshu.edu.ua

L . Z u b y k
PhD, Associate Professor

Department of Software Systems and Technologies
Taras Shevchenko National University of Kyiv

Volodymyrska str., 60, Kyiv, Ukraine, 01033
E-mail: labrob@ukr.net

S . B a b y c h
PhD, Associate Professor*

E-mail: stepaniia.babych@rshu.edu.ua
K . M u z y c h u k

PhD, Associate Professor*
E-mail: kateryna.muzychuk@rshu.edu.ua

*Department of Information and Communication
Technologies and Methods of Teaching Informatics

Rivne State University of Humanities
St. Bandery str., 12, Rivne, Ukraine, 33028

This paper reports a study that has established
the possibility of reducing computational complexi­
ty while improving the productivity of simplifica­
tion of Boolean functions in the class of perfect
implied normal forms (PINF-1 and PINF-2) using
a method of figurative transformations.

The method of figurative transformations has
been expanded to cover the process of simplifying
the functions of the implicative basis by using the
developed algebra of the implicative basis in the
form of rules that simplify the PINF-1 and PINF-2
functions of the implicative basis. A special fea­
ture in simplifying the functions of the implicative
basis on the binary structures of 2-(n, b)-designs)
is the use of analogs of perfect disjunctive nor­
mal forms (PDNF) and perfect conjunctive normal
forms (PCNF) of Boolean functions. The specified
forms of the functions define transformation rules
for the functions of the implicative basis on binary
structures.

It is shown that the perfect implicative normal
form of n-place function of the implicative basis
can be represented by the binary sets or a matrix.
Logical operations over the structure of the matrix
ensure the result from simplifying the functions of
the implicative basis. This makes it possible to focus
the minimization principle within the truth table of
the assigned function and avoid auxiliary objects
such as Carnot map, Weich charts, etc.

The method under consideration makes it possible:
–  to reduce the algorithmic complexity of PINF-1

and PINF-2 simplification;
–  to improve the performance of simplifying the

functions of the implied basis by 100–200 %;
–  to visualize the process of PINF-1 or PINF-2

minimization.
There is reason to argue that minimizing the

functions of the implicative basis using a method of
figurative transformations brings the task of PINF-1
and PINF-2 minimization to the level of well-re­
searched problems within the class of disjunc­
tive-conjunctive normal forms of Boolean functions

Keywords: method of figurative transforma­
tions, minimization of functions of the implicative
basis, implication function, PINF-1, PINF-2

UDC 681.325
DOI: 10.15587/1729-4061.2020.220094

Copyright © 2020, M. Solomko, Iu. Batyshkina, I. Voitovych, L. Zubyk, S. Babych, K. Muzychuk

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0)

Received date 09.10.2020

Accepted date 20.11.2020

Published date 25.12.2020

1.  Introduction

The technology of designing Boolean functions included
in the logical basis can resort to the implementation based
on certain physical phenomena. For example, the properties
of semiconductors are matched by the Pierce (Webb) and
Schaeffer functions while magnetic phenomena could be em-
ployed to realize the implicative basis.

Implication (from Latin implico – closely related) is
a logical operation that corresponds to the relation «if…,
then…» (IF-THEN) when two statements A and B form

a conditional statement «if A, then B». Implication of-
ten denotes the conditional statement itself, as well as
its formalized analogs, such as logical computing formu-
lae, which contain an implication sign (for example, «⸧»,
or «→») and take the form of A⸧B (A→B), where А and В
are the formulae for logical computation. The implication
operation is used to describe linguistic patterns using the
algebra of predicates, as well as to record the rules of formal
grammar [1].

The logical function f = x1→x2 (direct implication of x1
to x2) is a disjunctive –

Mathematics and cybernetics – applied aspects

33

f x x x x= → = +1 2 1 2, 	 (1)

therefore, a value of the function «false» is derived only when
the x1 argument accepts the value «true», and the x2 argu-
ment takes the value «false» (Table 1).

Table 1

Truth table of function f = x1→x2

x1 x2 x1 f x x x x= → = +1 2 1 2

0 0 1 1

0 1 1 1

1 0 0 0

1 1 0 1

The logical scheme that implements function (1) is
shown in Fig. 1.

11x

2x 1 2 1 2x x x x  

Fig. 1. A logical scheme implementing the function 	
of direct implication f = x1→x2

Implication function (1) can take an algebraic form:

f x x
x x

x x1 2
1 2

1 2

1

0
,

, ,

, .
() =

≤
>





if

if
	 (2)

On the sets of variables at which function (2) returns «1»,
the value of bits in the column «x1» either matches the value
of the bits in the column «x2», or is less than it (Table 2).

Table 2

Truth table on the sets of variables where the function
f = x1→x2 returns «1»

x1 x2 x1 f x x x x= → = +1 2 1 2

0 0 1 1

0 1 1 1

1 1 0 1

This relationship between the bits in the columns «x1»
and «x2» means that the column «x1» is an integral part of the
column «x2». Thus, the term «implicates» means «is a part
of» (x1 is a part of x2) [2].

Minimal logical bases involving the implication are
{→, NOT}, {→, 0}, {→, ⊕ }, {→, ←}. Note that {←, NOT},
{←, 1} are also the bases.

The functions of the canonical basis {NOT, OR, AND} are
represented by implication as follows:

x x= → 0; 	 (3)

x x x x1 2 1 2+ = → ; 	 (4)

or

x x x x x x1 2 1 2 1 2+ = → = →() →0 ;

x x x x x x1 2 1 2 1 2⋅ = + = → ; 	 (5)

or

x x x x x x x x

x x

1 2 1 2 1 2 1 2

1 2

0

0 0

⋅ = + = → = → → =

= → →()() →

()

.

Implication provides for a functionally complete basis –
each Boolean function can be implemented by pairing the
elements NOT, or NOT-OR (Fig. 2).

1 0x x 1x

11x

2x
1 2 1 2x x x x  

1
1x
2x 1 2 1 2x x x x 

a

b

c

Fig. 2. Implementation of the elements of canonical 	
basis {NOT, OR, AND} on the elements NOY, NOT-OR: 	

a – inverter, b – disjunction, c – conjunction

The functional completeness of the switching function
system ensures the possibility to represent an arbitrary func-
tional dependence on the assigned number of arguments by
using the minimum number of basic functions (operations).
These functions (operations) collectively have the property
of functional completeness, and, therefore, possess the ability
to synthesize a combination scheme that reproduces the func-
tional dependence by employing a minimum number of the
types of logical elements. However, that does not resolve the
issue of an optimal combination scheme. As demonstrated by
the practical design of logical schemes, combining elemental
bases belonging to several functionally complete systems (for
example, {OR-NOT}, {AND-NOT}, {AND, OR, NOT} systems)
makes it possible to build optimal combination schemes (in
terms of hardware complexity and performance). Using the
elemental basis of only one functionally complete switching
function system does not ensure, in a general case, deriving
an optimal combination scheme [2].

The process of minimizing logical functions occupies
an important position within the technology of designing
digital components. In this regard, it is still an actual task to
ensure the adequate compliance of a developed product with
the specified cost specifications, the simplification and the
warranty of obtaining the optimal result from minimizing
different representations of logical functions.

Since the implicative basis belongs to the field of logical
function optimization [3], it is a relevant task to undertake
research to improve, in particular, the following aspects:

– methods to simplify the functions of the implicative basis;
– the minimization of logical schemes based on the impli-

cation functions;
– the reliability of an optimal result from minimizing the

implicative basis.

2. Literature review and problem statement

The logical shutter IMPLY and a memristor-based logical
scheme are described in work [4]. Memristor devices can be

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (108) 2020

34

used as logical schemes. In this logical memory structure,
each memristor is used as a computational logical element or
as a trigger at different stages of the computational process.
The logical state of the device is determined by the memris-
tor resistance. The specified structure can be integrated into
the memristor crossbar, which is commonly used for memory.
Paper [4] reports a procedure of its design. Based on the
methodology reviewed, designing an 8-bit full binary code
adder is presented as a case study.

Memristors change their resistance under the control of
voltage and can retain their value after a voltage discharge.
The small size of memristors makes them useful for designing
supercompact memory systems. Memristors execute logical
primitives and can, therefore, be used to implement logical
functions employing different logical design styles. Article [5]
also examines the technology of making memristors, model
schemes, the methods of logical function implementation, as
well as various computational procedures, which can be used
in computational components.

A method to generate the sequences of control signals,
which makes it possible to calculate an arbitrary n-input
1-output Boolean function using only two working mem-
ristors, is reported in work [6]. This approach is based on
the use of a recursive Boolean formula that provides a path
for implementing a Boolean function over a functionally
complete base {imply, FALSE}, where imply is the two-input
Boolean implication function x→y =  +y.

Such characteristics of the memristor as high speed, low
power, and passive memory preservation make it suitable for
use in several areas (neural systems, digital and analog circuits,
memory blocks). The memristor has different properties that
allow for a number of industries to apply it, taking advantage
of the desired advantages. The memristor «Implication», which
implements the IMPLY logic, enables all logical operations that
are possible in structures composed only of memristors. The fo-
cus of paper [7] is the full adder of binary codes whose logical
structure is based on memristors and which uses only implica-
tive logic. Article [7] suggests an algorithm that ensures fewer
steps to perform the adder logic, as well as fewer memristors.

Any logical operation can be implemented in the impli-
cative memristor schemes characterized by low energy con-
sumption and the size at the nanometer level. Paper [8] re-
ports a method for converting And-Inverter Graphs (AIGs)
for logical functions in the network based on implication.
The optimized copying process is used to reduce the latency
and area of memory chains. The experimental studies in-
volved a set of tests, which includes 33 functions with input
variables ranging from 3 to 41. The experimental results are
compared with the results from the original algorithm and
another graph-based representation method (MIG). It is
demonstrated that the improved algorithm can produce bet-
ter delay rates for most test set functions.

The logic of implication is one of the main technologies
for memristors. Work [9] reports an optimal design of a com-
plete adder of binary codes based on the memristor using im-
plicative logic. The design considered requires 27 memristors
and less area compared to typical 8-bit complete adders based
on CMOS technology. The authors also described a complete
adder that requires only 184 computational steps. It is noted
that the adder performance increased by 20 %.

The physical implementation of memristors or memristor
devices that combine the electrical properties of the memory
element and resistor was first introduced by Leon Chua in 1971.
Such devices are characterized by one or more state variables

that determine the resistance of the switch depending on its
voltage history. Study [10] shows that this family of nonlinear
devices with a dynamic memory can also be used for logical
operations. It is demonstrated that the devices examined can
perform material implication (IMP), which is a fundamental
logical operation of Boolean logic over two variables p and q,
such that p IMP q is equivalent to (NOT p) OR q. Thus, when
included in the appropriate scheme, memory switches can exe-
cute logical operations corresponding to the state for which the
same devices simultaneously perform shutter functions (logic)
and gates functions (memory) that use resistance instead of
voltage or charge as a variable of the physical condition.

The quantity of memristors needed to execute the assigned
logical operation is discussed in work [11]. It is demonstrated
that memristors are naturally suitable for performing the logic
of implication, instead of Boolean logic. It is also noted that
the memristor can be used as a logical shutter and trigger.
While functionally complete, the logic of implication can be
used to calculate any Boolean function. However, performing
logical implication with data-containing devices requires ad-
ditional memristors to store intermediate results. Study [11]
reports an effective technique for calculating any with a large
number of memristors. The length of the corresponding com-
putational sequence is also taken into consideration.

New methods of logical synthesis for incomplete multi-
level binary chains using memristor-based implication ele-
ments are considered in work [12]. The first method checks
the assumption of the use of only two working memristors.
An algorithm minimizes the number of implicative (IMPLY)
gateways, which corresponds to minimizing the number of
pulses or delay time. The first method is tested with other
synthesis techniques such as modified SOP and Exclusive-Or
Sum of Products (ESOP) with a minimum number of work-
ing memristors. The authors analyzed the task of reducing
the number of IMPLY gateways by adding more operating
memristors. Sequence diagrams and a new designation, simi-
lar to that used in inverse logic, have been implemented.

Paper [13] demonstrated that all Boolean functions can
be computed by using two memristors. This requires a recur-
sive connective form to introduce a Boolean function. The
procedure for the synthesis of the corresponding computa-
tional sequence is also presented. The result is important for
minimizing complex logical chains regarding the number of
memristors used.

The literary sources considered above [4–13] represent
the implementation of the fourth basic element of scheme
equipment – the memristor, which is an addition to the resis-
tor, capacitor, and inductiveness.

At the suggestion by Leon Chua [14], there is a fourth ba-
sic element of electrical chains – along with inductivity, ca-
pacitor, and resistor, which should link the charge to changes
in the magnetic field by the following ratio:

d Mdqj = .

It was shown [14] that when the memristivity M is a con-
stant magnitude, then the memristor performs like a common
resistor. However, if the memristivity M is the function of
charge q, the correlation between the voltage on the memris-
tor terminals and the charge that passed through the element
is determined from the following formula:

v t M q i t M i d i t
t() = () () = ()() ()
−∞∫ τ τ .

Mathematics and cybernetics – applied aspects

35

At each point in time, the behavior of the memristor is
similar to that of the resistor, whose actual resistance value
depends on the time integral of the current that passes
the device. The history of device operation determines its
properties at every particular point in time. Thus, the term
«memristor» means «a resistor with memory».

According to researchers from Hewlett-Packard, memris-
tors are most effective when using logic based on an implica-
tion operation [10].

Parallel connection of two memristors implements a ma-
terial implication function [15]. Along with the universal
elements AND-NOT and OR-NOT, the implication function,
together with the constant zero function, creates a function-
ally complete basis (Table 3) [16].

This makes it possible to perform all 16 switching func-
tions of two variables. However, until now, such a basis has
not been used in computing equipment [16].

Literary sources [4, 7, 9, 11] confirm that a functionally
complete implicative basis is not applied to minimize logical
functions. Here, the result of minimization is given by the
Boolean basis. Only after this minimization, special algo-
rithms replace the elements of the {AND, OR, NOT} basis
with the elements of the basis {→, NOT}, or {→, 0}.

For the proper use of a functionally complete implicative
basis, algebra is required as part of the rules for simplifying
implicative functions.

A method of figurative transformations ensures the mini-
mization of logical functions directly in the implicative basis.
Thus, the considered algorithms and methods of minimiza-
tion of switching functions [4, 7, 9, 11] and the method of
figurative transformations follow different approaches, and,
therefore, imply different perspectives on the technological
possibility of minimizing functions in the implicative basis.
In particular, it is promising to use algebra as part of the
rules for the equivalent transformation of the functions of the
implicative basis {→, NOT}, {→, 0}, which would extend the
applicability of an analytical method.

In this regard, there is reason to believe that the procedure
for minimizing switching functions, which is represented by the
algorithms and minimization methods reported in [4, 7, 9, 11],
is insufficient for theoretical research into the optimal minimi-
zation of the functions of the implicative basis. This predeter-
mines the need to employ equivalent figurative transformations
of implicative functions, specifically for the bases {→, NOT},
{→, 0}. In a practical context, such an approach makes it pos-
sible to expand the capabilities of digital component design
technology based on the implicative bases {→, NOT}, {→, 0}.

3. The aim and objectives of the study

The aim of this study is to expand a method of figurative
transformations to minimize Boolean functions in the class of
perfect implicative normal forms (PINF-1, PINF-1.1, PINF-2

and PINF-2.1). This would make it possible to simpli-
fy, improve the productivity of minimizing the func-
tions of the implicative basis, by constructing algebraic
rules of logical transformations. To accomplish the
aim, the following tasks have been set:

– to establish the adequacy of using a method of
figurative transformations to minimize the Boolean
functions of the implicative basis, in particular, to
establish the hermeneutics of logical operations in the
implicative basis;

– to create an algebra of the implicative basis in
terms of the necessary rules for minimizing Boolean
functions;

– to analyze the effectiveness of minimizing the
functions of the implicative basis by the method of figu
rative transformations and examples of function mini
mization in the implicative basis in order to compare.

4. Perfect implicative normal forms
of Boolean functions

All definitions for the logic algebra functions in
the {I, OR, NOT} basis have their analogs for the
implicative basis { → , NOT} (Table 4). Replacing the
basis {I, OR, NOT} with the basis { → , NOT} is pos
sible according to formulae (6) to (8).

Table 4
Thesauruses of logical bases

No. of
entry

Thesaurus of the basis
{AND, OR, NOT}

Thesaurus of
the basis {→, NOT}

1
Perfect disjunctive
normal form (PDNF)

Perfect implicative normal
form –2 (PINF-2)

Perfect implicative normal
form –2.1 (PINF-2.1)

2
Perfect conjunctive
normal form (PCNF)

Perfect implicative normal
form –1 (PINF-1)

Perfect implicative normal
form –1.1 (PINF-1.1)

3
Minimal disjunctive
normal form (MDNF)

Minimal implicative normal
form –2 (MINF-2)

Minimal implicative normal
form –2.1 (MINF-2.1)

4
Minimal conjunctive
normal form (MCNF)

Minimal implicative normal
form –1 (MINF-1)

Minimal implicative normal
form –1.1 (MINF-1.1)

Table 3

Computational versatility of IMP (implication) and FALSE operations:
16 binary Boolean operations over two logical quantities

Operation Truth table Equivalent operation

p 1 1 0 0 = p
q 1 0 1 0 = q
TRUE 1 1 1 1 = p IMP p

p OR q 1 1 1 0 = (p IMP 0) IMP q

q IMP p 1 1 0 1 = q IMP p

p 1 1 0 0 = (p IMP 0) IMP 0

p IMP q 1 0 1 1 = p IMP q

q 1 0 1 0 = (q IMP 0) IMP 0

p EQUAL q 1 0 0 1 = ((p IMP q) IMP ((q IMP p) IMP 0)) IMP 0

p AND q 1 0 0 0 = (p IMP (q IMP 0)) IMP 0

p NAND q 0 1 1 1 = p IMP (q IMP 0)

p XOR q 0 1 1 0 = (p IMP q) IMP ((q IMP p) IMP 0)

NOT q 0 1 0 1 = q IMP 0

p NIMP q 0 1 0 0 = (p IMP q) IMP 0

NOT p 0 0 1 1 = p IMP 0

q NIMP p 0 0 1 0 = (q IMP p) IMP 0

p NOR q 0 0 0 1 = ((p IMP 0) IMP q) IMP 0

FALSE 0 0 0 0 = 0

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (108) 2020

36

PINF-1 and PINF-2 derivation is demonstrated by exam
ples 1 and 2.

4. 1. PINF-1
The perfect disjunctive normal form (PDNF) and the

perfect conjunctive normal form (PCNF) of Boolean func-
tions can be expressed through functions other than con-
junction and objection, or disjunction and objection. One can
represent the PDNF or PCNF of Boolean functions by using,
for example, objection and implication.

Theorem 1 [17]. Any function in the algebra of logic, except
identical to unity, can be represented in the following form:

f x x x x x x xn n n
n n

1 2 0 1 2 1
1 2 1, ,..., &() = → → → →





−

−d d d d 	 (6)

The proof of theorem 1 can be found in [17].
Implicative form (6) is analogous to PCNF. We assign to

notation (6) a classification of the perfect implicative normal
form – 1 (PINF-1) of the Boolean function.

To represent the Boolean function in PINF-1, all xi argu-
ments except x1 must be entered into the PINF-1 function
terms with objection if xi

id = 1, without objection – otherwise.
For x1, the conditions for entering the PINF-1 function terms
are opposite.

Any binary set corresponds to the term of the PINF-1
function:

x x x xn n
n n

1 2 1
1 2 1d d d d→ → → →−

−...

and, on the contrary, – the term of the PINF-1 function:

x x x xn n
n n

1 2 1
1 2 1d d d d→ → → →−

−...

corresponds to the binary set (tuple). For example, the
set <1100> corresponds to the term PINF-1:

x x x x1 2 3 4→ → → ,

and the term PINF-1:

x x x x x1 2 3 4 5→ → → →

corresponds to the set <01001> set.
Example 1. It is required to represent the function

f(x1, x2, x3, x4) (Table 5) in the form of PINF-1.

Table 5

Truth table of the logical function f (x1, x2, x3, x4)

x1 x2 x3 x4 f (x1, x2, x3, x4) x1 x2 x3 x4 f (x1, x2, x3, x4)
0 0 0 0 1 1 0 0 0 1
0 0 0 1 0 1 0 0 1 1
0 0 1 0 1 1 0 1 0 1
0 0 1 1 1 1 0 1 1 0
0 1 0 0 1 1 1 0 0 1
0 1 0 1 0 1 1 0 1 1
0 1 1 0 1 1 1 1 0 1
0 1 1 1 1 1 1 1 1 0

We shall construct the terms ji of the implicative func-
tion for the sets in Table 5, on which f(x1, x2, x3, x4) = 0:

j1 1 2 3 4= → → →x x x x ; j2 1 2 3 4= → → →x x x x ;

j3 1 2 3 4= → → →x x x x ; j4 1 2 3 4= → → →x x x x .

Then notation (7):

f x x x x x x x x

x x x x

x x

1 2 3 4 1 2 3 4

1 2 3 4

1 2

, , , &

& &

&

() = → → →





→ → →





→ →→ →()
→ → →





x x

x x x x

3 4

1 2 3 4

&

& . 	 (7)

would represent the function f (x1, x2, x3, x4) in the form
of PINF-1.

4. 2. Binary equivalent of PINF-1
In the method of figurative transformations, it is advis-

able to use a binary analog of the assigned Boolean function,
including the function of the implicative basis.

Since PINF-1 is analogous to the PCNF function of
the Boolean basis, PINF-1 is simplified by the Nelson me
thod [18]. The binary equivalent of variables in the PINF-1
function f (x1, x2, x3, x4) (11) can be represented in two ways:

F x x x x x x x x

x x

PINF1

= → → →





→ → →





×

× →

1 2 3 4 1 2 3 4

1 22 3 4 1 2 3 4

1 2 3 4

→ →





→ → →





×

× → → →




x x x x x x

x x x x


→ → →() ×

× → → →





→ → →


x x x x

x x x x x x x x

1 2 3 4

1 2 3 4 1 2 3 4 



×

× → → →





→ → →





 x x x x x x x x1 2 3 4 1 2 3 4 . 	 (8)

Variant 1. It is required to represent the binary equiva-
lent of function (8) by its truth table (Table 6) followed by
inverting the binary variable values.

Table 6
Truth table of the function f (x1, x2, x3, x4)

No. x1 x2 x3 x4 f No. x1 x2 x3 x4 f
0 0 0 0 0 0 8 1 0 0 0 0
1 0 0 0 1 1 9 1 0 0 1 1
2 0 0 1 0 1 10 1 0 1 0 1
3 0 0 1 1 1 11 1 0 1 1 1
4 0 1 0 0 0 12 1 1 0 0 0
5 0 1 0 1 0 13 1 1 0 1 0
6 0 1 1 0 0 14 1 1 1 0 0
7 0 1 1 1 0 15 1 1 1 1 0

The binary equivalent of function (8), according to the
first variant of the representation will take the following form:

FPINF1 =

0 0 0 0 0

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 11 1 1 1

1 1 1 1

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0

0 1 1 1

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

= . 	 (9)

Mathematics and cybernetics – applied aspects

37

Variant 2. The binary equivalent variables accept a unity
value if the variable xi other than x1 is represented in the
terms of function (8) in direct code. Conversely, the binary
equivalent variable takes zero if the variable xi other than x1 is
represented by the inverse code in the terms of function (8).
For x1 in the terms of function (8), the conditions for enter-
ing the binary equivalent are opposite. The binary equiva-
lent of the variable x1 takes a unity value if the variable x1
is represented in the inverse code. Conversely, the binary
equivalent variable takes zero if the variable x1 in the terms of
function (8) is represented in direct code (Table 7).

Table 7

Matching the variables xi and x1 in the PINF-1 of the Boolean
function to the second variant of binary equivalent

Variables in PINF-1 of
the function xi

Variables of binary
equivalent

xi 1

xi 0

x1 1

x1 0

The binary equivalent of function (8), according to the se
cond variant of the representation, will take the following form:

FPINF1 =

0 1 1 1 1

4 1 0 1 1

5 1 0 1 0

6 1 0 0 1

7 1 0 0 0

8 0 1 1 1

12 0 0 1 1

13 0 0 1 0

14 0 0 0 1

15 00 0 0 0

. 	 (10)

The binary equivalents (9) and (10) in the PINF-1 of
Boolean function (8) are the same.

4. 3. PINF-1.1
In (6), the conjunction can be replaced with an implica-

tive objection based on formula (5):

x x x x1 2 1 2= → .

After applying formula (5), function f (x1, x2, x3, x4) (7)
from Example 1 will take the following form:

f x x x x1 2 3 4 1 2 3 4, , , ,() = → → →()



j j j j

or

f x x x x

x x x x

x x x x

x x
1 2 3 4

1 2 3 4

1 2 3 4

1 2

, , ,() =

→ → →





→

→

→ → →





→

→

→ →→ →() →

→ → → →

















































x x

x x x x

3 4

1 2 3 4 


.

Statement 1. Any function in the algebra of logic, except
identical to unity, can be represented in the following form:

f x x xn n n1 2 1 2 1, ,..., ... ,() = → → → →()



−j j j j

where

j d d d d
i n nx x x xn n= → → → →





−

−
1 2 1

1 2 1... . 	 (11)

We assign to notation (11) classification of the perfect
implicative normal form – 1.1 (PINF-1.1) of the Boolean
function.

To represent the Boolean function in PINF-1.1, all xi ar-
guments except x1 must be entered into the terms of PINF-1.1
function with the objection if xi

id = 1, without objection –
otherwise. For x1, the conditions for entering the terms of
PINF-1.1 function are the opposite.

4. 4. PINF-2
The analog of PDNF is the second form of the implicative

notation of a Boolean function (PINF-2).
Theorem 2 [17]. Any function in the algebra of logic, except

identical to zero, can be represented in the following form:

f x x x x x x xn n n
n n

1 2 1 1 2 1
1 2 1, ,...,() = ∨ → → → →





−

−d d d d 	 (12)

The proof of theorem 2 can be found in [17].
Here we note that the functions:

j d d d
i nx x x n= → →1 2

1

1 2


are configured so that each such function returns «1» on the
set corresponding to the set < >d d d1 2 n , and returns «0»
on the remaining sets.

We assign to notation (12) classification of the perfect
implicative normal form – 2 (PINF-2) of a Boolean function.

The entry of arguments xi and x1 in the terms of PINF-2
function is similar to the arguments entering the terms
of PINF-1.

Any binary set corresponds to the term PINF-2 of the
function:

x x x xn n
n n

1 2 1
1 2 1d d d d→ → → →−

−...

and, on the contrary, the term of the PINF-2 function:

x x x xn n
n n

1 2 1
1 2 1d d d d→ → → →−

−...

corresponds to the binary set (tuple). For example, the
<1100> set corresponds to the term of PINF-2:

x x x x1 2 3 4→ → → ,

and the term of PINF-2:

x x x x x1 2 3 4 5→ → → →

corresponds to the set <01001>.
Example 2. It is required to represent the function

f(x1, x2, x3) (Table 8) in the form of PINF-2.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (108) 2020

38

Table 8
Truth table of the logical function f (x1, x2, x3)

No. x1 x2 x3 f (x1, x2, x3) No. x1 x2 x3 f (x1, x2, x3)

0 0 0 0 0 4 1 0 0 1

1 0 0 1 0 5 1 0 1 1

2 0 1 0 0 6 1 1 0 0

3 0 1 1 0 7 1 1 1 0

We shall construct the terms ji of the implicative func-
tion for the sets in Table 8 on which f(x1, x2, x3) = 1:

j1 1 2 3= → →x x x ;

j2 1 2 3= → →x x x .

Then notation (13):

f x x x x x x x x x1 2 3 1 2 3 1 2 3, ,() = → →() + → →() 	 (13)

would represent the function f(x1, x2, x3) in the form of PINF-2.

4. 5. Binary equivalent of PINF-2
Since PINF-2 is analogous to PDNF of the functions of

the Boolean basis, PINF-2 is simplified according to the rules
of simplification for PDNF [18, 19].

The binary equivalent variables accept a unity value if
the variable xi other than x1 is represented in the terms of
function (14) in the inverse code, and, conversely,

f x x x x x x x x x1 2 3 1 2 3 1 2 3, ,() = → →() + → →() 	 (14)

the binary equivalent variable accepts zero if the variable xi
except x1 is represented in direct code. For x1 in the terms of
function (17), the conditions for entering the binary equi
valent are opposite. The binary equivalent of the variable x1
accepts if the variable x1 is represented in direct code. Con-
versely, the binary equivalent of the variable x1 takes zero if
the variable x1 in the terms of function (14) is represented in
the inverse code (Table 9).

Table 9

Matching the variables xi and x1 in the PINF-2 of the Boolean
function to the binary equivalent

Variables in PINF-2
of the function xi

Variables in binary
equivalent

xi 0

xi 1

x1 0

x1 1

The binary equivalent of function (14) will take the fol-
lowing form:

FPINF2 =
4 1 0 0

5 1 0 1
. 	 (15)

Thus, logical function (14) is represented by binary
matrix (15).

4. 6. PINF-2.1
In (12), the disjunction can be replaced with an implica-

tive objection based on formula (4):

x x x x1 2 1 2+ = → .

After applying formula (4), the function f (x1, x2, x3) (13)
from Example 2 will take the following form:

f x x x x x x x x x1 2 3 1 2 3 1 2 3, , .() = → →() → → →()
Statement 2. Any function in the algebra of logic, except

identical to zero, can be represented in the following form:

f x x xn n n1 2 1 2 1, ,..., ... ,() = → → → →()



−j j j j

where

j d d d d
i n nx x x xn n= → → → →



−

−
1 2 1

1 2 1... . 	 (16)

We assign to notation (16) classification of the perfect
implicative normal form – 2.1 (PINF-2.1) of a Boolean
function.

To represent the Boolean function in the form of PINF-2.1,
the entry of all xi and x1 arguments into the terms of the
PINF-2.1 function is similar to the arguments entering the
terms of PINF-1.

Example 3. It is required to represent the Boolean expres-
sion x x x x x1 2 3 2 3+() + in the implicative basis {→, NOT}.

Solution:

x x x x x x x x x x

x x x x x

x x x

1 2 3 2 3 1 2 3 2 3

1 2 3 2 3

1 2 3

+() + = +() → =

= + +() → + =

= + +()) → + =

= → +()() → →() =

= → →()



 → →()

x x

x x x x x

x x x x x

2 3

1 2 3 2 3

1 2 3 2 3 .

The expression x x x x x1 2 3 2 3+() + is represented in the
basis {→, NOT}.

5. Axioms and transformations in the implicative basis

For implication, the following axioms hold:

x x

x x x

x

x x

x x x x

→ =

→ =
→ =

→ =
→ → =














1

1 1

0

1 2 1 1

;

;

;

;

.

	 (17)

The validity of the represented axioms is proven by truth
tables.

It follows from (17) that only the permutation law in
a modified form holds for implication:

x x x x1 2 2 1→ = → .

Mathematics and cybernetics – applied aspects

39

The associative law is not applicable to implication.
The rules of implication execution ensure the following

transformations of algebraic expressions (Table 10).

Table 10

Equivalent transformations in the implicative basis

No. of entry Transformations in the implicative basis

1
x x x x x x

x x x x x x x x

1 2 1 2 2 1

1 2 2 1 1 2 1 2

↔ = →() →() =

= +() +() = () + ()
2 x x x x x1 2 1 1 21→ = ⊕ ⊕

3 x x x x x1 2 1 1 2← = ⊕

4 x x x x2 1 1 2← =

5 x x x x1 2 1 2← =

6 x x x x x x x x2 1 1 2 1 2 1 2→ = + +

7 x x x x x x x x1 2 1 2 1 2 1 2→ = + +

8 x NOR x x x1 2 2 10 0 = →() →() →

9 x NAND x x x1 2 2 1 0 = → →()

10 x XOR x
x x

x x
1 2

1 2

1 2

0

0 0
0 =

→() →() →

→ → →()() → 












→

The transformations in Table 10 underlie the algebraic
apparatus of equivalent inter-basis transitions and simplifica-
tion of logical functions.

6. Results of minimizing functions of the implicative basis
using a method of figurative transformations

The equivalent figurative transformations during the
minimization of the functions of the implicative basis pro-
duce the following result:

– they determine the hermeneutics of logical operations
on binary structures of the functions of the implicative basis;

– they form the algebra of the implicative basis in terms
of the simplification of PINF-1, PINF-1.1, PINF-2, and
PINF-2.1 of Boolean functions.

6. 1. The hermeneutics of logical operations in the im-
plicative basis

In the implicative basis, the hermeneutics of logical op-
erations are similar to the hermeneutics of the bases consid-
ered earlier [18].

To represent perfect implicative normal forms, for ex-
ample, PINF-1 of the n-place Boolean functions, by a binary
equivalent or a matrix, one needs to replace the variables
with inversion xn with 1n, and the variables without inver-
sion xn with 0n (chapter 4.2), where n is the numeric index
that determines the bit size of the variable symbol «1» or
«0» in the terms of the function of the implicative basis. For
the variable x1 in the terms of the function of the implicative
basis, the conditions for entering the binary equivalent are
opposite (chapter 4.2).

A perfect implicative normal form of the 3-place function
of the implicative basis:

F x x x x x x= → →() → →()1 2 3 1 2 3 , 	 (18)

can be represented by binary sets (tuples):

F = ()()0 0 0 0 0 11 2 3 1 2 3 , 	 (19)

or the matrix:

F =
0 0 0

0 0 1
. 	 (20)

We denote matrix (20) an instance of the class of binary
matrices of the functions of the implicative basis.

The hermeneutics of logical operations for matrix (20) is
that matrix (20) yields the terms of the PINF-1 function of
the implicative basis and the operation of conjunction over
them. This hermeneutic is advisable to use when deriving the
result of logical operations in the class of binary matrices of
the functions of the implicative basis.

6. 2. Equivalent transformations of the Boolean func-
tions of the implicative basis into PINF-1

In a general case, when minimizing the Boolean functions
of the implicative basis by a method of figurative transforma-
tions, the following rules in the algebra of logic are possible.

Gluing the variable 2-place terms in a PINF-1 function
can be carried out by the following transformation:

x x x x x x1 2 1 2 1 11→() →() = = → . 	 (21)

The equivalent transformations for the rule of gluing the
variable 2-place terms in PINF-1 (21) have an illustration
of the combinatorial representation (22) where the binary
equivalent of function (24) is represented by the second vari-
ant of its construction (chapter 4. 2).

1 1

1 0
1 11 1= = = →x x . 	 (22)

The resulting minimal Boolean function in PINF-1 takes
the following form:

f xMINF�1 = →1 1.

Gluing the variable 3-place terms in PINF-1 can be car-
ried out by the following transformation:

x x x x x x x x1 2 3 1 2 3 1 3→ →() → →() = → . 	 (23)

The equivalent transformations for the rule of gluing the
variable 3-place terms in PINF-1 (23) have a representa-
tion illustration (24) where the binary equivalent of func-
tion (23) is represented by the second variant of its construc-
tion (chapter 4. 2).

1 1 1

1 0 1
1 1 1 3 1 3= = + = →x x x x . 	 (24)

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (108) 2020

40

Gluing the variable 4-place terms in PINF-1 can be car-
ried out by the following transformation:

x x x x x x x x

x x x

1 2 3 4 1 2 3 4

1 3 4

→ → →





→ → →





=

= → → . 	 (25)

The equivalent transformations for the rule of gluing the
variable 4-place terms in PINF-1 (25) have a representation
illustration (26):

1 1 1 0

1 0 1 0
1 1 0

1 3 4 1 3 4

= =

= + + = → →x x x x x x . 	 (26)

The rule of super-gluing the variables.
For 4-place PINF-1 terms, the rule of super-gluing the

variables [17] may take the following form:

x x x x x x x x

x x x x x x x x

x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1

→ → →() → → →() ×

× → → →() → → →() =

= →→ → +() → → +()×

× → → +() → → +() =

= →

x x x x x x x

x x x x x x x x

x

2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 xx x x x x x x

x x x x x x x x

x x

2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1

+ +() → + +() ×

× → + +() → + +() =

= + 22 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2

+ +() + + +() ×

× + + +() + + +() =

= +

x x x x x x

x x x x x x x x

x x ++() + +() ×

× + +() + +() =

= +() +() +

x x x x

x x x x x x

x x x x x x

3 1 2 3

1 2 3 1 2 3

1 2 1 2 1 22 1 2

1 2 1 2

() +() =

= + = →

x x

x x x x . 	 (27)

The equivalent transformations for the rule of super-glu-
ing the variable 4-place terms in PINF-1 (27) have a repre-
sentation illustration (28):

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

1 2 1 2= + = →x x x x . 	 (28)

Rule (28) employs a 2-(2, 4)-design [19].
The rule of incomplete super-gluing of variables.
Combinatoric properties of an incomplete combinatoric

system with repeated 2-(n, x/b)-design [19] ensure a rule of
incomplete super-gluing of variables in the implicative basis.

For 2-place PINF-1 terms, the rule of incomplete super-glu-
ing of variables may take the following form, for example:

f x x x x x x x x

x x x x x x

x x

1 2 1 2 1 2 1 2

1 2 1 2 1 2

2

,() = →() →() →() =

= +() +() +() =

= 11 2 1 2 1 2

1 2

+() = = + =

= →

x x x x x

x x . 	 (29)

The equivalent transformations for the rule of incomplete
super-gluing of the variable 2-place PINF-1 terms (29) have
a representation illustration (30) where the binary equiva-
lent of function (32) is represented by the second variant of
its construction (chapter 4. 2):

1 1

0 1
1

0 0
0 0

1

0

1 2 1 2 1 2

= = =

= = + = →x x x x x x . 	 (30)

Rule (30) employs a 2-(2, 3/4)-design [19].
For 3-place PINF-1 terms, the rule of incomplete super-glu-

ing of variables may take the following form, for example:

x x x x x x

x x x x x x

x x x x x

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1

→ →() → →() ×

× → →() → →() ×

× → →() → 22 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2

→() → →() =

= → +() → +() ×

× → +() → +

x x x x

x x x x x x

x x x x x x33

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

() ×

× → +() → +() → +() =

= + +() + +()
x x x x x x x x x

x x x x x x ××

× + +() + +() ×

× + +() + +() + +() =

=

x x x x x x

x x x x x x x x x

x

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

11 2 1 2 1 2 1 2

1 2 1 2 1 2 3

1

+() +() +() +() ×

× +() +() + +() =

=

x x x x x x x

x x x x x x x

x ++() +() +() + +() =

= +() +() = +

x x x x x x x x

x x x x x x x x x

2 1 2 1 2 1 2 3

2 1 2 2 3 1 2 2 3(() =

= = + + =

= + → = → →

x x x x x x

x x x x x x

1 2 3 1 2 3

1 2 3 1 2 3. 	 (31)

The equivalent transformations for the rule of incomplete
super-gluing of variable 3-place PINF-1 terms (31) have
a representation illustration (32) where the binary equiva-
lent of function (31) is represented by the second variant of
its construction (chapter 4. 2):

0 0 0

0 0 1

1 0 0

1 0 1

0

0 1 0

0 1 1

0 1

1 1 0

1 1 0

0

0 1

1 0

0

0

0

1 2 3 1 2

= =

= = =

= = + +x x x x x x33 1 2 3

1 2 3

= + → =

= → →

x x x

x x x . 	 (32)

Mathematics and cybernetics – applied aspects

41

Rule (32) employs a 2-(3, 7/8)-design [19].
Generalized gluing of variables in the implicative basis can

be carried out by the following transformation:

x x x x x x

x x x x

1 2 1 3 2 3

1 3 2 3

→() →() →() =

= →() →(). 	 (33)

The equivalent transformations for the rule of generalized
gluing of variables (33) have a representation illustration (34)
where the binary equivalent of expression (33) is represented
by the second variant of its construction (chapter 4. 2):

0 0

0 1

0 0

0 1

0 0

1 3 2 3 1 3 2 3

= =

= +() +() = →() →()x x x x x x x x . 	 (34)

Another variant of the generalized rule of gluing the vari-
ables in PINF-1:

x x x x

x x x x x x

1 3 2 3

1 2 1 3 2 3

→() →() =

= →() →() →(). 	 (35)

0 1

0 0

0 0

0 1

0 0

1 2 1 3 2 3

1 2 1 3 2 3

= =

= +() +() +() =

= →() →() →()
x x x x x x

x x x x x x .

A variable absorption rule is reduced to the following
transformations:

1. x x x x1 1 2 10 0→() →() = → . 	 (36)

The equivalent transformations for the rule of the PINF-1
variables absorption (36) have a representation illustra-
tion (37).

x x x x x x

x x

1 1 2 1 1 2

1 1

0

1

1 1
1 0

→() →() = +() =

= = = = → . 	 (37)

2. x x x x1 1 2 10 0→() →() = → . 	 (38)

3. x x x x x x x1 2 1 2 3 1 2→() → →() = → . 	 (39)

0 1

0 1 1
0 1 1 2 1 2= = + = →x x x x .

4. x x x x x x x x1 2 1 2 3 4 1 2→() → → →() = → . 	 (40)

0 1

0 1 1 1
0 1 1 2 1 2= = + = →x x x x .

The rule of semi-gluing the variables in the implicative
basis can be carried out with the help of the following trans-
formations:

x x x x x

x x x x

1 2 1 2 3

1 2 2 3

→() → →() =

= →() →(). 	 (41)

The rule of semi-gluing the variables (41) has a represen-
tation illustration (42):

1 1

0 1 1

1 1

1 1

1 2 2 3 1 2 2 3

= =

= +() +() = →() →()x x x x x x x x . 	 (42)

The rule:

x x x x x1 1 2 1 20→() →() = → , 	 (43)

is proven by the following transformations:

x x x x x x

x x x x x x

1 1 2 1 1 2

1 2 1 2 1 2

0→() →() = +() =

= = + = → .

x x x

x x x x x x

1 1 2

1 2 1 2 1 2

1

0 1

1

1
+() = = =

= = + = → . 	 (44)

Converting the result of figurative transformations (44) –
x1x2 to representing it by the implicative basis employs de
Morgan formula.

Example 4. It is required to simplify the logical function
f(x1, x2, x3, x4) (Table 11) in a perfect implicative normal
form –1 (PINF-1).

Table 11

Truth table for the function f (x1, x2, x3, x4)

No. x1 x2 x3 x4 f (x1, x2, x3, x4) No. x1 x2 x3 x4 f (x1, x2, x3, x4)

0 0 0 0 0 1 8 1 0 0 0 1

1 0 0 0 1 1 9 1 0 0 1 0

2 0 0 1 0 0 10 1 0 1 0 0

3 0 0 1 1 0 11 1 0 1 1 1

4 0 1 0 0 0 12 1 1 0 0 0

5 0 1 0 1 0 13 1 1 0 1 0

6 0 1 1 0 1 14 1 1 1 0 1

7 0 1 1 1 0 15 1 1 1 1 1

Apply the first variant of the binary equivalent of
the PINF-1 function f(x1, x2, x3, x4) (chapter 4. 2). The
f(x1, x2, x3, x4) PINF-1 is minimized by the following figu
rative transformations:

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (108) 2020

42

FMINF1 = =

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

7 0 1 1 1

9 1 0 0 1

10 1 0 1 0

12 1 1 0 0

13 1 1 0 1

1 11 0 1

0 1 0 1

1 0 1

1 1 0 0

1 0 0 0

1 0 0

1 0 1 1

1 0 1 0

0 0 1 1

0 0 1 0

0 1

0 1 1 0

0 1 1 0

1 0 1

=

= =
11 0 0

0 1

0 1 0

2 3 4 1 3 4

=

= + +() + +() ×

×

x x x x x x

x22 3 1 3 4

2 3 4 1 3 4

+() + +() =

= + →() + →() ×

x x x x

x x x x x x

× →() + →() =

= → →()
x x x x x

x x x x

2 3 1 3 4

2 3 4 1 →→ →()×

× →() → →()
x x

x x x x x

3 4

2 3 1 3 4 .

The function f(x1,x2,x3,x4) MINF-1 (Table 11):

F x x x x x x

x x x x x

MINF1 = → →() → →()×

× →() → →()
2 3 4 1 3 4

2 3 1 3 4 . 	 (45)

6. 3. Equivalent transformations of the Boolean func-
tions of the implicative basis to PINF-1.1

Before executing the operation of gluing the variable 4-place
PINF-1.1 terms, we shall glue the variable 4-place PINF-1 terms:

f x x x x

x x x x x x x x

x x

1 2 3 4

1 2 3 4 1 2 3 4

1 2

, , ,() =

= → → →





→ → →





×

× → → xx x x x x x

x x x x x x x x

x

3 4 1 2 3 4

1 2 3 4 1 2 3 4

1

→() → → →





=

= → → +() → → +()×

× → xx x x x x x x

x x x x x x x x

x x

2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1

→ +() → → +() =

= → + +() → + +() ×

× → 22 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2

+ +() → + +() =

= + + +() + + +() ×

× +

x x x x x x

x x x x x x x x

x x ++ +() + + +() =

= + +() + +() =

= → →()

x x x x x x

x x x x x x

x x x x

3 4 1 2 3 4

1 3 4 1 3 4

1 3 4 1 →→ →()x x3 4 . 	 (46)

In (46), we shall replace conjunction with an implicative
objection based on formula (5):

x x x x1 2 1 2= → ,

next, we shall perform the operation by gluing the variable
4-place PINF-1.1 terms.

f x x x x

x x x x

x x x x

x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2

, , ,() =

= → → →





→

→ → →





→

→

→ →→ →() →

→ → → →

















































x x

x x x x

3 4

1 2 3 4 


=

= → → →





→

→ → →





→

→
→ → → +

+ →

x x x x

x x x x

x x x x

x

1 2 3 4

1 2 3 4

1 2 3 4

1 xx x x

x x x x

2 3 4

1 2 3 4

→ →













































=

= → → →





→

→ → →






+

+ → → → +

+ → → →













x x x x

x x x x

x x x x

1 2 3 4

1 2 3 4

1 2 3 4 








=

=
→ → → + → → → +

+ → → → + → → →

x x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

==

=
+ → → + + → → +

+ + → → + + → →
=

=
+

x x x x x x x x

x x x x x x x x

x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 ++ → + + + → +

+ + + → + + + →
=

=
+ + + +

x x x x x x

x x x x x x x x

x x x x

3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 xx x x x

x x x x x x x x

x x x x x x x x x

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

+ + + +

+ + + + + + + +
=

= + + 11 2 3 4 1 2 3 4

1 3 4 1 3 4 1 3 4 1 3 4

1 3 4

x x x x x x x

x x x x x x x x x x x x

x x x

+ =

= + = → =

= + +() →→ + +() =

= → +() → → +() =

= → →() → → →


x x x

x x x x x x

x x x x x x

1 3 4

1 3 4 1 3 4

1 3 4 1 3 4



.
	

	 (47)

Transformation (47) has a representation illustration (48):

f x x x x1 2 3 4

0 0 0 1

0 1 0 1

1 0 1 1

1 1 1 1

1 1 1 0

1 0 1 0

0 1 0 0

0 0 0 0

1 1 0

0 0 0

, , ,() = =

= = =

= xx x x x x x

x x x x x x

1 3 4 1 3 4

1 3 4 1 3 4

+ +() + +() =

= → →() → → →





. 	 (48)

Mathematics and cybernetics – applied aspects

43

Figurative transformations (48) have their natural her
meneutics: the terms of the implicative basis function are
combined by the implication operation «→», the last term is
inverted, the entire resulting expression is inverted.

6. 4. Equivalent transformations of the Boolean func-
tions of the implicative basis into PINF-2

Gluing the variable 4-place PINF-2 terms.

x x x x x x x x

x x x

1 2 3 4 1 2 3 4

1 3 4

→ → →






+ → → →







=

= → → . 	 (49)

The equivalent transformations for the rule of gluing the
variable 4-place PINF-2 terms (49) have a representation
illustration (50):

0 0 0 1

0 1 0 1
0 0 1 1 3 4

1 3 4 1 3 4

= = =

= + + = → →

x x x

x x x x x x . 	 (50)

Since PINF-2 is analogous to the PDNF function of the
Boolean basis, figurative transformations in the binary ma-
trix of implicative function (45) are carried out according to
the rules of PDNF [18, 19].

The rule of super-gluing the variables.
For 4-place PINF-2 terms, the rule of super-gluing the

variables [20] may take the following form, for example:

 x x x x x x x x

x x x x x

1 2 3 4 1 2 3 4

1 2 3 4

→ → →





+ → → →





+

+ → → →





+ 11 2 3 4

1 2 3 4 1 2 3 4

1 2 3

→ → →





=

= → → +()+ → → +()+

+ → → +

x x x

x x x x x x x x

x x x x44 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3

()+ → → +() =

= → + +() + → + +() +

+ → + +

x x x x

x x x x x x x x

x x x xx x x x x

x x x x x x x x

x x x

4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3

() + → + +() =

= + + +() + + + +() +

+ + + ++() + + + +() =

= + + + =

x x x x x

x x x x x x x x x x x x x x x x

4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

== + + +() =

= = + = →

x x x x x x x x x x

x x x x x x

1 2 3 4 3 4 3 4 3 4

1 2 1 2 1 2. 	 (51)

The equivalent transformations for the rule of super-glu-
ing the variable 4-place PINF-2 terms (51) have a represen-
tation illustration (52):

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 2 1 2 1 2= = + = →x x x x x x . 	 (52)

Rule (52) employs a 2-(2, 4)-design [19].

PINF-2 is analogous to the PDNF function of the Bool-
ean basis, so the equivalent transformations in the binary
matrix of implicative function (52) are carried out according
to the rules of PDNF [18, 19].

Other logical operations over PINF-2 of the Boolean
functions of the implicative basis are carried out in a similar
way to the considered operations (50), (52).

Since the combinatorial structure of the truth tables for
the logical functions of the implicative basis produces more
information about orthogonality, contiguity, unambiguous-
ness of the blocks in a truth table, the use of combinatorial
representations to search for the objects of equivalent trans-
formation in simplifying the functions of the implicative basis
is effective.

6. 5. Equivalent transformations of the Boolean func-
tions of the implicative basis in PINF-2.1

Before the operation of gluing the variable 3-place PINF-2.1
terms, we shall glue the variable 3-place PINF-2 terms:

f x x x

x x x x x x

x x x x x x

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

, ,() =

= → →() + → →() =

= → +() + → +() =

== + + + + + =

= + =

= =

= + =

= →

x x x x x x

x x x x x x

x x

x x

x x

1 2 3 1 2 3

1 2 3 1 2 3

1 2

1 2

1 2. 	 (53)

f x x x

x x x x x x

1 2 3

1 2 1 2 1 2

1 0 0

1 0 1
1 0, ,

.

() = = =

= = + = →

In (53), we shall replace disjunction with implication
based on formula (5):

x x x x1 2 1 2+ = → ,

then we shall glue the variable 3-place PINF-2.1 terms.

f x x x

x x x x x x

x x x x x x

x

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1

, ,() =

= → →() → → →() =

= → → + → → =

= → xx x x x x

x x x x x x

x x x x x x

x x

x

2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

1 2

+ + → + =

= + + + + + =

= + =

= =

= 11 2

1 2

+ =

= →

x

x x . 	 (54)

The results of gluing the 3-place PINF-2 (53) and
PINF-2.1 (54) terms coincide.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (108) 2020

44

Transformation (54) has a representation illustration (55):

f x x x

x x x x x x

1 2 3

1 2 1 2 1 2

1 0 0

1 0 1
1 0, ,

.

() = = =

= = + = → 	 (55)

Example 5. It is required to minimize the system of equa-
tions for a 1-bit complete binary code adder (Table 12) in the
implicative basis [7].

Table 12

Truth table for a 1-bit adder of binary codes

No. xi yi pi-1 si pi

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 0

3 0 1 1 0 1

4 1 0 0 1 0

5 1 0 1 0 1

6 1 1 0 0 1

7 1 1 1 1 1

When contemplating Table 12, we see that everywhere,
except for the sets <0,0,0> and <1,1,1>, there is a ratio
s pi i= . Let us compile a truth table that would include four
arguments xi, yi, pi–1, pi and one function si (Table 13) [20].

Table 13

Truth table with four arguments xi, yi, pi –1, pi 	
and one function si

No. xi yi pi–1 pi si

0 0 0 0 0 0

1 0 0 0 1 *

2 0 0 1 0 1

3 0 0 1 1 *

4 0 1 0 0 1

5 0 1 0 1 *

6 0 1 1 0 *

7 0 1 1 1 0

8 1 0 0 0 1

9 1 0 0 1 *

10 1 0 1 0 *

11 1 0 1 1 0

12 1 1 0 0 *

13 1 1 0 1 0

14 1 1 1 0 *

15 1 1 1 1 1

Finalize the function si (Table 14).

Table 14
Truth table of the finalized function si

No. xi yi pi–1 pi si

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0 1

3 0 0 1 1

4 0 1 0 0 1

5 0 1 0 1

6 0 1 1 0 1

7 0 1 1 1

8 1 0 0 0 1

9 1 0 0 1

10 1 0 1 0 1

11 1 0 1 1

12 1 1 0 0 1

13 1 1 0 1

14 1 1 1 0 1

15 1 1 1 1 1

A figurative transformation method is used to minimize
the finalized function si, by replacing the following variables:
xi – x1, yi – x2, pi–1 – x3, pi – x4.

s

x x x x

i = =

1 2 3 4

2

4

6

8 1 0 0 0

10

12

14

15 1 1 1 1

0 0 1 0

0 1 1 0

1 0 1 0

1 1 1 0

1
0 1 0 0

1 1 0 0

00

1 0 0

1 0 0 0

1 1 1 1

1 0

1 0 0

1 0 0

1 1 1 1

1 0

1 0

1 0

1 1 1 1

1 0

1 0

1 0

1 1 1

1 2

=

= = = =

= + + x x xx x x x x

x x x x x x x

x x x x x

3 4 1 2 3

1 2 3 4 1 2 3

1 2 3 4 1

() + =

= + +() → =

= + +() →

 ++ +() =

= + + +() → + →





=

= + +() →

x x

x x x x x x x

x x x

2 3

1 2 3 4 1 2 3

1 2 3

 xx x x x

x x x x x x x

4 1 2 3

1 2 3 4 1 2 3

() → → →





=

= + →() →() → → →





=

 = → →() →



 → → →





x x x x x x x1 2 3 4 1 2 3 .

The minimal redefined function si in the implicative ba-
sis (Table 14):

s x x x x x x xi = → →() →



 → → →()1 2 3 4 1 2 3 . 	 (56)

Mathematics and cybernetics – applied aspects

45

The x4 (pi) variable for implicative function (56) is ficti-
tious because the Boolean derivative of the redefined func-
tion si for the x4 variable is zero.

The minimal redefined function si in the Boolean basis
takes the following form:

s x x x x x x xi = + +() +1 2 3 4 1 2 3.

Computing the Boolean derivative from the function si
for the variable x4 takes the following form:

∂
∂

= + +() +()⊕

⊕ + +() +() =

= + +

s
x

x x x x x x

x x x x x x

x x x

i

4
1 2 3 1 2 3

1 2 3 1 2 3

1 2

1

0

33 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3 1 2

0

1

() +()⊕

⊕ + +() +() =

= ⊕ + + +

x x x

x x x x x x

x x x x x x x x xx

x x x x x x

x x x x x x x x x x x x

3

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2

() =

= ⊕ + +() =

= ⋅ + +() + ⋅ + + 33

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1

() =

= ⋅ + + +()⋅ + +() =

= + +()⋅ +

x x x x x x x x x x x x

x x x x x22 3 0+() =x .

Since the x4 variable of the redefined function si is fic-
titious, the implementation of the function si will take the
following form:

a i
s i

b i &
1

p i&

&

&

1

1

1p i -1

Fig. 3. 1-bit adder of binary codes

The pi function in the implicative basis takes the follow-
ing form:

p a b a b p a b a b p

a b a b p

i i i i i i i i i i i

i i i i i

= + +() = → +()() =

= +() → +()
− −

−

1 1

11

1

1

() =

= →() → +()() =

= →() → +() +



 =

= →

−

−

a b a b p

a b a b p

a

i i i i i

i i i i i

i bb a b p

a b a b p

i i i i

i i i i i

() → +() →() =

= →() → →() →()
−

−

1

1 .

The S and COUT functions of the 1-bit adder in the impli-
cative basis [7] take the following form:

S a b a b c a b c= →() → →() →()



 → ⊕() →



 ; 	 (57)

C a b a b cout = →() → →() →













 . 	 (58)

The equation of sum si (56), compared to equation (57),
contains one literal less.

Example 6. It is required, by using the equivalent trans-
formations for the Boolean function in the implicative basis
f x x x x x x= →() → →()1 2 2 3 1 3 , to find a minimum DNF [21].

Solution:

f x x x x x x

x x x x x x

x x x x

= →() → →() =

= +() → +() =

= +() + +(

1 2 2 3 1 3

1 2 2 3 1 3

1 2 2 3)) +() = + + + =

= + + +() + +() =

=

x x x x x x x x

x x x x x x x x x x

1 3 1 2 2 3 1 3

1 2 1 3 2 1 1 3 1 1

xx x x x

x x x

x x x x

x x x

x x x x

x x x

1 2 1 2

1 2 2

1 3 1 3

1 3 3

1 2 1 3

1 2

+ + + + + =

= + ++() +() + 11 3

1 1 2 3 1 1 1 2 3 1 2 3

x

x x x x x x x x x x x x

=

= + +() = +() + +() = + + .

A search for the minimal DNF [21] using figurative trans-
formations takes the following form:

f x x x x x x

x x x x x x

x x x x

= →() → →() =

= +() → +() =

= +() + +(

1 2 2 3 1 3

1 2 2 3 1 3

1 2 2 3)) +() = + + + =

= = = = + +

x x x x x x x x

x x x

1 3 1 2 2 3 1 3

1 2 3

0 1

0

0

0 1

0

0

0

0

0

0

0

.

The result of the simplification from the two methods is
the same but the method of figurative transformations is easier.

8. Discussion of results of minimizing the functions
of the implicative basis by a method of figurative

transformations

The mathematical apparatus of figurative transformations
is considered in works [3, 18, 19, 22], and others. Here we
describe a verbal and figurative representation of informa-
tion, the protocols of figurative transformations, new logical
operations, an attribute of the minimal logical function, the
advantages of minimizing Boolean functions on the full truth
table, controlling properties of the method, the algorithm of
an analytical method and its automation, the extension of the
method of figurative transformations to cover logical bases.
The hermeneutics of logical operations over binary structures
provides the didactic simplification of Boolean functions, in-
cluding for a class of perfect implicative normal forms.

The devised algebra, as part of the rules for simplifying
implicative functions with an illustration of figurative trans-
formations of logical procedures, makes it possible to imple-
ment a method of figurative transformations to minimize
Boolean functions to the implicative basis.

Thus, the method becomes an alternative to the techno
logy of designing computational components based on the
implicative functions since, without the algebra, the simpli-
fication of logical functions in the implicative basis remains
a function optimization in the Boolean basis. It is only after
this minimization of the logical functions that it becomes
possible for special algorithms to replace the elements of the
main basis {AND, OR, NOT} with the elements of the impli-
cative basis {→, NOT}, or {→, 0}. However, this approach is

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 6/4 (108) 2020

46

characterized by verbal procedures that may fail to detect
logical operations and thus reduce the possibilities of the
analytical method. The equivalent transformations involving
combinatorial images have in their properties a greater infor-
mation capacity, and, therefore, are able to effectively replace
the verbal procedures of algebraic transformations.

The object of solving the task of Boolean functions sim-
plification in the implicative basis by the method of figura-
tive transformations is the binary structures with repetition,
which are the truth tables of the assigned functions. That
makes it possible to do without auxiliary objects, such as
Carnot maps, Mahony maps, Weich charts, acyclic graph,
non-directed graph, covering tables, cubes, etc.

When simplifying logical formulae, it is not always ob-
vious which laws in the algebra of logic should be applied in
one step or another. Visual combinatoric structures of binary
matrices and the unification of original procedures to some
extent make it possible to resolve this issue.

A special feature of the considered method to simpli-
fy logical expressions in PINF-1, PINF-1.1, PINF-2, and
PINF-2.1 is the use of analogs of the perfect forms of the
DNF and CNF representation of Boolean functions. The
specified forms of Boolean functions determine the rules of
transformation on binary structures of the functions of the
implicative basis.

The visual structure of figurative transformations makes it
possible to manually simplify the functions of the implicative
basis (using a mathematical editor, such as Math Type v. 7.0)
approximately within ten input variables.

The use of the method of figurative transformations to
minimize the functions of the implicative basis brings the
task to simplify PINF-1, PINF-1.1, PINF-2, and PINF-2.1
to the level of a well-researched task in the class of the dis-
junctive and conjunctive normal forms (DCNF) of Boolean
functions, as well as in the class of the perfect normal forms of
functions in Schaeffer algebra (PNFS-1 and PNFS-2).

The algebra created to transform functions in the impli-
cative basis is represented by the following logical opera-
tions (Table 15).

The limitations of applying the figurative transformation
method are those cases where the switch function is repre-
sented in a mixed basis. In this scenario, the function must be
represented with one logical basis.

The weakness of the considered method is the limited
practical application of equivalent figurative transformations
for the process of minimizing the functions of the implicative
basis, followed by the manufacture of appropriate computa-
tional components. The negative internal factors of the me
thod are associated with additional time costs for establishing
protocols for simplifying the functions of the implicative ba-
sis, followed by the creation of a library of rules for the algebra
of logic that have an illustration of the corresponding figu-
rative transformations. The prospect of further research may
be, for example, the use of the method to minimize Boolean
functions in the mixed basis class.

9.  Conclusions

1. It has been established that simplification of the
Boolean functions of the implicative basis using a figurative
transformation method is based on a principal diagram with
repetition, which is the truth table of the assigned function.
This makes it possible to focus the principle of simplification
within a truth table of the function and thus do without
auxiliary objects such as covering tables, Carnot maps, Weich
charts, acyclic graph, cubic representation, etc.

A perfect normal form of the n-place implicative basis
function can be represented by binary sets (19) or matrix (20),
which, in this case, would represent the terms of implica-
tion function and a conjunction operation over them. Such
hermeneutics should be used effectively in the simplification
of logical functions and when deriving the result of logical
operations in the class of binary matrices of the functions of
the implicative basis.

2. To properly simplify the functions of the implicative
basis by a method of figurative transformations, we have
devised the algebra of the implicative basis regarding the
rules to simplify PINF-1, PINF-1.1, PINF-2, and PINF-2.1
of the Boolean functions of the implicative basis. Creating
an algebra of the implicative basis solves the task of function
minimization in the implicative basis.

3. The equivalent transformations involving combinato-
rial images, which, by their properties, have a greater infor-
mation capacity, can effectively replace the verbal procedures
of algebraic transformations.

The algebra born as part of the rules
for simplifying the functions of the impli-
cative basis provides for the direct trans-
formation of logical expressions. And the
method of figurative transformations, by
using the visual combinator structures
of binary matrices and the unification
of original procedures, ensures proper
transformation of logical expressions and
functions. In turn, verbal procedures have
a smaller information capacity, require ac-
tive monitoring, which creates a beginning
for not detecting the logical operations (for
example, generalized gluing of variables,
super-gluing of variables, incomplete su-
per-gluing of variables, semi-gluing of va
riables), and, therefore, reduce the possi-
bilities of the analytical method.

Memristors are most effective when us-
ing logic based on an implication operation.
Parallel connection of two memristors

Table 15

Logical operations in the implicative basis

No. of
entry

Logical operation designation
Reference number

in the text
Representation

form

1 Gluing the variables (21), (23), (25), (46) PINF-1

2 Super-gluing the variables (27) PINF-1

3 Incomplete super-gluing the variables (29), (31) PINF-1

4 Generalized gluing the variables (33), (35) PINF-1

5 Absorption of variables (36), (38), (39), (40) PINF-1

6 Semi-gluing the variables (41) PINF-1

7 Rule without a name (43) PINF-1

8 Gluing the variables (47) PINF-1.1

9 Gluing the variables (49), (53) PINF-2

10 Super-gluing the variables (51) PINF-2

11 Gluing the variables (54) PINF-2.1

Mathematics and cybernetics – applied aspects

47

realizes the function of material implication. Together with the
universal elements AND-NOT and OR-NOT, the implication
function and the constant zero function form a functionally
complete basis. Thus, by applying it, one can perform all
16 switch functions of two variables. The algebra created as
part of the rules for simplifying implicative functions with the
illustrations of figurative transformations of logical procedures

makes it possible to expand the application of a functionally
complete implicative basis in the fields of computing where the
said basis is not currently used to the fullest extent.

By using the structure of a crossbar with memristors, one
can execute an implication operation, and, based on it, other
logical operations. Anything that can be computed on silicon
can be implemented with the help of memristors.

References

1.	 Bulkin, V. (2014). Modelling of the relation of implication with use of the directed relational networks. Eastern-European Journal

of Enterprise Technologies, 6 (4 (72)), 30–37. doi: https://doi.org/10.15587/1729-4061.2014.30567

2.	 Dychka, I. A., Tarasenko, V. P., Onai, M. V. (2019). Osnovy prykladnoi teoriyi tsyfrovykh avtomativ. Kyiv: KPI im. Ihoria Sikorsko-

ho, 508. Available at: https://core.ac.uk/download/pdf/323531874.pdf

3.	 Riznyk, V., Solomko, M., Tadeyev, P., Nazaruk, V., Zubyk, L., Voloshyn, V. (2020). The algorithm for minimizing Boolean functions

using a method of the optimal combination of the sequence of figurative transformations. Eastern-European Journal of Enterprise

Technologies, 3 (4 (105)), 43–60. doi: https://doi.org/10.15587/1729-4061.2020.206308

4.	 Kvatinsky, S., Satat, G., Wald, N., Friedman, E. G., Kolodny, A., Weiser, U. C. (2014). Memristor-Based Material Implication (IMPLY)

Logic: Design Principles and Methodologies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22 (10), 2054–2066.

doi: https://doi.org/10.1109/tvlsi.2013.2282132

5.	 Shirinzadeh, S., Datta, K., Drechsler, R. (2018). Logic Design Using Memristors: An Emerging Technology. 2018 IEEE 48th Inter-

national Symposium on Multiple-Valued Logic (ISMVL). doi: https://doi.org/10.1109/ismvl.2018.00029

6.	 Teodorovic, P., Vukobratovic, B., Struharik, R., Dautovic, S., Nauka, F. tehnickih, Sad, N. (2012). Sequence generator for computing

arbitrary n-input Boolean function using two memristors. 2012 20th Telecommunications Forum (TELFOR). doi: https://doi.org/

10.1109/telfor.2012.6419391

7.	 Rohani, S. G., TaheriNejad, N. (2017). An improved algorithm for IMPLY logic based memristive Full-adder. 2017 IEEE 30th Cana

dian Conference on Electrical and Computer Engineering (CCECE). doi: https://doi.org/10.1109/ccece.2017.7946813

8.	 Wang, X., Han, J., Yang, Y., Li, Y. (2019). An Improved Mapping and Optimization Method for Implication-based Memristive Circuits Us-

ing And-Inverter Graph. Journal of Physics: Conference Series, 1237, 032026. doi: https://doi.org/10.1088/1742-6596/1237/3/032026

9.	 Teimoory, M., Amirsoleimani, A., Shamsi, J., Ahmadi, A., Alirezaee, S., Ahmadi, M. (2014). Optimized implementation of memristor-based

full adder by material implication logic. 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS).

doi: https://doi.org/10.1109/icecs.2014.7050047

10.	 Borghetti, J., Snider, G. S., Kuekes, P. J., Yang, J. J., Stewart, D. R., Williams, R. S. (2010). «Memristive» switches enable «stateful»

logic operations via material implication. Nature, 464 (7290), 873–876. doi: https://doi.org/10.1038/nature08940

11.	 Lehtonen, E., Laiho, M. (2009). Stateful implication logic with memristors. 2009 IEEE/ACM International Symposium on Nano

scale Architectures. doi: https://doi.org/10.1109/nanoarch.2009.5226356

12.	 Raghuvanshi, A., Perkowski, M. (2014). Logic synthesis and a generalized notation for memristor-realized material implication gates.

2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). doi: https://doi.org/10.1109/iccad.2014.7001393

13.	 Lehtonen, E., Poikonen, J. H., Laiho, M. (2010). Two memristors suffice to compute all Boolean functions. Electronics Letters,

46 (3), 230. doi: https://doi.org/10.1049/el.2010.3407

14.	 Chua, L. (1971). Memristor-The missing circuit element. IEEE Transactions on Circuit Theory, 18 (5), 507–519. doi: https://doi.

org/10.1109/tct.1971.1083337

15.	 Krivulya, G., Syrevich, E., Vlasov, I., Pavlov, O. (2013). Osobennosti primeneniya nanomemristornoy logiki dlya proektirovaniya tsif

rovyh sistem. Visnyk Khersonskoho natsionalnoho tekhnichnoho universytetu, 1 (46), 280–286. Available at: http://nbuv.gov.ua/

UJRN/Vkhdtu_2013_1_54

16.	 Eliseev, N. (2010). Memristors and Crossbars: Nanotechnologies for Processors. Electronics: Science, Technology, Business, 8,

84–89. Available at: https://www.electronics.ru/files/article_pdf/0/article_149_323.pdf

17.	 Pospelov, D. A. (1974). Logicheskie metody analiza i sinteza shem. Moscow: Energiya, 368. Available at: http://urss.ru/cgi-bin/

db.pl?lang=Ru&blang=ru&page=Book&id=25326

18.	 Riznyk, V., Solomko, M. (2018). Minimization of conjunctive normal forms of boolean functions by combinatorial method. Technol-

ogy Audit and Production Reserves, 5 (2 (43)), 42–55. doi: https://doi.org/10.15587/2312-8372.2018.146312

19.	 Riznyk, V., Solomko, M. (2017). Application of super-sticking algebraic operation of variables for Boolean functions minimiza-

tion by combinatorial method. Technology Audit and Production Reserves, 6 (2 (38)), 60–76. doi: https://doi.org/10.15587/

2312-8372.2017.118336

20.	 Nikishechkin, A. P. (2019). Diskretnaya matematika i diskretnye sistemy upravleniya. Moscow: Yurayt, 298. Available at: https://

urait.ru/book/diskretnaya-matematika-i-diskretnye-sistemy-upravleniya-442305

21.	 Primery resheniy: minimizatsiya DNF. Available at: https://www.matburo.ru/ex_dm.php?p1=bfmin

22.	 Riznyk, V., Solomko, M. (2018). Research of 5-bit boolean functions minimization protocols by combinatorial method. Technology

Audit and Production Reserves, 4 (2 (42)), 41–52. doi: https://doi.org/10.15587/2312-8372.2018.140351

