них інструментів.

р-

щильний спектр частот

-

D

У статті розглянуті питання моделювання, чисельного розрахунку динамічних процесів та оптимізації модульних високо-

частотних структурно-зв'язаних систем (ВЧ СЗС) з урахуванням реального характеру навантаження в умовах кратного

та щильного спектру власних частот конструкції на прикладі ульразвукових медич-

Ключові слова: структурно-зв'язана

В статье рассмотрены вопросы математического моделирования, численного расчета динамических процессов и оптимизации модульных высокочастотных структур-

но-связанных систем (ВЧ ССС) с учетом

реального характера нагружения в условиях

кратного и плотного спектра собственных частот конструкции на примере ультразву-

система, вынужденные колебания, крат-

Ключевые слова: структурно-связанная

The questions of modeling, numerical calcul-

ations of dynamic processes and optimization of

modular high-frequency structure constrained systems (HF SCS) with real character of loadi-

ng at the conditions of multiple and closed spe-

ctrum of structure Eigen-frequencies are considered at the paper on the ultrasonic medical

Key words: structure constrained system, forced vibration, multiple and closed spectrum

ковых медицинских инструментов.

ный и плотный спектр частот

instruments example.

of frequencies

система, змушені коливання, кратний та

УДК 539.3

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ ВЫСОКОЧАСТОТНЫХ СТРУКТУРНО СВЯЗАННЫХ СИСТЕМ

С.Н. Исаков

Кандидат технических наук, старший научный сотрудник Кафедра сопротивления материалов*

> А.С. Исаков Студент* Кафедра динамики и прочности машин*

> > С.И. Марусенко

Научный сотрудник Кафедра сопротивления материалов* *Национальный технический университет «Харьковский политехнический институт» ул. Фрунзе, 21, г. Харьков, Украина, 61002 Контактный тел.: 8 (057) 707-65-60

1. Высокочастотная структурно-связанная система

Одними из характерных представителей высокочастотных структурно-связанных систем являются ультразвуковые инструменты (УЗИ), нашедшие свое применение в различных областях науки, производства и медицины. УЗИ, обычно, представляют собой сложную пространственно-криволинейную или объемную конструкцию, состоящую из преобразователя 2, системы волноводов 1, 3 и рабочего наконечника 4, рис. 1.

Рис. 1. Схема ВЧ ССС

2. Разрешающие уравнения

Уравнения движения УЗИ могут быть записаны в стандартной форме [1]

$$\vec{C}\vec{v} + \vec{M}\frac{\partial^2\vec{v}}{\partial t^2} + \vec{R}(\vec{v}) = \vec{f}, \qquad (1)$$

где \vec{v} - обобщенный вектор перемещений, \vec{C} – оператор упругих сил, \vec{M} - инерционный оператор, \vec{R} – оператор диссипативных сил и \vec{f} – вектор внешних нагрузок. Конкретный вид операторов определяется используемой математической моделью системы и может быть получен на основе общих вариационных принципов, а оператор диссипативных сил - на базе выбранной модели внутреннего и внешнего трения. УЗИ работают в режиме резонансного нагружения, при этом генерируемые за счет пьезоэффекта в преобразователе силы определяют вектор «внешней» нагрузки. В настоящей работе основной акцент сделаем на УЗИ плоской криволинейной формы, свободные колебания которых могут быть описаны системой уравнений:

$$\vec{y} \!=\! \left\{ \begin{matrix} u & v & \phi & M_{xy} & Q_x & Q_y \end{matrix} \right\}^{\! \mathrm{T}}\!,$$

 $0 \rho FL^4 0 0 0 0$

где Е – модуль упругости, р - плотность материала, F и I – площадь и момент инерции поперечного сечения, L – криволинейная длина УЗИ, α - угол наклона криволинейной оси и $\xi = s/L$ – относительная криволинейная координата.

Используя стандартные подходы [1] к решению уравнения (1), получим соответствующие выражения для амплитудно-частотной и фазо-частотной характеристик ВЧ ССС:

$$A_{p} = \sqrt{AF_{z_{i}}^{2} + BF_{z_{i}}^{2}} tg \phi_{p} = tg (\frac{BF_{z_{i}}^{2}}{AF_{z_{i}}^{2}}),$$
(3)

где

$$AF_{z_i} = \sum_{i=1}^{n_{\omega}} \frac{z_i Du_i (\omega_i^2 - \omega^2)}{(\omega_i^2 - \omega^2) + \frac{\Delta W_n^2}{m_i}}$$
(4)

$$BF_{z_i} = -\sum_{i=1}^{n_{\omega}} \frac{z_i Du_i \Delta W_n}{(\omega_i^2 - \omega^2) + \frac{\Delta W_n^2}{m_i}}$$
(5)

$$m_{i} = \int_{S} \rho (M \phi_{i} + F (u_{i}^{2} + v_{i}^{2})) dS$$
 (6)

$$\Delta W_n = \sum_{i=1}^{n_m} \frac{\Delta W_i}{\pi m_i}, \qquad (7)$$

а n_{ω} - число собственных форм в разложении, ω_i - i-ая собственная частота, ω - частота возбуждения генератора, z=(u,v,a= $\sqrt{u^2+v^2}$).

Работа пьезосил на реальных перемещениях вычисляется как

$$Du_{i} = \frac{\Delta u_{i} D_{p} F_{p} U_{p}}{S_{e} H_{p}}, \qquad (8)$$

где

 Δu_i - разность перемещений на торцах пьезоелементов в направлении поляризации, D_p - пьезомодуль, F_p - площадь сечения пьезоэлемента, U_p - напряжение на электродах пьезоэлементов, S_e - коэффициент упругой податливости пьезокерамики, H_p - толщина пьезоэлемента а

$$\Delta W_{i} = \pi \int_{S} \Delta \bar{W}(S) dS, \qquad (9)$$

где объемная плотность потерь энергии в материале конструкции определяется в соответствии с представлением Давиденкова [2]

$$\Delta \bar{W} = k \epsilon_i^2, \qquad (10)$$

Где $\epsilon_{\rm i}$ - интенсивность деформаций, а коэффициент k достаточно точно определяется экспериментально.

Для некоторых УЗИ большой интерес представляет и форма кривой, которую описывает рабочий торец наконечника и которая в параметрической форме может быть представлена уравнениями

$$A_{x}(\psi) = A_{u}\sin(\psi + \psi_{u})$$
(11)

$$A_v(\psi) = A_v \sin(\psi + \psi_v)$$

 $\psi = 0 \div 2\pi$

где

$$A_{u} = \sqrt{AF_{u}^{2} + BF_{u}^{2}}$$

$$A_{v} = \sqrt{AF_{v}^{2} + BF_{v}^{2}}$$

$$\psi_{u} = \operatorname{arctg}(\frac{BF_{u}}{AF_{u}})$$

$$\psi_{v} = \operatorname{arctg}(\frac{BF_{v}}{AF_{v}})$$
(12)

3. Сравнительные тестовые расчеты

Для определения достоверности используемых математических моделей были проведены тестовые расчеты УЗИ, представленного на рис. 2, пассивная часть которого изготовлена из титанового сплава ВТ-31, а активная – из пьезокерамических элементов ЦТССт-3.

Основные характеристики материалов приведены в таблице 1.

Рис. 2. Схема УЗИ для тестового расчета

Таблица №1

		-
Характеристики материала	BT-31	ЦТССт-3*
Плотность, кг/м ³	$4,45\ 10^3$	$6,24\ 10^3$
Модуль упругости, H/м ²	1,04 1011	$8,75 \ 10^{10}$
Коэффициент упругой податливости, м ² /Н		1,1 10 ⁻¹¹
Пьезомодуль , Кл/Н		74 10-12

*- параметры даны в направлении поляризации 3-3

Расчет резонансной частоты УЗИ проводился двумя методами – с использованием модели (2) и оригинального специализированного программного обеспечения, а также методом конечных элементов с использованием специализированных изопараметрических 20-ти узловых конечных элементов в системе ANSYS. Полученные значения частот 22,63 кГц и 22,58 кГц отличаются на 0,22 %, что позволяет говорить о достаточной степени точности применяемых математических моделей и программного обеспечения.

Рабочая резонансная форма колебаний представлена на рис. 3.

Рис. 3. Резонансная форма колебаний УЗИ

4. Результаты

В результате расчета ультразвукового нейрохирургического аспиратора рис. 4, предназначенного для разрушения и удаления патологических тканей, опухолей при оперативных вмешательствах в области головного мозга, спинного мозга и периферических нервов, АЧХ представлена на рис. 5.

В аспираторе используются пьезокерамические элементы из ЦТССт-3, а пассивная часть изготовлена из титанового сплава ВТ3-1. Расчет АЧХ инструмента производился для одной собственной формы, соответствующей частоте 22,63 кГц, поскольку система является высокодобротной и влияние остальных собственных форм незначительно (постулат Видлера [1]). АЧХ представлена на рис. 5.

Рис. 4. УЗ нейрохирургический аспиратор

Для криволинейных инструментов характерен достаточно плотный (иногда, даже кратный) спектр собственных частот [3], когда в зоне автоподстройки генератора находится несколько собственных форм колебаний, по которым и происходит разложение формы вынужденных колебаний в расчетах. Так для УЗ стоматологического инструмента, предназначенного для удаления зубного камня и отложений на зубах, а также для снятия коронок и мостов, представленного на рис. 6, в зоне АПЧ находятся три формы колебаний с частотами 30 кГц, 30,4 кГц и 32,35 кГц.

АЧХ при разложении формы вынужденных колебаний инструмента по двум и трем собственным частотам представлены на рис. 7 и рис. 8, соответственно, а формы кривых, которые описывает рабочий торец насадки, на рис. 9 и рис. 10.

Рис. 6. УЗ стоматологический инструмент

Рис. 7. АЧХ стоматологического УЗИ при 2-х собственных формах в разложении

Рис. 8. АЧХ стоматологического УЗИ при 3-х собственных формах в разложении

Рис. 9. Траектория рабочего торца стоматологического УЗИ при 2-х собственных формах в разложении

Рис. 10. Траектория рабочего торца стоматологического УЗИ при 3-х собственных формах в разложении

В дальнейшем разработанная модель УЗИ будет использоваться при оптимальном проектировании таких конструкций, при этом в качестве обобщенных функционалов качества могут выступать функционалы (3) и (11).

Литература

- Богомолов С.И., Симсон Э.А. Оптимизация механических систем в резонансных режимах. - Харьков : Вища школа, 1983. - 152 с.
- Писаренко, Г.С. Колебания механических систем с учетом несовершенной упругости материалов. Наукова думка, 1979, 379 с.
- Isakov S., Kedrovskaya O. Designing of ultrasonic waveguides in conditions of spatial oscillations, MicroCAD'99 " Information technologies: Science, Technique, Technology, Education, Health ", issue 7, part 1, 1999. p.293-299.