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Newtonian fluid, which is consistent with experimental data 
in experiments involving non-Newtonian fluid (glycerin or 
castor oil) [1, 2]. These contradictions between the theory 
and experiment have no satisfactory explanation.

Similar mathematical models are built and used in the 
theory of elasticity and thermal conductivity [5, 6]. They 
make it possible to calculate physical fields with high quality 
and at minimal experiment engagement. Computer programs 
used in fluid mechanics (Flowvision, Phoenics, etc.) produce 
good results only in a narrow range of changes in influencing 
factors while their solutions are often unstable (approxi-
mate). This flaw requires an experimental check of numer-
ical calculations, increases the cost and timing of advance-
ments [2, 3]. It is believed that one of the causes of these 
problems is the calculation equations themselves (Stokes, 
Reynolds, etc.).

One way to resolve existing issues is to take into consid-
eration an additional influencing factor ‒ the angular speed 
of particle rotation. A given property should play a key role 
in describing the flow process but it is not used in modern 
models [1‒3]. 

Thus, it is a relevant task to search for the new forms of 
Stokes equation and exact solutions to them, derived accord-
ing to the classical scheme in accordance with the provisions 
of general physics.

1. Introduction

Underlying the classic method of constructing mathemati-
cal models in fluid mechanics is the equation of motion in terms 
of stresses (Navier), which is a special case of the law of preserv-
ing the amount of movement [1‒3]. The Navier equation has 
two special cases for viscous liquids such as the Stokes equa-
tion (Navier-Stokes) and the second one derived with fewer 
restrictions in work [4]. Both equations take into consideration 
the influence of mass forces, pressure forces, friction and inertia 
forces but have different expressions for two components ‒ ac-
celerations due to the forces of friction and pressure.

A characteristic feature of the Stokes equation is the lack 
of particle rotation effect while the second equation includes 
this influence [4]. Both equations are the special cases of the 
same equation (Navier), they employ Newton’s rheological 
equation and should have the same functional dependence 
for the same components. 

The noted contradiction requires clarification of the 
reasons for this discrepancy, which could improve the math-
ematical model of the current that is widely used in engi-
neering practice.

The exact solutions to the Stokes equation are consistent 
with experiments only at low Reynolds numbers. There 
is a known Stokes solution for the movement of a ball in a 
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Table	1

Limitations	for	deriving	equations	(1)	and	(2)

No.
Limitation for 

Navier equation
Motion equa-

tion
Name of fluid

1

grad ;uτ = µ ⋅  

2 ;x
xx

u
p p

x
∂

= − + µ
∂

2 ;y
yy

u
p p

y

∂
= − + µ

∂  

2 z
zz

u
p p

z
∂

= − + µ
∂

(1) Stokes (Newtonian)

2 graduτ = µ ⋅ (2) Newtonian 

Important for the analysis of currents is an equation for 
the full derivative from speed in the Gromeka-Lamb form. 
This notation is equivalent to a standard formula but makes 
it possible to determine the effect of linear and angular ve-
locity on the full acceleration of the particle (du/dt).

In a vector form, this equation is recorded as follows:

[ ]
2

2 .
2

du u u
grad u

dt t

 ∂
= + + ⋅ ω × ∂  

 

   (3)

In projections onto the coordinate axes:

( )
2
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du u u
u u

dt t x

 ∂ ∂
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( )
2

2 ,
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x z z x

du u u
u u

dt t y

∂  ∂
= + + ⋅ ω − ω ∂ ∂    

( )
2

2 .
2

z z
y x x y

du u u
u u

dt t z

 ∂ ∂
= + + ⋅ ω − ω ∂ ∂  

The convective part of the full acceleration 
in (3) also follows from the vector analysis formula 
( ) ( )⋅∇ ×
   2grad / 2 .u u = u + rot u u  

Equation (3) must satisfy complete derivatives in all 
motion equations regardless of accounting (non-accounting) 
the viscosity but they are used only in the Euler equation for 
the ideal liquid.

Full acceleration in Navier equations (1) and (2) must 
also satisfy expression for a full derivative in form (3). It 
follows from the formal recording of equation (1) that the 
Laplace operator on speed depends only on one argument (u) 
while the full acceleration ‒ on two arguments (u and ω). 
Thus, from the standpoint point of physics, ∇2u characterizes 
the laminar mode of the flow, and full acceleration ‒turbu-
lent. The lack of a consistent effect of u and ω on both com-
ponents makes it difficult to derive a common solution to the 
Stokes equation.

Paper [8] analyzes the issues related to the Stokes equa-
tion and gives examples of misconceptions (contradictions) 
in theoretical hydrodynamics. It is noted that one of the 
common problems is the description of vortex flows arising 
under the influence of viscosity and inertia forces; a model 
of streamlining a thin horizontal plate was also suggested. 
A given model produces a partial description of the flow and 
uses simplifications that do not make it possible to take into 
consideration the impact of all existing modes.

2. Literature review and problem statement

Within an average model, turbulence emerges when 
particles rotate and speed pulsations occur, otherwise there 
is a laminar mode. This physical model has been known for 
more than 100 years; however, the classical equations of 
motion (Stokes, Reynolds for the average turbulent current, 
equations of the boundary layer, etc.) do not take it into 
consideration, which contradicts the definition of turbulence 
and its key features [1‒3].

Stokes equation is derived in two ways: using the general 
theorems of mathematics and applying the equation of mo-
tion in terms of stresses (Navier).

The largest number of studies report the analysis of the 
first derivation variant in order to obtain accurate and nu-
merical solutions to various problems. This method of anal-
ysis is used in work [7]. Underlying numerical solutions is 
the Stokes equation for an incompressible liquid. It is shown 
that there is a large class of solutions for areas of different 
geometry. The process of solving is accompanied by the use 
of assumptions without clear physical meaning, there is no 
comparison with the experiment. This and other similar 
tasks relate to pure mathematics and prevent the resulting 
solutions from being used in practice.

An analysis of the second derivation technique made it 
possible to obtain two precise solutions for the flow in the 
pipe and on the horizontal plate in the form of common 
integrals. A special case of equation (1) was used to this 
end. These solutions could not be applied to practical tasks 
because their relationship with current modes is unknown. 
Most applications employ the following form of Stokes 
equation:

21
grad ,

du
G p u

dt
− + ν⋅∇ =

ρ
.   (1)

It follows from (1) that the main factor taking into con-
sideration the dynamics of the current is linear speed, which 
affects the components due to the forces of viscous friction 
and inertia. This is not consistent with the position of gener-
al mechanics where three types of movement are considered: 
translational, rotational, and oscillatory.

Paper [4] analyzes another special case of the Navier 
equation, which takes into consideration the angular veloci-
ty of the particle rotation. 

This equation takes the following form:

( )1
div 2 , .

du
G p f u

dt
− + ν⋅ ω =

ρ
   (2)

Both equations are derived under different limitations, 
given in Table 1.

In equation (1), the limitations refer to the tangent and 
normal stresses (τ, pxx, pyy, pzz); in equation (2) ‒ only to tan-
gent ones. Thus, normal stresses (pressure) in equation (2) 
can change arbitrarily while in the Stokes equation ‒ only 
according to the established rules, that is, the limitations are 
stricter. Ratios for the normal stresses (pxx, pyy, pzz) make up 
the content of the linearity hypothesis, which has not been 
proven up to now [1, 2].

Different motion equations should refer to different 
groups of fluids with different names but there are currently 
no recommendations for correct terminology that takes into 
consideration differences in mathematical limitations. 
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Issues with the solution to equation (1) led to the de-
velopment of new models and equations that have a limited 
scope of application. One of these models (Birkhoff-Rott 
equation) is used to analyze the rotation of wind generator 
blades [9]. A characteristic feature of such a process is the 
rotation of flow particles, which is taken into consideration 
in an indirect way. The developed model yields a satisfactory 
result but is difficult for engineering use and is characterized 
by numerous limitations.

For complex processes, the motion equation is used with-
in the system of equations in conjunction with the equations 
of heat exchange and electromagnetism. In work [10], a mod-
el of the numerical solution to the problem of convection in 
a vessel for storing cryogenic fluids has been developed. The 
effect of particle rotation is taken into consideration in an 
indirect way as this factor is absent from equation (1). Im-
plementing this model requires the development of a separate 
computer program, making it difficult to use it.

Work [11] models a system of equations in which there is 
a special case of the Stokes equation without viscosity and 
equation of electromagnetism. This simplification provides 
an approximate pattern of the distribution of mass and 
charge streams only for the two-dimensional current model 
in the accelerator. The results of the calculation require ad-
ditional refinement of the process parameters with the help 
of the experiment.

The shortcomings of the analyzed works are caused by 
the lack of a correct model of fluid movement and the com-
plexity of solving the nonlinear equation (1). That has led 
to the emergence of simplified theoretical or semi-empirical 
models that allow only special problems to be solved in a 
narrow range of influencing factors. 

The Stokes equation is close to the law of motion amount 
preservation, is common, and claims to be the primary in 
fluid mechanics [12]. The current paper addresses some of 
the contradictions in this equation, as well as techniques to 
remove them. That would clarify the limits of its applicabili-
ty in terms of mathematics and physics.

3. The aim and objectives of the study

The aim of this study is to derive motion equations based 
on the consistent influence of linear and angular velocity 
on the components that take into consideration friction and 
inertia. This would make it possible to build more complete 
and accurate mathematical models, which could expand the 
range of problems to be solved and improve their quality.

To accomplish the aim, the following tasks have been set:
‒ to analyze a Laplace’s operator on speed, establish its 

dependence on ω, and find a new form of the Stokes equation 
and its special cases;  

‒ to solve and analyze two special problems.

4. Analysis of motion equations 

4. 1. Laplace operator and Stokes equation. Special 
cases

Bring the Stokes equation to a form more convenient for 
later analysis and combine components that take into con-
sideration viscosity. Perform the necessary transformations 
for the x coordinate. 

‒ for the limitation of normal stress (Table 1):

2 x
xx x

u
p p p

x
∂

= − + µ = −
∂

 or 2 ,x
x

u
p p

x
∂

= + µ
∂  

where the normal stress pxx=–px according to the sign rule. 
Then, the pressure component takes the following form:

2

2

1 1 1
2 2 ;x x x

x

u p up
p

x x x x x
∂ ∂ ∂∂ ∂  − = − + µ = − − ν  ρ ∂ ρ ∂ ∂ ρ ∂ ∂

  (4) 

 ‒ transform the Laplace operator and separate the 
components that take into consideration the influence of 
linear and angular velocity. 

Then

2 2 2
2

2 2 2 .x x x
x

u u u
u

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

Express the second and third terms through the first 
derivative, add zero in brackets, and represent it as two iden-
tical terms with different signs.

( )

2

2

2 2 
2 ,

y yx x

y yz z

u uu u
y y y x x

rot uu u

x y y x y y

∂ ∂ ∂ ∂∂
= − + = ∂ ∂ ∂ ∂ ∂ 

∂∂ ∂ ∂ω
= − = −

∂ ∂ ∂ ∂ ∂ ∂

 

( )

2

2

2 2 
2 .

x x z z

y yz z

u u u u
z z z x x

rot uu u
x z z x z z

∂ ∂ ∂ ∂∂  = − + =  ∂ ∂ ∂ ∂ ∂
∂ ∂ω∂ ∂

= + = +
∂ ∂ ∂ ∂ ∂ ∂  

It follows from these equations that there is a function 
ψ(u, ω),

 

which depends on two arguments and has a compo-
nent on the x axis in the following form:

( )
22 2

2, 2 .y yx z z
x

uu u
u

x x y x z z y

∂ ∂ω ∂ ∂ ∂ω
ψ ω = + + + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

Taking into consideration the last equation and (4), the 
following is obtained:

2

22 2

2

1 1

2 .

x
x

y yx z z

pp
u

x x

uu u
x x y x z z y

∂∂
− + ν⋅∇ = − +

ρ ∂ ρ ∂

 ∂ ∂ω ∂ ∂ ∂ω
+ν − + + + −  ∂ ∂ ∂ ∂ ∂ ∂ ∂   

The expression in brackets is a function of two argu-
ments ‒ φx(u, ω). Performing similar transforms for the y and 
z axes, the following is obtained:

( ) ( )
22 2

2, 2  ,yx z
x x

uu u
u rot

x x y x z

∂∂ ∂
ϕ ω = − + + − ω

∂ ∂ ∂ ∂ ∂  

( ) ( )
22 2

2, 2  ,yx z
y y

uu u
u rot

x y y y z

∂∂ ∂
ϕ ω = − + − ω

∂ ∂ ∂ ∂ ∂
   (5) 

( ) ( )
22 2

2, 2  ,yx z
z z

uu u
u rot

x z y z z

∂∂ ∂
ϕ ω = + − − ω

∂ ∂ ∂ ∂ ∂
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where

( ) ;yz
x

rot
y z

∂ω∂ω
ω = −

∂ ∂

( ) ;x z
y

rot
z x

∂ω ∂ω
ω = −

∂ ∂

( ) .y x
z

rot
x y

∂ω ∂ω
ω = −

∂ ∂

Given (5) and a complete derivative in form (3), the 
Stokes equation can be written:

( )

( )

22 2

2

2

1
2  

2 ,
2

yx x z
x

x
z y y z

up u u
X rot

x x x y x z

uu
u u

x t

 ∂∂ ∂ ∂
− + ν⋅ − + + − ω − 

ρ ∂ ∂ ∂ ∂ ∂ ∂  
  ∂∂

− = + ω − ω ∂ ∂ 
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∂ ∂

− = + ω − ω ∂ ∂ 
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up u u
Z rot
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z t

 ∂∂ ∂ ∂
− + ν⋅ + − − ω − 

ρ ∂ ∂ ∂ ∂ ∂ ∂  
  ∂∂

− = + ω − ω ∂ ∂ 

In this notation, the terms that take into consideration vis-
cous friction and inertia have the same influencing factors ‒ (u, ω).  
In a short form, system (6) can be written as follows:

[ ]
21

div ( , ) grad 2 .
2
u u

G p u u
t

  ∂
− + ν⋅ϕ ω − = + ω × ρ ∂ 

    (7)

It follows from equation (7) that the Stokes equation 
describes a turbulent flow mode within the average model. 

A given equation was derived without additional re-
strictions. This means that (7) is another form of the Stokes 
equation notation. 

When the viscosity is excluded (ν=0), a general equation 
for a non-viscous current is obtained:

[ ]
21

div grad 2 .
2
u u

G p u
t

  ∂
− − = + ω × ρ ∂ 

 

   (8)

If the tangent stresses are excluded from the Navier 
equation, (8) is obtained as well. 

Consider the special cases of Stokes equation in form (6): 
1. For the laminar current mode, the angular velocity 

( ), , 0x y zω = , so the equation takes the following form:
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 ∂∂ ∂ ∂
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  ∂∂
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 ∂ ∂∂ ∂
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  (9)

22 2

2

2

1

.
2

yz x z

z

up u u
Z

z x z y z z
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z t

 ∂∂ ∂ ∂
− + ν⋅ + − − ρ ∂ ∂ ∂ ∂ ∂ ∂ 

  ∂∂
− = ∂ ∂ 

In a short notation, system (9) takes the following form:

( )
21

div grad .
2
u u

G p u
t

  ∂
− + ν⋅ϕ − = ρ ∂ 

  (10)

2. At ( ), , 0,u x y z =  (6) produces a system of equations for 
a standing vortex

( ) ( )1
2  ,

x yzx
x

rp
X rot

x t

∂ ω∂
− − ν⋅ ω =

ρ ∂ ∂

( ) ( )1
2  ,

y xzy

y

rp
Y rot

y t

∂ ω∂
− − ν⋅ ω =

ρ ∂ ∂

( ) ( )1
2  .

z xyz
z

rp
Z rot

z t

∂ ω∂
− − ν⋅ ω =

ρ ∂ ∂

Or, in a short form,

( ) ( )1
div 2  .

r
G p rot

t

∂ ω
− − ν⋅ ω =

ρ ∂
    (11)

At ν=0, (10) and (11) produce motion equations for a 
non-viscous current model:

21
div grad .

2
u u

G p
t

  ∂
− − = ρ ∂ 

   (12)

( )1
div .

r
G p

t

∂ ω
− =

ρ ∂
   (13)

Equations (12) and (13) characterize the linear current 
without inertial vortexes and a non-viscous standing vortex, 
respectively.

4. 2. Special problems
The following special problems have been selected: the 

established turbulent current on a horizontal plate and in a 
horizontal circular tube. The goal of solving both problems 
is to find the distribution of speed along the normal to the 
surface. 

There are two ways to find solutions. The first technique 
employs the Stokes equation while the second involves the 
Navier equation. Both differential equations are simplified 
and integrated.

The first technique finds the distribution of speed 
by integrating the one-dimensional motion equation of 
the second order. The second technique finds the dis-
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tribution of the tangent stress and then the distribution 
of speed using Newton’s law for viscous friction. Both 
techniques complement each other and should produce 
the same result. It is assumed, in this case, that the liquid 
is incompressible and the thermal-physical properties are 
constant. 

Consider the current on a horizontal plate at a turbulent 
boundary layer (Fig. 1).

Fig.	1.	Estimation	scheme	of	the	current	on	a	plate:		
1	‒	turbulent	boundary	layer;	2	‒	laminar	underlay

The Stokes equation in form (1) shall be used, which, for 
a given case, takes the following form:

2

2

1
.xd u dp

dy dx
=

µ

After double integration, the following is obtained:

( ) 2
1 2

1
.

2x

dp
u y y c y c

dx
= + +

µ
  (14)

The Navier equation shall be used to find the 
distribution of the tangent stress. For the x coordi-
nate, (pxx=—px) is obtained:

1 1
.yxx zx xp du

X
x y z dt

∂τ ∂ ∂τ
− + + = ρ ∂ ρ ∂ ∂ 

Following the simplification in accordance with 
earlier assumptions:

.yxx
ddp

=
dx dy

τ .

After the integration at dpx/dx=const, find: 

1.x
yx

dp
y c

dx
τ = +

The distribution of speed along the normal to the 
surface of the plate is determined from the following 
equation:

1.x xdu dp
y c

dy dx
µ = +

Following the integration [(1/μ)·(dpx/dx)=const], equa-
tion (14) is obtained.

Fig. 2 shows the scheme to find common integrals for 
the distribution of the tangent stress and speed for a flow 
on the plate.

Fig.	2.	Scheme	to	find	integrals	for	a	turbulent	current		
on	the	plate

To find the distribution of speed in the laminar sublayer, 
one needs to use equation (9). However, it lacks the term 
d2ux/dy2. This means that it is impossible to find a speed 
distribution for this part of the current. 

Find a special solution to equation (14) for the following 
boundary conditions: at y=δ(x), τx(y)=0, and ux(y=δ)=uf.

The following is then obtained:

( ) ( ) ( )1 22 2 .
2

xdpu y y x y x ux fdx
 = + δ − ⋅ δ +  µ

 (15)

Fig. 3 shows a comparison of the speed distribu-
tion from equation (15) and the known power distribu- 
tion/ux1(y)/ ux(y)=uf·[y/δ(x)]1/7 [1].

It follows from Fig. 3 that the speed distribution (15) 
is consistent with the experiment only in the central part. 
That can be explained by a change in the current mode near 
the wall from turbulent to laminar, for which there is no an-
alytical solution to the Stokes equation. Deviation from the 
empirical equation occurs when y/δ(x)<0.1.

 

 
  

 
  

Stokes 
equation 

Navier 
equation 

yxx
ddp =

dx dy


1
x
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dx

  

2
1 2

1( )
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dpu y y c y c
dx

  2
1 2
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2x

dpu y y c y c
dx

  

2

2

1xd u dp
dy dx



2
1 2
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2x

dpu y y c y c
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Fig.	3.	Comparison	of	theoretical	solution	(15)	with	a	semi-empirical	
equation:	(1/2μ)dpx/dx=–1,700	(m·s)-1
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 Consider the current in a straight circular pipe and find 
common integrals for the distribution of tangential stress 
and speed along the radius of the pipe (Fig. 4).

Fig.	4.	Estimation	scheme	of	the	current	in	a	pipe:		
1	‒	turbulent	core;	2	‒ laminar	underlay

The Stokes equation in form (1) in the (r, z) coordinates 
is applied next. Since the current is steady and one-dimen-
sional, the equation takes the following form:

2

2

1 1
.z zd u du dp

dr r dr dz
+ =

µ

The double integration ( )( )1 constdp dz µ =   pro-
duces the following:

( ) 2
1 2

1
ln .

4z

dp
u r r c r c

dz
= + +

µ
  (16)

Solve the same problem using the Navier equation. 
From the equation in terms of stresses [1‒3]:

1 1 1
,z zr r zr zp du

Z
z r r r dt

θ∂ ∂τ ∂τ τ − + + + =  ρ ∂ ρ ∂ ∂θ
  (17)

 
where pz is the pressure along the z axis, which, according 
to the rule of signs, is opposite to the normal stress pzz. 

Simplify equation (17) believing that there are no 
mass forces, no rotation of the flow around the pipe axis. 

The following is then obtained:

.zr zr zp
r r z

∂τ τ ∂
+ =

∂ ∂
   (18)

With a constant diameter of the pipe (dpz/dz=const), 
the solution to equation (18) takes the following form:

1 .
2

z

zr

dp rc dz
r

⋅
τ = +

Apply the Newton’s equation :z
zr

du
dr

τ = µ ⋅

11
.

2
z zdu dp с

r
dr dz r

µ = +

After the integration, equation (16) is obtained. 
Fig. 5 shows the scheme to find integral (16) in two ways.
Find a special solution to equation (16) under the follow-

ing boundary conditions: at y=r0, τ=0, and uz(y=r0)=umax. 
The following is then obtained:

( ) 2 2 2 0
0 0 max

1
2 ln .

4
z

z

dp r
u y y r r u

dz y

 
= − + + µ  

   (19)

It follows from (19) that the speed on the wall uz(y=0) 
cannot be zero. This means that a given equation cannot be 
used for the near-wall laminar layer. 

Fig. 6 shows a comparison of the speed distribution 
from equation (19) with the power law for the round pipe  
uz(y)=umax[y/r0]0.16 [1].

It follows from Fig. 6 that the theoretical distribution 
yields an inflated speed value (the order of about 10 %) at  
y/r0>0.12. At y/r0<0.12, the theoretical distribution tends 
to the finite speed on the wall, which does not correspond to 
the sticking hypothesis [1, 2].

Thus, the comparative analysis of two theoretical solu-
tions with the semi-empirical equations reveals the same 
qualitative result despite the different integrals. In the central 
part of the flow, there is a satisfactory correspondence with 
the experiment, and near the wall ‒ a significant deviation.

Theoretical curves fall into the region of empirical equa-
tions only at small constants’ values, which are not typi-
cal of currents under normal conditions (the difference is 
10‒100 times). It is possible to achieve the estimated values of 
the constants [(1/2μ)·(dpx/dx)=const and (1/4μ)·(dpz/dz)= 
=const] with a combination of thermal-physical properties 
that are present in a rarefied gas (small density and relatively 
high viscosity). At low pressure, there is a molecular-viscosity 
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Fig.	5.	Scheme	to	find	common	integrals	for	the	turbulent	
current	in	a	pipe

 

 
  Fig.	6.	Comparison	of	the	theoretical	distribution	of	speed	in	a	

pipe	(red	line)	with	a	power	semi-empirical	equation	(points):	
umax=2	m/s,	(1/4μ)·dpz/dz=–70	(m·s)-1
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mode (Knudsen number Kn ∼0.1) under which the hypothesis 
of sticking does not hold, and the distribution of velocities 
near the wall is consistent with Fig. 3 and Fig. 6 [13, 14].

Thus, it is a relevant area of the experimental study to 
test the assumption that a rarefied gas is the Stokes liquid.

5. Discussion of the results of mathematical notation

When deriving Stokes equation, Newton’s law for vis-
cous friction in the form of τ=μ·gradu is used. Such a no-
tation does not demonstrate a sign of applicability to the 
turbulent mode of the current. To tackle this contradiction, 
Newton’s equation should be transformed relative to the 
one-dimensional flow around a flat plate (Fig. 3). 

Then

2 ,y y yx
z

du du dudu
dy dx dx dx

   
τ = µ ⋅ − + = µ⋅ − ω      

  (20)

where 

( ) 2 .y x
zz

du du
rot u

dx dy
= − = ω  

The presence in (20) of the linear and angular velocity indi-
cates that Newton’s friction law is true for two modes of flow ‒ 
laminar and turbulent. The same conclusion follows from the 
analysis of the three-dimensional version of Newton’s law [4]. 

The analysis reported here has revealed that there are 
three special cases of the Stokes equation, two of which were 
obtained as a result of the application of restrictions for the 
viscous liquid model (ω=0 and u=0). 

Using the condition ν=0 produces a general equation for 
non-viscous liquid (8). The same equation follows from the 
Navier equation when excluding tangent stresses (τij) and 
using a full derivative from speed in form (3).

Table 2 gives motion equations for viscous currents un-
der different modes, as well as their analogs for the model of 
non-viscous liquid.

Fig. 7 shows the block diagram of decomposing the Navier 
and Stokes equations based on the conditions given in Table 2. 
There is no Euler equation for ideal liquid in this scheme as it 
requires additional assumptions for the hydrostatic pressure 
distribution law (px=py=pz=p). 

The equations in Table 2 contain six unknowns (px, py, 
pz, ux, uy, uz) and are not closed. This property limits the pos-
sibilities of using the equations considered because it makes 
it possible to solve only one-dimensional problems. Thus, it 
is a relevant area of mathematical research to study ways to 
resolve the issue related to closing them.

6. Conclusions

1. Using the Gromeka-Lamb equation to find a comc-
plete acceleration du/dt, as well as the transformation 
of the Laplace operator, has made it possible to find the 
effect of the linear and angular velocity of particles on 
the Stokes equation. Applying the conditions for the 
non-vortex current (ω=0), for the standing vortex (u=0), 
and for the model of non-viscous liquid (ν=0) has made it 
possible to draw up a scheme of the Stokes equation de-
composition and compare it with the special cases of the 
Navier equation.

Taking into consideration the influence of angular parti-
cle velocity makes it possible to more fully describe the flow 
of Newtonian (Stokes) fluid, as well as to find new methods 
of solving motion equations.

2. The comparison of 
the special solutions to 
the Stokes equation for a 
horizontal plate and a pipe 
with the semi-empirical 
equations has justified the 
assumption that a rarefied 
gas is the Stokes liquid. Ex-
perimental confirmation of 
this assumption may lead to 
practical applications in the 
field of vacuum technology.
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Table	2

Motion	equations	for	viscous	and	non-viscous	currents

Equa-
tion

u(x,y,z)≠0 
ω(x,y,z)≠0

u(x,y,z)≠0 
ω(x,y,z)=0
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Fig.	7.	Block	diagram	of	decomposing	the	equations	for	
viscous	and	non-viscous	liquid.	Conditions:		

red	arrows	‒	ω=0;	green	‒	u=0;	blue	‒	ν=0
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