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1. Introduction 

The object of this study is a girder in the hull of a vessel 
(Fig. 1) with the breaking of the wall and free flange or with 
the breaking of the axis.

This girder is attached by the bottom edge to the floor-
ing, and a loose flange is attached to the broken edge to en-
hance the axial moment of resistance. This leads to increased 
strength and stiffness when bending, provides stability when 
squeezing axial forces are applied, and under a flat bending 
shape. This girder/node is the object to study its stressed-
strained state (SSS) in order to create, if possible, simple 
engineering procedures to design it at a relatively wide vari-
ation of geometric parameters at elastic and elastic-plastic 
deformation. This girder can work under conditions of both 
elastic and elastic-plastic deformation. In the latter case, the 
bearing capacity of the girder increases and it can perceive 
much greater external loads.

Currently, there are no systematic techniques or depen-
dences for calculating strength in general for the examined 
girder (Fig. 1) in official standards and marine/annual regis-
ters, except for some cases that are narrowly targeted.

At the design stage of ship structures, it is impossible to 
quickly assess the strength of girders with the breaking of 
the axis, as well as similar structures. Therefore, it is often 

necessary to employ software packages in which the SSS 
of such girders is examined using shell or volumetric finite 
elements (FE).
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This paper reports the dependences that have been derived 
to determine the effective width of a free flange in a dangerous 
cross-section of the wide-flange hull girder with the breaking of the 
wall/edges/axis at elastic-plastic deformation depending on the 
applied load for a perfectly plastic material without strengthen-
ing. Currently, there are no systematic dependences to determine 
the effective width of the free flange of girders of this type, except 
for certain cases. The technique is suitable for use for both purely 
elastic and elastic-plastic deformation. To calculate the stressed-
strained state (SSS), a finite-element method (FEM) was used to 
solve the three-dimensional problem from the elasticity and plas-
ticity theory. It has been shown that the node is exposed to simple 
loading. The reported results were derived within the framework 
of the deformation theory of plasticity. The largest ratio of exter-
nal load to the boundary of fluidity is 0.9. The estimation scheme 
takes into consideration the most unfavorable working condi-
tions of the examined node when the safest data are acquired. The 
dependences were built for the theoretical coefficient of concentra-
tion in a dangerous cross-section, which is used in the proposed 
procedure to determine the moment of transition from the elas-
tic stage of deformation to elastic-plastic. When determining the 
effective width, the complex work of the flange and its deplanation 
was taken into consideration by defining the SSS components in the 
median plane. The feasibility of the idea of designing the SSS com-
ponents on the inclined plane of a free flange has been proven. In 
this case, there is practically a (quasi) flat stressed state, suitable 
for the application of classical methods to determine the effective 
width. The proposed technique simplifies the calculations of the 
strength of the examined girder
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Fig. 1. General view of the examined girder with the breaking 
of the axis: I – free flange; II – broken edge of the wall; 	

III – wall; IV – plating
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In particular, for girders with the breaking of the wall/edg-
es/axis, similar to the one shown in Fig. 1, there are no regular 
dependences to determine the effective width of the free flange, 
which could calculate its strength within a simple beam theory. 
Establishing such dependences would help save considerable 
time and computing resources.

2. Literature review and problem statement

Studies [1, 2] describe the techniques for determining the 
effective width of the free flange in a dangerous cross-section 
under elastic deformation for the girder in Fig. 1. The pro-
cedures were derived on the basis of the FEM numerical 
analysis. The empirical dependences of effective width yield 
a deviation of ±12 % relative to the calculated data. How-
ever, the estimation scheme adopted in the cited studies is 
the most conservative, which, under other milder loading 
conditions, could cause an increase in metal consumption; 
and it does not fully implement the bearing capacity of the 
structure.

Work [3] gives simple dependences to determine the ef-
fective width of the attached plating belt for the main links 
of ship structures with two-sided cladding (such as a double 
bottom, double board) at the boundary and elastic-plastic 
deformation. It is shown that under the elastic-plastic de-
formation, the value of effective width is greater than that 
under the elastic deformation, and increases with increasing 
load; ultimately, it equals an actual width under a boundary 
load. However, at the same time, the explored flanges are not 
free, as in a given case, but are part of the plating, which, for 
the case that is considered, is unacceptable.

A new method for determining the elastic-plastic effec-
tive width, based on the method of plastic lines (a kind of 
plasticity theory), is proposed in [4]. The method was devel-
oped for prismatic girders based on simplified assumptions, 
so it cannot be used for the girder on Fig. 1 in the fracture 
locations and on the sloping part. This relates to that a 
complex SSS occurs there. Also, the authors of [4] noted 
that currently the consideration of plasticity in determining 
the effective width implies adjusting elastic solutions with 
empirical coefficients. Although this approach produces 
satisfactory results but, for responsible structures, similar 
to the girder in Fig. 1 as part of the ship hull, may prove 
unacceptable.

The nonlinear shear latency by a least-square method 
using variable parameters of materials’ characteristics is re-
ported in [5]. However, the adopted law for the distribution 
of normal stresses along the transverse cross-section was ob-
tained for prismatic girders. It is unclear if this law could be 
applied to the inclined part of the studied girder and in the 
places of flange breaking. This issue requires independent 
research. The authors of [5] noted the limitations of studies 
in general into the nonlinear shear latency and, consequent-
ly, the nonlinear (elastic-plastic) effective width.

The overview and comparison of normative documents 
addressing the calculation of the elastic and elastic-plastic 
effective width are given in [6], in order to find techniques 
for the studied girder in Fig. 1. Non-prismatic girders and 
girders with axis breaking are not discussed in [6].

Based on the results of FEM calculations, the authors 
of [7] derived simplified formulae to determine the effective 
width for the T-shaped prismatic girder. These results could 
hardly be applied to the prismatic sections of the studied 

girder from Fig. 1 because of the effect of a plating. The ex-
amined girder refers to an I-shaped (or H-shaped) beam with 
asymmetrical flanges. The recommendations given in [7] 
cannot be used for the inclined part of the girder flange in 
Fig. 1 and for the places of its breaking because they were 
derived for a prismatic girder.

The elastic-plastic deformation of a steel girder with an 
H-shaped cross-section is discussed in [8], whose authors, in 
addition to the reported study, described a technique for de-
termining the effective width of a flange at the elastic-plastic 
deformation. It is noted that in the compressed area there 
is a deplanation of the flange, so that this problem should 
be solved together with the stability problem. The shape of 
the H-shaped girder explored in [8] is close to the one being 
examined in our paper. However, in [8], both flanges are free 
while the lower flange of the girder in Fig. 1 is not loose; 
it represents part of the plating. Therefore, it is not known 
whether the results reported in [8] could be used for the 
elastic-plastic effective width regarding the free flange of 
the prismatic parts, not to mention the breaking places of the 
free flange and its inclined part.

The authors of [9] report a study of the operation of a 
steel regular overlap at bending by employing the FEM and 
empirical dependences. However, the given formulae of the 
elastic-plastic effective width apply to the plating that holds 
the prismatic longitudinal girders while the free flange of 
these girders was disregarded. 

There are studies into the non-elastic shear latency and, 
correspondingly, effective width that are carried out for 
structures made of reinforced concrete and composite ma-
terials. These studies are also interesting because isotropic 
material, which is accepted for the studied girder in Fig. 1, 
is only a separate case of the orthotropic material involving 
composites.

A shear latency analysis for a composite multi-fibrous ma-
terial in the elastic-plastic stage, taking into consideration 
the strengthening of the material, is reported in [10, 11]. 
However, these works consider the breakdowns/ruptures 
of fibrous elements, which are no longer acceptable for a 
conventional isotropic material of the girder shown in Fig. 1.

Based on the experimental and numerical studies, the au-
thors of [12] derived simplified formulae for the distribution 
of longitudinal deformations and stresses across the width of 
the plate. Using them, a procedure was devised to determine 
the effective width depending on parameters under the effect 
of the boundary bending moment. The proposed distribu-
tions of longitudinal deformations are not suitable for the 
examined girder in places where the free flange is broken and 
on the sloping part where the complex SSS and deplanation 
occur. It is shown that under the elastic-plastic deformation 
the value of effective width increases compared to that at 
elastic deformation.

In general, our review of the scientific literature reveals 
that under the elastic-plastic deformation of plate elements 
there is an increase in the value of effective width depending 
on the applied load. This, in turn, leads to an increase in the 
bearing capacity of the structure, and, as shown in [3], the 
ratio of effective width to actual approaches unity when the 
limit loads are applied. The results reported in the available 
sources do not allow them to be applied to the free flange 
of the sloping part of the studied girder and in places of its 
breaking because of the existence of complex SSS there. The 
works we analyzed do not pay attention to the non-prismatic 
girders and girders with the breaking of the axis/edges/wall.
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Previous studies have shown that the known thin-walled 
theories and shell models do not produce reliable results 
for the sites where a flange breaks and in adjoining areas 
compared to the volumetric model from the elasticity and 
plasticity theory.

The elastic-plastic effective width of the plating flange 
(called the attached belt), to which the straight edge of the 
examined girder is attached, can be satisfactorily deter-
mined by using, for example, works [3] or [9], as well as other 
earlier studies. Moreover, the dependences for calculating 
the elastic effective width of a given flange are well-known 
and are not discussed here.

Thus, the value of effective width under the elastic defor-
mation only is the safest assessment of the effective width; 
however, taking into consideration it alone leads to an under-
estimation of the bearing capacity of the structure in general. 

The problem can be stated as follows. It is required, for 
the girder with the breaking of the axis/edges/wall shown 
in Fig. 1, to devise a simple engineering and system method-
ology for calculating its strength in general. This is needed 
because, except for numerical methods such as FEM, there 
are no other ways to calculate girders of this type (except for 
single cases that are narrowly targeted).

One effective technique to assess the strength of thin-
walled rods is to calculate them within the simple beam 
theory while taking into consideration the effective widths 
of flanges. Therefore, in order to solve the set problem within 
the framework of the proposed approach, it is necessary to 
derive dependences to determine the elastic-plastic effective 
width of the free flange with the breaking of edges; such a 
task has not yet been resolved.

3. The aim and objectives of the study 

The aim of this study is to devise a procedure for calcu-
lating the effective width of the free flange under the elas-
tic-plastic deformation in a dangerous cross-section, taking 
into consideration only the shear latency within the calcula-
tion of strength. This would make it possible to calculate the 
strength of the studied girder with the breaking of the axis 
by using a technical theory of beam bending. In this case, 
geometric characteristics should be calculated taking into 
consideration the effective widths of both the free flange and 
the plating flange (an attached belt of the plating).

To accomplish the aim, the following tasks have been set:
– to substantiate the estimation scheme and procedure 

for conducting research; 
– to determine, for each girder variant, the minimum 

loads under which the plastic deformation begins; 
– to determine, for each girder variant, the elastic-plastic 

reduction coefficient (which is the ratio of effective width to 
actual one) under maximum load;

– to establish, for each girder variant, the dependence of 
the elastic-plastic effective width of the free flange on the 
growing external load.

4. The study materials and methods

For a series of research, we developed software in the 
programming language C++, which employs a finite element 
method (FEM) to solve the volumetric problem from the 
theory of elasticity and plasticity.

The need to develop the software relates to the (rather 
tangible) difficulty in acquiring a large volume of the SSS 
components through existing standard subprograms and 
estimation packages that implement FEM. The SSS compo-
nents should be determined at strictly defined places inside 
the body (along the lines specified by the equation) to be 
subsequently processed according to a certain procedure. 
This should be done for hundreds/thousands of the estimat-
ed node variants with different geometries.

We considered the possibility of using the following 
finite elements representing tetrahedrons: with the linear 
approximation of movements (4 nodes); with the quadratic 
approximation of displacements (10 nodes); with the cubic 
approximation of displacements (20 nodes). The finite-ele-
ment procedure includes creating a grid, subsequent calcu-
lation, and processing the results. We performed numerical 
experiments in advance to form an optimal grid, to investi-
gate the impact of geometric parameters on the node’s SSS, 
to determine the boundaries of their changes. For a series of 
calculations, we selected finite elements with the quadratic 
approximation of movements, treated as the optimal choice 
in terms of “computation speed – minimal use of computer 
resources” while ensuring sufficient accuracy of the SSS 
results.

The object of this study is a free flange of the girder 
from Fig. 1 at breaking sites and on the sloping part, and the 
study’s subject is the effective width of this flange.

5. Results of studying the elastic-plastic effective width of 
the free flange of a ship girder with the breaking of the wall 

5. 1. Substantiation of the estimation scheme and re-
search methodology

Fig. 2 shows the symmetrical part of the estimation 
scheme relative to the xOy plane.

Fig. 2. Estimation scheme of the examined girder with the 
breaking of the wall and flange: I – parallel lines; 	

II – the lines studied
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The end of the prismatic part of a small wall in the (0–
7–12–13–6) region is loaded with uniform pressure p. All 
points are in the plane y=0, that is, in the (0–1–8–7) region, 
they have no vertical movements along the y axis: v=0. All 
points in the end plane are x=f (where f is the distance be-
tween points 0–1), that is, in the (1–8–9–10–11–2) region, 
they do not have axial movements along the x axis: u=0. 
Given the symmetry of the structure, fasteners, and external 
load relative to the plane z=0, only one symmetrical part of 
the girder is considered, so all points in the plane z=0, that is, 
in the (0–1–2–3–4–5–6) region, they move w=0.

Our estimation scheme is justified by several factors. 
The cross-section area of the attached belt of the plating 
(Fig. 1) is almost always larger than the cross-section area 
of the free flange (taking into consideration their effective 
widths). Therefore, the neutral layer is always moved down 
to the plating and we believe that in an extreme case it coin-
cides with the y=0 layer, that is, with the (0–1–8–7) region. 
The examined girder during its operation mostly works 
on bending and stretching-compression so that the upper 
edges of the walls of the prismatic parts that are sufficiently 
distant from the breaking sites are always in the linear SSS. 
The described estimation scheme provides for the safest and 
most reliable results in comparison with other estimation 
schemes.

Fig. 3 shows a simplified auxiliary scheme for further 
explanations.

For further reasoning, it is necessary to explain the idea 
of mapping the SSS components onto the inclined plane of 
the flange. The SSS components were determined on the 
basis of this very idea. It was pointed out in [1, 2] that de-
forming flange blades is complex. At sites of its breaking, and 
in adjacent areas, there are the local bending of the plating. 
Studies have shown that mapping the SSS components onto 
the inclined part of the flange, relative to the tilted x’O’y’, 
made it possible to obtain an almost flat stressed state in the 
median plane of the flange of the inclined part of the girder. 
In this case, the x’ axis is parallel to the flange plane, and the 
z’ axis is parallel to z.

The normal stresses σ′x  relative to the x’O’y’ axes, in this 
case, constitute the main part of the strain tensor. The dis-
tribution σ′x  almost coincides with the distribution of stress 
intensity σi along the width of the flange, even for the angle 
of inclination α to 45–60°.

For the prismatic parts of the girder, mapping the SSS 
components onto the flange planes is not necessary as these 
planes are parallel to the x axis. The normal stresses σx rela-
tive to the xOy axes, in this case, constitute the main part of 

the strain tensor. The distribution σx also almost coincides 
with the distribution σi across the width of the flange. 

The same applies to the linear deformations εx’.
The research methodology involves the following. We 

collected full information on the SSS components along 
the studied lines (Fig. 3) that include lines FB, GC, KD, the 
sloping part lines. Then the reduction coefficients ψ were 
determined, representing the ratio of the effective width bef 
to the actual width b.

The examined lines were in the middle of the flange 
thickness to exclude normal stresses from the local bending 
of the flange plate, as shown in Fig. 2. 

The effective flange width bef is determined by a formula 
known from [13, 14].

= σ η
σ ∫

0

1
d ,

b

ef x
xk

b 				    (1)

where σxk is the normal stresses in the actual flange along the 
line of its connection to the wall; σx is the uneven distribu-
tion of normal stresses along the width of an actual flange; 
b is the width of an actual flange; η is the coordinate in the 
direction perpendicular to the x axis.

The values of σxk, σx should be determined by solving a 
flat problem from the elasticity theory for an actual belt.

As stated above, the reduction coefficient ψ is deter-
mined from the following dependence

ψ = ,efb

b
 					     (2)

where all values were explained above. 
As already mentioned, the distribution of normal stresses 

σx (or σ′x) almost coincides with the distribution of stress in-
tensity according to Mises σi across the width of the flange. 
This makes it possible to replace the value of σx (or σ′x) 
with σi in (1). This approach makes it possible to fully take 
into consideration all the SSS components. Given this, the 
effective width bef under the elastic-plastic deformation was 
determined from the following dependence

= σ η
σ ∫

0

1
,

b

ef i
ik

b d  				    (3)

where σik is the stress intensity (according to Mises) along 
the connection line between an actual flange and a wall; σi 
is the uneven distribution of stress intensity (according to 
Mises) across the width of an actual flange.

This study was made for an isotropic perfectly plastic 
material without strengthening (with a horizontal plane 
of fluidity). Plastic deformation was calculated within the 
framework of the deformation theory of plasticity because 
the studied node is exposed to simple loading. Our analy-
sis of publications also reveals the predominant use of the 
deformation theory of plasticity (and even simpler theories 
that can be considered a subcategory of the deformation 
theory, for example [4]) in similar cases when studying the 
flange elastic-plastic deformation. The stressed state along 
the FB, GC lines does not depend on H/h height ratios and 
stabilizes at H/h≥1.6. Therefore, the ratio of heights for 
all models was adopted equal to 1.6, to have a minimum 
volume of the node and, respectively, a minimum number 
of FEs. The remaining geometric parameters varied within 
the following limits

Fig. 3. Additional information: I – the median surface of the 
flange; II – rounding region; III – the lines studied
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[ ]/ 0.02; 0.08 ,t h Î  [ ]/ 0.2; 0.5 ,b h Î  

[ ]/ 0.1; 0.5 ,r h Î  [ ]α Î ° °10 ; 60 . 		  (4)

It was found out that at l/h>3.5 and L/H>2.5, even for 
sufficiently wide and rather thick free flanges, there is the 
stabilization of the SSS in the middle part of the girder. The 
middle part of the girder includes a sloping part with the 
adjacent areas of prismatic parts. 

A series of calculations employed the method of elastic 
solutions in the iterative statement [15]. Several tests were 
carried out by the method of variable parameters of elastic-
ity [16] and by the method of initial stresses in the additive/
incremental statement [15, 16].

Fig. 4 shows the distribution of stress intensity σi for the 
selected node under the elastic-plastic deformation condi-
tions for different types of FEs where the fluidity boundary 
is σs=235 MPa.

We calculated the studied girder under conditions of 
the elastic-plastic deformation for one variant as follows. 
We determined, for the dangerous point F at the cross-sec-
tion FB (Fig. 2, 3), the concentration factor kF under con-
ditions of the elastic deformation only as the ratio of stress 
intensity (according to Mises) at point F to the value of the 
external load p. Next, we determined the minimum load 
pmin=σs/kF, (where σs is the fluidity limit), at which plastic 
deformation begins across the dangerous cross-section FB. 
The elastic-plastic work of the free flange for each variant 
studied was calculated for three external load values pi, 
which were determined from the following formulae

[ ]

min min

min min

min

min

, if [ ]

[ ], if [ ]

1,2,3,

0,3 0.3; 0.6; 0.9 ,

,

, [ ] 0.9 .

pi

i

pi

s

s
s

F

p k p p
p

p p

i

k i

p p

p
k

+ ⋅ ∆ < σ= 
= σ ≥ σ 

= = = 
∆ = σ − 
σ

= σ = σ 


		  (5)

It should be noted that for some variants of the node (main-
ly for sloping girders), the number of load options pi was less 
than three, owing to the structure of the first equation (5).

The mechanism of the girder flange plastic deformation 
is as follows. With the gradual growth of external load, 
plastic deformation begins in the cross-section/line FB, then 
proceeds to the CG cross-section, and then spreads to the 
inclined part of the flange gradually to the top with a higher 
wall height. Within the framework of the current study, 
we give dependences for reduction coefficient (2) precisely 
for the FB cross-section under the elastic-plastic deforma-
tion because it is dangerous in terms of the emergence of 
plasticity. For the adopted upper value of the external load 
p=0.9σs (Fig. 2), plastic deformation occurs in the region 
of the rounding FBCG and adjacent areas while the sloping 
part is mostly exposed to elastic deformation. In the end, the 
carrying capacity at extreme loads is assessed on the basis of 
a dangerous cross-section, which is the FB cross-section. The 
boundary analysis is not considered.

5. 2. Determining the minimum loads that cause the 
emergence of the elastic-plastic deformation of a free flange

An important parameter in the study of elastic-plastic 
deformation was the concentration factor kF, owing to which 
it is possible to determine the loading at which the plastic 
deformation of the flange begins. 

An empirical dependence for the concentration factor kF 
on the geometric parameters of the node studied at point F 
(Fig. 2, 3), can be represented as follows

( )
( )

( )( )
( )

= α


= = − − 


= + = + + 


= + = − − ×
× + + 
= = = α 

0 1

3
0 1

0 0 1 1

1 0 1 0

1

tanh ;

30tanh 30 ; 50 14;

; 6.4 2,6 4.7;

; 0.59 0.28

7.4 0.15 ;

/ ; / ; / ; ,rad.

F

h h

h h h

h h

h

h h h

k a a

c b c b

b c r c b r b

a b t b a r t

b a

r r h t t h b b h

	 (6)

Dependence (6) determines the concentration factor kF 
with a deviation of ±7 % relative to the data obtained from 
FEM. For example, for parameters r/h=0.3, t/h=0.04, b/h=0.5, 
α=30°, the concentration factor value kF=1.555. 

Fig. 5 shows the selected dependences of the reduction 
coefficient ψ from formula (2) on the applied load for the 
cross-section/line FB. The bottom point of each diagram 
corresponds to the condition when the flange is under the 
elastic deformation conditions, just before the onset of plas-
ticity, for load pmin determined in (5).

The first selected group of parameters in Fig. 5, a includes 
the 1÷4 curves with the following parameters: 1 – r/h=0.1; 
t/h=0.04; b/h=0.5; α=30°; 2 – r/h=0.1; t/h=0.04; b/h=0.2; 
α=30°; 3 – r/h=0.1; t/h=0.04; b/h=0.5; α=20°; 4 – r/h=0.5;  
t/h=0.04; b/h=0.5; α=20°.

The second selected group of parameters in Fig. 5, b 
includes the 5÷7 curves with the following parameters: 5 – 
r/h=0.3; t/h=0.02; b/h=0.5; α=20°; 6 – r/h=0.3; t/h=0.04; 
b/h=0.5; α=20°; 7 – r/h=0.3; t/h=0.02; b/h=0.5; α=45°.

The first selected parameter group makes it possible to 
track the dependence of the reduction coefficient ψ on the 
relative width b/h, the relative radius r/h, and the angle of 
inclination α at a constant flange thickness t. The second 
selected group of parameters makes it possible to track the 

Fig. 4. Distribution of stress intensity σi along flange 
width under the elastic-plastic deformation conditions for 

a node with parameters r/h=0.3, t/h=0.04, b/h=0.5, 
α=30°, under external load p/σs=0.9: I – FEs with the 
cubic approximation of movements; II – FEs with the  

quadratic approximation of movements
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dependence of the reduction coefficient ψ on the relative 
thickness t/h and the angle of inclination α at a constant 
flange width b and the rounding radius r.

5. 3. The elastic-plastic reduction coefficient of flange 
width at maximum load

For the relative load p/σs=0.9, the value of the reduction 
coefficient ψ0.9 depending on the geometric parameters can 
be determined from the following empirical dependence

( )

( )

0,9 0 1

0

0 0

0

1 0

exp ;

  0.1ln 3.17 0.87;

0.25 0.56 0.23;

;

0.48 6.10 1.085;

2.2 0.2 ln 0.28ln 0.77;

;

/ ; / ; / ; , rad.

h

h h

h h

h h

h h h

h h h

a a b

b r t

r t

a b

d r t

t r t

a d

b b h r r h t t h

β

γ

ψ =


= + + 
β = + − 
= α 
= − − 
γ = − + + 
= α


= = = α 

 		  (7)

Formula (7) determines the value of the reduction coef-
ficient ψ0.9 with a relative error not exceeding ±10 % relative 
to the results obtained from FEM for the range of geometric 
parameters (4). 

For the relative load defined within the limits 0.78 / 0.82,sp≤ σ ≤
0.78 / 0.82,sp≤ σ ≤  corresponding to p/σs≈0.8, the value of the re-

duction coefficient ψ0,8 depending on the geometric parameters 
can be determined from the following empirical dependence
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= α 
= + − 
γ = − − − 
= α


= = = α 

  		  (8)

Formula (8) determines the value of the reduction coef-
ficient ψ0.8 with a relative error not exceeding ±8 % relative 
to the results obtained from FEM for the range of geometric 
parameters (4).

Already for the relative load defined within the limits 
0.68 / 0.72,sp≤ σ ≤  corresponding to p/σs≈0.7 only 10 % of 
the calculated variants of the total number would undergo 
the elastic-plastic deformation. These are the nodes with 
a high concentration factor at point F (Fig. 2, 3), having a 
large angle of α, at a low ratio of r/h.

For the relative load p/σs=0.9 over 90 % (93 % in this 
case) of the total number of variants of the node adopted 
for a series of calculations are under the conditions of elas-
tic-plastic deformation. For the range 0.78 / 0.82,sp≤ σ ≤  
corresponding to p/σs≈0.8, only a third (32 % in this case) 
of the node variants operate in an elastic-plastic region. 
Formula (8) should be used as an estimate, despite its high 
accuracy, because it is defined for the relative load range, 
albeit narrow. Before using formulae (7) or (8) for the re-
duction coefficient ψ, make sure that the node is exposed to 
the elastic-plastic deformation. To this end, the following 
condition must be met

≤min ;rel relp p  = = σmin 1/ ; / ,rel rel
F sp k p p 		   (9)

where kF is defined from (6); min
relp  is the minimal relative 

load at which the elastic-plastic deformation of the free 
flange begins in a dangerous cross-section, starting from 
point F; relp  is the relative load equal to 0.9 for (7) and 
≈0.8 for (8).

For example, for the above parameters r/h=0.3, t/h= 
=0.04, b/h=0.5, α=30°, plastic deformation in a dan-
gerous cross-section begins at the relative load min 1/ 1/1.555 0.64,rel

Fp k= = =
min 1/ 1/1.555 0.64,rel

Fp k= = =  which makes it possible to ap-
ply both (7) and (8) based on (9). For the relative load 
prel≈0.8, the reduction coefficient value determined from 
formula (8) is ψ0.8=0.4983. For prel=0.9, the reduction 
coefficient value from (7) is ψ0.9=0.5287. We observe an 
increase in the reduction coefficient with an increase in 
the value of the applied load.

5. 4. The dependence of the elastic-plastic effective 
width of a free flange on a growing external load

To simplify calculations and derive a reliable assessment 
of the reduction coefficient and, accordingly, effective width, 
the curves that approximate the dependence of the reduc-
tion coefficient on relative load (Fig. 5) are replaced with 
straight lines. These straight lines connect the ends of the 
curves, as shown for line 5 in Fig. 5. 

Thus, the resulting effective width is always smaller than 
it actually is, which is a safe assessment.

Fig. 5. The dependence of the reduction coefficient ψ on 
relative load under the conditions of plastic deformation: 

a – dependences for the first selected group of 
parameters; b – dependences for the second selected 

group of parameters

a

b
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To build a linear dependence, one needs to know the 
coordinates of two points. The coordinate of the top point is 
known (prel=0.9; ψ0.9 from (7)).

To determine the coordinate of the bottom point for each 
diagram in Fig. 5, it is necessary to have a dependence of 
the reduction coefficient on geometric parameters under the 
conditions of elastic deformation. Elastic deformation has 
special features, not discussed in the current paper, explain-
ing them is beyond it. This is because under the conditions 
of elastic deformation each layer of a flange parallel to the 
median plane is in the SSS different from the state in the 
adjacent layers, as opposed to elastic-plastic deformation. 
Elastic deformation should be considered for breaking sites 
and a sloping part and construct regression dependences for 
dangerous FB and GC cross-sections and along the sloping 
part. Elastic-plastic deformation affects only the transition 
area from a low wall height to the sloping part FBCG; the FB 
cross-section is more dangerous. With purely elastic defor-
mation, a more dangerous cross-section can be CG.

For a dangerous FB cross-section under conditions of the 
flange elastic deformation only, the reduction coefficient ψe 
can be determined from the following dependence [2]

( )
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
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	 (10)

Dependence (10) determines the ψe coefficient with 
a±12 % accuracy relative to the data calculated from FEM 
for the range of geometric parameters

/ [0.02; 0.1], / [0.1; 0.5],

/ [0.1; 0.5], [3 ; 60 ],

/ [1.6; 2.8],

and / 1.6 if / 5.4.t

t h b h

r h

H h

H h l h

Î Î 
Î α Î ° ° 
Î 
< > 

   		  (11)

For the above parameters, r/h=0.3, t/h=0.04, b/h=0.5, 
α=30°, the reduction coefficient at elastic deformation is 
ψe=0.3381.

Table 1 gives, in a compact form, the calculated values for 
the selected node parameter.

Table 1

Calculated values for the examined node with parameters 
r/h=0.3, t/h=0.04, b/h=0.5, α=30°

No. of 
entry

Concen-
tration 

factor kF

Minimum relative 
loading at which 
the elastic-plas-
tic deformation 

begins, min
relp

Reduction 
coefficient 
at elastic 
deforma-
tion ψe

Reduction coeffi-
cient at elastic-plas-

tic deformation

prel≈0.8, 
ψ0.8

prel=0.9, 
ψ0.9

1 1.555 0.64 0.3381 0.4983 0.5287

To determine the reduction coefficient ψ(prel) at elas-
tic-plastic deformation depending on the applied load 

within the proposed approach, one can use the following 
dependence

( ) ( )( )min 0.9

min

,
0.9

rel rel
erel

erel

p p
p

p

− ψ − ψ
ψ = + ψ

−
 		  (12)

where all the values have been explained above. 
Thus, the procedure of calculating the reduction coeffi-

cient ψ and, accordingly, the effective width bef under condi-
tions of the elastic-plastic deformation of a free flange of the 
studied girder in Fig. 1 in a dangerous cross-section FB can 
be represented as follows:

1) for the selected/predefined geometric parameters of 
the examined node in Fig. 1, determine the concentration 
factor kF from (6); 

2) determine the reduction coefficient at elastic deforma-
tion ψe from (10); 

3) determine the relative loading prel from expression 3 in 
(9) for the applied external load p;

4) determine the minimum relative loading min
relp  from 

expression 2 in (9), at which the elastic-plastic deformation 
begins; 

5) check condition 1 in (9). If condition 1 is met, the 
flange is in a state of elastic-plastic deformation; proceed 
to point 6. If condition 1 in (9) is not met, the flange is in a 
state of elastic deformation only; in this case, the reduction 
coefficient is ψ=ψe calculated in point 2; the effective width 
bef is found from (2); at this stage, one should be stopped;

6) calculate the reduction coefficient ψ0.9 from (7), 
which corresponds to the relative loading prel=0.9 for elas-
tic-plastic deformation; 

7) apply formula (12) to determine the reduction coeffi-
cient ψ(prel) under the conditions of elastic-plastic deforma-
tion depending on the applied relative loading prel; apply (2) 
to find the effective width bef.

The above procedure for calculating effective width un-
der the elastic-plastic deformation is represented below in 
Fig. 6 in the form of an algorithm flowchart.

To take into consideration an error in the empirical for-
mulae, the values of the reduction coefficients ψ0.9, (ψ0.8), ψe 
must be multiplied by 0.9 (more precisely, by 0.892 for a 12 % 
deviation in the worst case) for individual calculations and/or 
before using (12).

Fig 6. Flowchart of the algorithm for determining the 
reduction coefficient ψ and the effective width bef at elastic-

plastic deformation
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6. Discussion of results of studying the elastic-plastic 
effective width of a free flange

With an increase in effective width, which occurs un-
der a growing external loading, there is an increase in the 
geometric characteristics of the girder, associated with the 
calculation of plasticity. The increase in these characteristics 
leads to an increase in the boundary (dangerous) moment 
that a girder can withstand within the framework of an 
elastic-plastic or boundary analysis. In this case, the actual 
cross-section remains unchanged. That is, we observe an 
increase in the resistance of the girder without changing its 
structure. This makes it possible to better utilize the bearing 
capacity of the studied girder in general, which leads to a 
decrease in its metal consumption without increasing manu-
facturability, which is very relevant for ship structures. The 
reported procedure makes it possible to carry out indepen-
dent calculations of strength, or could be used as an addition 
to the objective functions as constraints for further optimal 
research under the conditions of elastic-plastic deformation 
of the studied girder.

The diagrams in Fig. 5 and dependence (12) demonstrate 
that with the growth of the external loading under the con-
ditions of elastic-plastic deformation, the value of effective 
width only increases. This is because the area under the 
diagram of stress intensity σi, which matches the integral in 
expression (3), increases with increasing load. Accordingly, 
the value of the elastic-plastic effective width, determined 
from formula (3), increases. The growth of the area is because 
the region of plastic deformation of the flange along its width 
increases with increasing load. We explain it as follows. Fig. 4 
shows the diagram σi for the specified parameters; it does 
not matter that for the relative loading p/σs=0.9. The plastic 
region corresponding to the horizontal area of the σi distribu-
tion area is from b/h=0 to b/h≈0.1. When the external loading 
increases, ranging from p/σs=0.9 and above, the plastic flange 
area increases as well while the horizontal region on the di-
agram becomes longer. In this case, the σi diagram becomes 
fuller; the area under the σi diagram is greater, accordingly; 
and the intensity of stresses σik along the connection line 
between an actual flange and the wall, defined in (3), does 
not change. After all, if the external loading p/σs→1.0, the 
reduction coefficient ψ also approaches 1, and the effective 
width bef approaches an actual width b. That is, at p/σs→1.0, 
we obtain ψ→1.0, bef→b. 

To explain the latter statement and further confirm the 
above, it is more convenient to rewrite an expression for the 
reduction coefficient (2) as follows

σ
ψ = =

σ
,ef imid

ik

b

b
 σ = σ η∫

0

1
d ,

b

imid ib
 			   (13)

where σimid is the average value of stress intensity σi; σik is 
the stress intensity (according to Mises) along the connec-
tion line between an actual flange and a wall; the remaining 
values were explained above for formulae (2), (3); expres-
sion (13) was derived using formulae (2), (3).

Thus, if p/σs→1.0, the distribution of σi, in this case, rep-
resents a horizontal line along the entire width of the flange, 
whose equation is σi=σs. In this case, the intensity of stresses 
σik is equal to the average stresses σimid defined by expres-
sion 2 in (13), which both equal the boundaries of fluidity 
σs, that is, σik=σimid=σs. As a conclusion from expression 1 

in (13), the reduction coefficient is equal to unity. These ex-
planations are confirmed by a review of the literature.

The proposed method takes into consideration all com-
ponents of the SSS, due to the use of the intensity of stresses 
σi in (3) instead of only σx in (1), given the almost identical 
distributions of σi and σx. The use of stress intensity makes 
it possible to better track plastic deformation. In the pro-
posed method, side effects caused by complex flange depla-
nation at breaking sites and adjoining areas are discarded. 
Specifically, additional bending stresses are not taken into 
consideration, caused by the local bending of a flange plane, 
because the SSS components, in this case, are determined at 
the median surface of the flange. The proposed method for 
determining effective width, first developed for girders with 
the breaking of edges/axis/wall, could be used immediately 
for the elastic and elastic-plastic deformation.

This study is characterized by general limitations in-
herent in determining effective width. As one knows, the 
effective width depends in a general case on the conditions 
of fastening, the type and kind of loading, geometric pa-
rameters, material, and other factors of the plate element. 
Effective width is a variable value along the length of the 
flange. The elastic-plastic effective width additionally de-
pends on the amount of the external loading at the same type 
and kind of it. There are many other factors that affect the 
effective width, in particular physical, technological, opera-
tional, etc. However, a given method is limited to use only 
for a dangerous cross-section. Moreover, determining the 
effective width is due to taking into consideration only shear 
latency in terms of strength, not including loss of stability. 
The type of external loading and fastening conditions take 
into consideration the most adverse case, which, although it 
leads to safe results, does not fully exhaustively actualize the 
bearing capacity of the girder. The studied girder should be 
only under the conditions of transverse bending.

In the future, it is possible to advance this method for the 
entire inclined part of the studied girder, as the viability of 
the idea of mapping the SSS components onto the inclined 
flange plane has been proven. Softer operational conditions 
and loads can be applied, which could lead to even more 
complete consideration of the bearing capacity of this girder. 
However, in this case, the designer/constructor must guar-
antee certain operating conditions. A very separate study 
is to determine the effective width of the free flange taking 
into consideration the loss of stability. One can take into 
consideration the impact of the weld, the presence of cutouts, 
structural reinforcements, etc. The study of girders with the 
breaking of the axis is accompanied by a lack of analytical 
solutions and intensive use of numerical methods.

7. Conclusions 

1. The most conservative estimation scheme was devel-
oped to investigate SSS that yields the safest results. The 
devised research methodology makes it possible to examine 
each girder variant only from the moment of the emergence 
of plasticity. The idea of mapping the SSS components onto 
the inclined plane of a free flange has fully confirmed its 
right to exist. In this case, there is almost a flat stressed state 
where the distribution of stress intensity almost coincides 
with the distribution of normal stresses determined relative 
to the tilted axes. These normal stresses constitute the main 
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part of the strain tensor. This makes it possible to apply 
well-known procedures to determine the effective width and 
further conduct research for the inclined part of the flange.

2. The minimum relative loading at which plastic defor-
mation begins is defined as an inverse value to the theoret-
ical factor of concentration in a dangerous cross-section. In 
turn, we have built empirical dependences for the theoretical 
concentration factor depending on the geometric parameters 
of the studied node.

3. We have constructed dependences for the reduction co-
efficients used to calculate effective widths, depending on pa-
rameters, for the fixed values of maximum loading of 0.8 and 

0.9 on the fluidity limit. In this case, the dependences of the 
reduction coefficient for a load of 0.9 on the fluidity limit are 
more accurate. Therefore, they are used in further reasoning. 

4. A procedure to calculate the elastic-plastic effective 
width of a free flange has been devised, depending on the 
geometric parameters of the girder and external load for a 
dangerous cross-section. The technique could be used for 
purely elastic deformation. It is shown that the linearization 
of the dependences of the reduction coefficient on the applied 
loading always produces safe results. The procedure has been 
described; the formulae have been given; a flowchart of the al-
gorithm to apply the developed method has been represented.
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