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1. Introduction

The quadratic assignment problem (QAP) is a well-
known problem and this is a problem whereby a set of facili
ties are allocated to a set of locations in such a way that the 
cost is a function of the distance and flow between the facili
ties. In this problem, the costs are associated with a facility 
being placed at a certain location. The objective is to minimize 
the assignment of each facility to a location as given in [1, 2].

The QAP has application in wiring a computer back-
board, in designing a hospital layout and in the dartboard 
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The paper presents a new powerful technique to linearize the qua-
dratic assignment problem. There are so many techniques available in the 
literature that are used to linearize the quadratic assignment problem.  
In all these linear formulations, both the number of variables and the lin-
ear constraints significantly increase. The quadratic assignment prob-
lem (QAP) is a well-known problem whereby a set of facilities are allo-
cated to a set of locations in such a way that the cost is a function of the 
distance and flow between the facilities. In this problem, the costs are 
associated with a facility being placed at a certain location. The objec-
tive is to minimize the assignment of each facility to a location. There 
are three main categories of methods for solving the quadratic assign-
ment problem. These categories are heuristics, bounding techniques and 
exact algorithms. Heuristics quickly give near-optimal solutions to the 
quadratic assignment problem. The five main types of heuristics are con-
struction methods, limited enumeration methods, improvement methods, 
simulated annealing techniques and genetic algorithms. For every for-
mulated QAP, a lower bound can be calculated. We have Gilmore-Lawler 
bounds, eigenvalue related bounds and bounds based on reformulations 
as bounding techniques. There are four main classes of methods for solv-
ing the quadratic assignment problem exactly, which are dynamic pro-
gramming, cutting plane techniques, branch and bound procedures and 
hybrids of the last two. The QAP has application in computer backboard 
wiring, hospital layout, dartboard design, typewriter keyboard design, 
production process, scheduling, etc. The technique proposed in this 
paper has the strength that the number of linear constraints increases by 
only one after the linearization process
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design whereby in the game of darts points are scored by hit-
ting specific marked areas of the board. The QAP is also used 
in the keyboard design of a typewriter, production process 
and scheduling.

2. Literature review and problem statement 

In the paper [1], the QAP was linearized and the numbers 
of constraints and variables were kept to a minimal level. 
This linear formulation is based on the original nonlinear  
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form given in [2]. Even though the best was done to keep the 
numbers of constraints to a minimal level, the QAP is still 
very difficult to solve. There is a need to reduce the number of  
extra or additional constraints that result from the lineariza-
tion process. The lowest number of additional constraints one 
can think of is one (i. e. a single constraint). Taking a look at 
the available methods for the difficult QAP, we have the fol-
lowing approaches. There are three main categories of methods 
for solving the quadratic assignment problem. These catego-
ries are heuristics, bounding techniques and exact algorithms.

These are algorithms that quickly give near-optimal 
solutions to the quadratic assignment problem that are given 
in [3, 4]. In [3], extensive computational experiments for solv-
ing quadratic assignment problems using various options of  
a hybrid genetic algorithm were performed. The paper [4] ad-
dresses the problem of how to solve QAP under the Adleman- 
Lipton-sticker model. There are five main classes of heuristics 
for the quadratic assignment problem and these are:

1. Construction methods.
2. Limited enumeration methods.
3. Improvement methods.
4. Simulated annealing techniques.
5. Genetic algorithms.
The major challenge with these heuristics is that the 

solutions obtained are near-optimal and, in terms of costs, the 
difference between the optimal solution and the near-optimal 
one is big for large QAPs.

For a formulated quadratic assignment problem, a lower 
bound can be calculated. There are several types of bounds 
that can be calculated for a quadratic assignment problem 
as given in [5, 6]. The paper [5] relaxes the QAP as an LP 
relaxation defined in a lifted high dimensional variable space 
with order O(n4) variables and constraints. The paper [6] 
explores polyhedral methods for the quadratic assignment 
problem. These bounds are:

1) Gilmore-Lawler bounds;
2) eigenvalue related bounds;
3) bounds based on reformulations.
Lower bounds on their own are not very effective in solv-

ing QAPs but are important in some ways. Besides being used 
to approximate optimal solutions, they can be used within 
the context of heuristics or exact methods. 

There are four main classes of methods for solving the 
quadratic assignment problem exactly as given in [7, 8]. The 
classes of methods for solving the QAP are well presented 
in [7]. The paper [8] gives the properties of the maximization 
form of QAP, which are important in solving this difficult 
problem. The exact methods are: 

1) dynamic programming;
2) cutting plane techniques;
3) branch and bound procedures;
4) hybrids of the last two.
Research on these four methods has shown that the 

hybrids are the most successful of these methods for solving 
instances of the quadratic assignment problem. The QAP 
remains a very difficult problem and the hunt for an efficient 
consistent algorithm for this problem must continue.

The QAP has application in wiring, hospital layout, 
dartboard design, typewriter keyboard design, production 
process, scheduling, etc.:

a) steinberg wiring problem.
When wiring a computer backboard, there is a need to 

minimize the total amount or length of wire used. The main 
reason we need to minimize the amount of wire or length of 

wire is to minimize costs. In addition, minimizing the total 
length of the wiring will improve computing time. To achieve 
this, the wiring problem is formulated as a QAP and this 
problem is now known as Steinberg wiring problem;

b) hospital layout.
In designing a hospital layout, there are so many impor

tant factors that must be considered. These important factors 
include the patients, hospital staff, clinics, X-ray room, emer-
gency room, drug store, etc. In designing the hospital layout, 
the objective is to minimize the total distance a patient in 
need of urgent care must travel before being treated. This 
problem is formulated as a QAP;

c) dartboard design.
A competitive sport in which two or more players bare- 

handedly throw small sharp-pointed missiles at a round tar-
get or dartboard is called darts or dart-throwing. In darts, 
points are scored by hitting specific marked areas of the 
board. These areas follow a principle of points increasing to-
wards the center of the board. The dartboard design problem 
can be formulated as a QAP;

d) typewriter keyboard design.
The use of smartphones and tablets is increasing signifi-

cantly these days.
For one to enter data or text on these modern devices, 

virtual keyboards are now being used instead of the conven-
tional hardware keyboards. The challenge is what is the best 
virtual keyboard layout for these devices? This problem is 
modeled as a quadratic assignment problem;

e) production.
In production processes, orders for a number of products 

must be scheduled on a number of similar production lines 
so as to minimize the sum of product-dependent changeover 
costs, production costs and time-constraint penalties. This 
is a production problem that can be modeled as a quadratic 
assignment problem;

f) scheduling.
Scheduling is very important in big hospitals, large uni-

versities, rail operations, large bus companies, airlines, etc. 
As an example, assignment of classes at a university can be 
scheduled in such a way that very few similar classes would 
be in the same time slot. In order to do this, the problem can 
be formulated as a quadratic assignment problem. 

More on applications of the quadratic assignment prob-
lem can be found in [9].

There are four main variants of the quadratic assignment 
problem. These are the quadratic bottleneck assignment prob-
lem (QBAP), the biquadratic assignment problem (BQAP),  
the quadratic semi-assignment problem (QSAP), and the 
generalized quadratic assignment problem (GQAP).

Suppose we are given a set of n facilities and a set 
of n locations. Suppose it is also given that for each pair of 
locations, a distance is specified and for each pair of facilities 
a weight or flow is also specified. The quadratic bottleneck 
problem is the problem of assigning all facilities to different 
locations with the goal of minimizing the maximum of the 
distances multiplied by the corresponding flows.

A biquadratic assignment problem can be defined as  
a quadratic assignment problem with cost coefficients for
med by the products of two four-dimensional arrays. 

In the quadratic semi-assignment problem (QSAP), we are  
given again two coefficient matrices, which are the flow ma-
trix and a distance matrix. In this case, there are n objects and 
m locations and are in such a way that n>m. The objective 
is to assign all objects to locations and at least one object to  
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each location so as to minimize the overall distance covered 
by the flow of materials (or people) moving between diffe
rent  objects.

The GQAP involves the minimization of a total pairwise 
interaction cost among m equipment, tasks or other entities 
and placement of these entities into n possible destinations 
and is dependent upon existing resource capacities.

For more on quadratic assignment variants, readers are 
encouraged to see [10]. There are so many mathematical 
formulations for QAP. In this chapter, we use the linear form 
proposed in [1]. This linear form is an extension of the formu-
lation introduced by [2]. In this formulation, we assume that 
new buildings are to be placed on a piece of land and n sites 
have been identified as sites for the buildings. We also assume 
that each building has a special function. 

The number of variables and the number of constraints 
are used to measure complexity. As an example, the paper [11]  
gives a method whose complexity is of order:

O L n n m M
F

+( ) ∈( )−κ 2 .

In this complexity function, n is the number of variables in 
the cost function, m is the number of constraints, L is the 
bit length of the input data, M

F
 is an upper bound to the 

Frobenius norm of the linear systems of equations that ap-
pear and ∈−2 is the target precision. The more constraints 
and/or variables in the linear program, the more complex the 
model becomes. In other words, it makes sense to keep these 
two factors to the minimum when formulating and lineariz-
ing the quadratic assignment problem.

The formulated linear problem can be solved in many 
ways. The first way is to use branch and bound related al-
gorithms [12–14]. In [12], reformulation and bounds are 
used to enhance the performance of the branch and bound 
algorithm for knapsack problem. In [13], a cut-and-branch 
algorithm for the quadratic knapsack problem is proposed, 
in which a cutting-plane phase is followed by a branch-and-
bound phase. The basics of the branch and bound algorithm 
and simple illustrations are given in [14]. Dynamic program-
ming (DP) can be used to solve some versions of knapsack 
models [15]. The main weakness of DP related approaches 
for knapsack models is that they become inefficient as the 
problem increases in size. Interior-point based algorithms, 
which are good for large problems, can also be used [16, 17]. 
In [16], it was shown that any linear binary problem can be 
converted into a convex quadratic problem. Interior point al-
gorithms can solve convex quadratic problems in polynomial 
time. In [17], the traveling salesman problem is formulated 
as a convex quadratic problem. Other methods that com-
bine heuristics and exact technics can also be used. More on 
these methods can be found in [18–21]. The paper [18] aims 
to find better algorithms for solving parameter reduction 
problems of soft sets and gives their potential applications. 
The paper [19] proposes a Petri net based mathematical 
programming approach to practical problems, in which we 
generate integer linear programming problems from Petri 
net models instead of the direct mathematical formulation. 
In [20], a rectangle blanket is used to speed up the compu-
tations in computer vision applications. In [21], a new for-
mulation based on the definition of new binary variables has 
been proposed to convert practical problems in solar systems 
to binary linear programming (BLP). The proposed method 
finds the global optimum solution more efficiently than any 
other method available so.

3. The aim and objectives of the study

The aim of the study is to develop a method for the 
quadratic assignment problem. To achieve the set aim, the 
following tasks have been solved:

– to linearize the quadratic assignment formulation;
– to reduce the number of extra constraints to only one.

4. Materials and methods used to develop  
the method for the QAP

In this case, a theoretical approach was used to develop 
the proposed method for the quadratic assignment problem. 
This was done by first linearizing the nonlinear quadratic 
assignment problem. After that, there was a need to reduce 
the number of extra linear constraints to only one.

Let aij be the walking distance between sites i and j;  
bkl be the number of people per week who circulate between 
buildings k and l.

Then the Koopmans-Beckmann formulation of the QAP 
is given as (1): 

Maximize:

Z a b x x c xij kl ik jl
l

n

ik ik
k

n

i

n

k

n

j

n

i

n

= +
= =====
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.

Such that:

xij
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=
=
∑ 1

1

,  1≤ ≤j n,

xij
j

n

=
=

∑ 1
1

,  1≤ ≤i n,

xij ∈{ }0 1, ,  1≤ ≤i n,  1≤ ≤j n . 	 (1)

In this formulation, there are n2  variables and 2n con-
straints [2].

The current technique can linearize the Koopmans-Beck-
mann model to the form given in (2).

Maximize:
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l

n

k

n

j

n

i

n

=
====
∑∑∑∑

1111

,

Such that:
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=
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1111

, 	 (2)

x x yik jl ijkl+ ≥ 2 ,  ∀i j k l, , , ,

y x xij ik jl≥ + −1.

Solving this linearized QAP model becomes very difficult 
as n increases in size. This linearized model has (n4+n2) vari-
ables and O(n4) constraints. This is very difficult to manage 
as n becomes large.

The Koopmans-Beckmann formulation is a special case of 
a quadratic binary problem.

Let a general case of the quadratic binary problem be 
represented in (3).
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Minimize:

Z c x x c xij i j k k
k

n

j

n

i

n

= + ∑∑∑
==

0 1

11

.

Such that: 

a x a x a x bn n11 1 12 2 1 1+ + + ≤... ,

a x a x a x bn n21 1 22 2 2 2+ + + ≤... ,

a x a x a x bm m mn n m1 1 2 2+ + + ≤... , 	 (3)

where aij, bi, cij
0  and ck

1  are constants, 1≤ ≤i m,  1≤ ≤j n ,

x x xi j k, , , ,∈{ }0 1  1≤ ≤i n,  1≤ ≤j n ,  1≤ ≤k n .

In this formulation, all the variables are binary but there 
are a very large number of variables and constraints. 

If i = j then (xi)2 = (xj)2. For binary integer variables, we 
have the following.

x xi i −( ) =1 0,

x xi i
2 0− = ,

x xi i= 2. 	 (4)

Thus, xi
2  can be replaced by xi in the objective function. 

Similarly, x j
2 can also be replaced by xj in the objective 

function. Note that this substitution on its own does not 
change the number of variables in the problem.

If i is not equal to j then in the worst case there are 
n n −( )1

2
 

combinations of such variables in the objective function.
Proof 1. Suppose that:
– the case of two variables x1 and x2 : then in the worst 

case, we can have the product x1x2 as the only possible com-
bination of variables;

– the case of three variables x1, x2 and x3 : then in the 
worst case, we can have products x1x2, x1x3 or x2x3 as the  
possible combinations of variables. Thus, these three vari-
ables give 3 possible combinations;

– the case of n variables x1, x2, x3, …, xn–1, and xn : then in 
the worst case, we can have x1x2, x1x3, …, x1xn, x2x3, x2x4, …, 
xn–1, xn as the possible combinations. This results in:

n n t
n nn

−( ) + −( ) + + = =
−( )−

∑1 2 1
1

21

1

...

possible combinations. The total number of combinations 
increases as the number of variables n increases.

The variable combinations of the form xixj where i is  
not equal to j must be removed in order to make the ob-
jective function linear. This is done by using the following 
substitution.

Variable substitution. Let:

x xi j r= λ2. 	 (5)

Since xi and xj are binary then the only possible products 
of these two are 0 and 1. This implies that λ r

2  is also a binary 

variable and r
n n

n
=

−( )
1 2

1
, ,..., .

In other words, this can be summarized as given in (6–8).

x xi j r r+ = +2 1 2λ λ , 	 (6)

λ λr r
1 2 1+ ≤ , 	 (7)

λ λr r
1 2 0 1, { , }∈  and r

n n
n

=
−( )

1 2
1

, ,..., .. 	 (8)

Proof.
To prove this, we show that the solution space for  

Ω(xi, xj) = {0, 1} is also the solution space for Ω(λr). In ad-
dition, every point in Ω(xi, xj) has a corresponding point  
in Ω(λr) and that x xi j r= λ2 for all corresponding points.

Solution space for xi,xj, i. e. Ω(xi, xj):
– if xi = 0 and xj = 0, then xixj = 0;
– if xi = 1 and xj = 0, then xixj = 0;
– if xi = 0 and xj = 1, then xixj = 0;
– if xi = 1 and xj = 1, then xixj = 1;
– if λ r

1 1=  and 

λ2
2 0 2 1 1= ⇒ + = ⇒ = = ⇒ =x x x x x xi j i j i j .

There are two cases to consider:
– case one: 

λ r
1 0=  and λ r i j ix x x2 1 1 1= ⇒ + = ⇒ =,  

and x x xj i j= ⇒ =0 0.
– case two: 

λ r
1 0=  and λ r i j ix x x2 1 1 0= ⇒ + = ⇒ =,  

and x x xj i j= ⇒ =1 0.
If λ r

1 0=  and

λ r i j i j i jx x x x x x2 0 0 0 0= ⇒ + = ⇒ = = ⇒ = .

∴Ω( ) = { )λ r 0 1, .

Corresponding points. Point in Ω( )x xi j . Corresponding 
point in Ω( )λ r .

xi = 0  and x j = 0,  λ r
1 = 0  and λ r

2 0= ,

xi = 1  and x j = 0,  λ r
1 = 0  and λ r

2 1= ,  

xi = 0  and x j = 1,  λ r
1 = 0  and λ r

2 1= ,

xi = 1  and x j = 1,  λ r
1 1=  and λ r

2 0= .

In other words, both the nonlinear and linear forms are 
made up of binary variables only.

This linearization process has serious weaknesses. Two addi
tional variables are added for every product of variables xi, xj 
where i is not equal to j appearing in the objective function. 

For every any quadratic binary problem, there are 
n n −( )1

2
 

such products, and this was shown in Section 2. The number 
of new variables is given in (9).

2
2

1 1× −( ) = −( )n
n n n  new variables. 	 (9)

This gives a total of n(n–1) new variables + n original 
variables, which is equal to n2 variables. Also, two additional  
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constraints are added for every product of variables xi, xj 
where i is not equal to j appearing in the objective function. 
The total number of new constraints is given in (10).

2
2

1 1× −( ) = −( )n
n n n  constraints. 	 (10)

The total number of constraints ( )m  is given by (11). 
This comes from, m m=  original constraints+n(n–1) ori
ginal constraints, which is simplified to (11). 

n m n2 + −( )  variables. 	 (11)

This gives the total number of variables, which becomes 
large as the number of variables increases.

The linearized model becomes as given in (12).
Minimize:

Z c c xr r
r

n n

k
i

n

k= +
=

−

∑ ∑0 1

1

2
1

1λ
( )

.

Such that: 

a x a x a x bn n11 1 12 2 1 1+ + + ≤... ,

a x a x a x bn n21 1 22 2 2 2+ + + ≤... ,

… 

a x a x a x bm m mn n m1 1 2 2+ + + ≤... , 	 (12)

x xi j r r+ = +2 1 2λ λ ,  ∀ ≠i j,

λ λr r
1 2 1+ ≤ ,  ∀ ≠i j,

x x xi j k, , , ,∈{ }0 1  1≤ ≤i n,  1≤ ≤j n ,  1≤ ≤k n ,

λ λr r
1 2 0 1, ,∈{ }  and r

n n
n

=
−( )

1 2
1

, ,..., .

The number of additional constraints in this linearized 
model is large and there is a need to reduce it to the smallest 
manageable level possible. 

4. 1. Minimization of the number of additional con­
straints in the linear model

Solving a linear model with n(n–1) additional con-
straints and (n2+m–n) additional variables is a mammoth 
task for very large QAPs. There is a need to minimize the 
number of additional constraints.

The following two additional constraints can be com-
bined into one:

x xi j r r+ = +2 1 2λ λ .

λ λr r
1 2 1+ ≤ .

The additional constraint in (6) can be expressed as given 
in (13) and (14).

x xi j r r r+ = + −2 21 2 2λ λ λ . 	 (13)

x xi j r r r+ + = +λ λ λ2 1 22 2 . 	 (14)

x xi j r r r+ + = +( )λ λ λ2 1 22 . 	 (15)

From (7) λ λr r
1 2 1+ ≤ ,  thus (15) is reduced to (17).

x xi j r+ + ≤ ( )λ2 2 1 . 	 (16)

x xi j r+ + ≤λ2 2. 	 (17)

This reduces the number of additional constraints and 

variables to 
n n −( )1

2
.

The minimized additional variables 
n n −( )1

2
 is still a mam-

moth task for large QAPs. The number of additional con-

straints and variables increases by 
500 500 1

2
124 750

−( )
= . . 

There is still a need to further minimize the number of ad-
ditional constraints. This can be done by combining all the 
additional constraints into one.

x x1 2 1
2 2+ + ≤λ ,  x x1 3 2

2 2+ + ≤λ , …

x x
  − + + ≤1

2 2λ , 	 (18)

where  =
−( )n n 1

2
.

Combining   additional constraints, we have (19).

x x x x x xn n1 2 1
2

1 3 2
2

1
2 2 2 2 2+ + + + + + + + + ≤ + + +−λ λ λ... ... ,



	(19)

n x x xn−( ) + + +( ) + + + +( ) ≤1 21 2 1
2

2
2 2... ... .λ λ λ



 	 (20)

Then the linearized model becomes as given in (21).
Minimize:

Z c c xr r
r

n n

k
i

n

k= +
=

−

∑ ∑0 1

1

2
1

1λ
( )

.

Such that:

a x a x a x bn n11 1 12 2 1 1+ + + ≤... ,

a x a x a x bn n21 1 22 2 2 2+ + + ≤... ,

…

a x a x a x bm m mn n m1 1 2 2+ + + ≤... , 	 (21)

n x x xn−( ) + + +( ) + + + +( ) ≤1 21 2 1
2

2
2 2... ... .λ λ λ





Note that the number of additional constraints increases 
by only one as given in (19).

Since λ λr r
1 2 1+ ≤ , then (20) is simplified to (22), which 

further is simplified to (23).
Minimize:

Z c c xr r
r

n n

k
i

n

k= −( ) +
=

−

∑ ∑0 2

1

2
1

11 λ
( )

,

Such that: 

a x a x a x bn n11 1 12 2 1 1+ + + ≤... ,

a x a x a x bn n21 1 22 2 2 2+ + + ≤... ,

…

a x a x a x bm m mn n m1 1 2 2+ + + ≤... , 	 (22)

n x x xn−( ) + + +( ) + + + +( ) ≤1 21 2 1
2

2
2 2... ... .λ λ λ




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Minimize:

Z c c c xr
r

n n

r r
r

n n

k
i

n

k= − +
=

−

=

−

∑ ∑ ∑0

1

2
1

0 2

1

2
1

1

( ) ( )

.λ

Such that:

a x a x a x bn n11 1 12 2 1 1+ + + ≤... ,

a x a x a x bn n21 1 22 2 2 2+ + + ≤... ,

…

a x a x a x bm m mn n m1 1 2 2+ + + ≤... , 	 (23)

n x x xn−( ) + + +( ) + + + +( ) ≤1 21 2 1
2

2
2 2... ... .λ λ λ





Since cr
r

n n

0

1

2
1

=

−

∑
















( )

 is constant, then (23) is reduced to (24).

Minimize:

Z c c c xr
r

n n

r r
r

n n

k
i

n

k= − +
=

−

=

−

∑ ∑ ∑0

1

2
1

0 2

1

2
1

1

( ) ( )

.λ

Such that:

a x a x a x bn n11 1 12 2 1 1+ + + ≤... ,

a x a x a x bn n21 1 22 2 2 2+ + + ≤... ,

…

a x a x a x bm m mn n m1 1 2 2+ + + ≤... , 	 (24)

n x x xn−( ) + + +( ) + + + +( ) ≤1 21 2 1
2

2
2 2... ... .λ λ λ





This is another way of linearizing the quadratic assign-
ment problem whereby the number of linear constraints 
increases by only one constraint. 

5. Results of the development of the method for QAP

5. 1. Linearize the quadratic assignment problem
In the numerical illustration, the given problem in (23) 

is linearized by introducing 6 new variables and 6 new con-
straints as given in (26). 

5. 2. Reduce the number of extra constraints to only 
one and solve

The linearized problem given in (26) has 6 extra con-
straints. These 6 extra constraints are reduced to only one as 
given in (27).

Numerical illustration.
Solve the quadratic assignment problem given in (25) 

using the proposed approach.
Minimize:

z x x x x x x x

x x x x x x

= + + + + + +

+ + + +

36 32 33 30 16 25

26 28 28 3
1 2 3 4 1

2
1 2

1 3 1 4 2 3 22 27 312 4 3
2

3 4x x x x x+ + .

Such that:

24 32 30 31 631 2 3 4x x x x+ + + ≥ ,

34 28 32 37 681 2 3 4x x x x+ + + ≥ ,

31 35 28 33 651 2 3 4x x x x+ + + ≥ , 	 (25)

where x jj ∈ ={ , }, , , , .0 1 1 2 3 4
There are three stages in solving this problem. These 

stages are linearizing the problem, reducing the additional 
constraints in the linear model and then solving it.

Making the model linear.
Let x xj j= 2  and x xi j r= −λ2  then the linear model in the 

numerical illustration becomes as given in (26).
Minimize:

z x x x x

x x

= + + + +

+ =( ) + −( ) + −( ) + −

36 32 33 30

16 16 25 26 28

1 2 3 4

1
2

1 1
2

2
2λ λ λ33

2

4
2

5
2

3
2

3 6
228 32 27 27 31

( ) +

+ −( ) + −( ) + =( ) + −( )λ λ λx x .

Such that:

24 32 30 31 631 2 3 4x x x x+ + + ≥ ,

34 28 32 37 681 2 3 4x x x x+ + + ≥ ,

31 35 28 33 651 2 3 4x x x x+ + + ≥ .

Extra linear constraints:

x x1 2 1
2 2+ + ≤λ ,

x x1 3 2
2 2+ + ≤λ ,

x x1 4 2
2 2+ + ≤λ ,

x x2 3 2
2 2+ + ≤λ ,

x x2 4 2
2 2+ + ≤λ ,

x x3 4 2
2 2+ + ≤λ , 	 (26)

where xi ∈{ }0 1, , i = 1 2 3 4, , ,  and λ j
2 0 1∈{ , }, j = 1 2 3 4 5 6, , , , , .

The problem is now linear and our next stage is to reduce 
the number of extra constraints.

If the six extra constraints are combined into one, then 
this is reduced to (27).

Minimize:

z x x x x= + + + − − −

− − − −

52 32 60 30 25 26

28 28 32 31

1 2 3 4 1
2

2
2

3
2

4
2

5
2

6
2

λ λ

λ λ λ λ ,,

Such that:

24 32 30 31 631 2 3 4x x x x+ + + ≥ ,

34 28 32 37 681 2 3 4x x x x+ + + ≥ ,

31 35 28 33 651 2 3 4x x x x+ + + ≥ ,

3 3 3 3 121 2 3 4 1
2

2
2

3
2

4
2

5
2

6
2x x x x+ + + + + + + + + ≤λ λ λ λ λ λ ,	(27)

where xi ∈{ }0 1, , i = 1 2 3 4, , , ;  λ j
2 0 1∈{ }, , j = 1 2 3 4 5 6, , , , , .

The number of extra constraints in the linear model has 
been reduced to one and we now need to solve a linear model.
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Solving a linear integer model.
Solving a linear model, the optimal solution is obtained 

as given in (28).

x x x1 2 4 3
2

5
2

6
2 1= = = = = =λ λ λ ,

x3 1
2

2
2

4
2 0= = = =λ λ λ . 	 (28)

The problem is now solved to give an optimal solution 
shown in (28).

6. Discussion of numerical illustration

The given problem is in (25) and to solve this problem 
it must be linearized first. In order to linearize it, products 
of two different variables in the objective function are con-
sidered. In this case, products of different variables are x1x2, 
x1x3, x1x4, x2x3, x2x4 and x3x4. There are six such products and 
it implies there must be 6 new variables in the linear formu-
lation. In other words, the number of new variables depends 
on the products of different variables. The number of new 
constraints also depends on the number of given variables.  
In this case, there are four variables x1, x2, x3 and x4. The num-
ber of new constraints is the same as the number of all possible  
combinations (4C2 = 6) of these four variables. Using the  
noted patterns, any QAP can be easily linearized. 

The second stage in the proposed method is to reduce the 
number of extra constraints in the linearized form of the QAP. 
The linearized form is given in (26) and there are 6 extra con-
straints. In order to reduce the 6 extra constraints, they are 
combined into one constraint by mere adding as given in (27).  
This is an excellent feature that is inherent in the proposed 
method. It is the only method whereby the number of extra 
constraints increases by only one. We are not aware of any 
other method that can do that. The only limitation of the 
proposed algorithm is that there are no computational results 
to compare with other methods at the moment. 

To linearize the quadratic assignment problem given in 
Section 5. 1, we need a total of 6 extra constraints. Thus, 
the new linear problem has a total of 4 original variables, 
plus 3 original constraints, 6 new constraints and 6 new 
variables. The 6 new or extra constraints can be reduced 
to only 1 constraint as given in (25). This can be solved 
more efficiently than the form given in (24) to obtain the 
optimal solution given in (26). The strength of the proposed 
approach is that the number of constraints increases by one 
no matter what size.

7. Conclusions

1. The quadratic assignment formulation was linearized. 
A numerical illustration is presented in which 6 new con-
straints and 6 new variables are added to linearize the given 
quadratic assignment problem.

2. In every linearizing process, using the proposed ap-
proach, the number of new constraints is reduced to only one. 
This is illustrated in the numerical example whereby the new 
6 extra constraints are reduced to only one.

The complexity of most models including (QAP) is mea-
sured in terms of the number of variables (n) and the number 
of constraints (m). Reducing any of these two parameters 
or both of them can significantly reduce the complexity of 
the model. In this paper, we proposed a technique to fix the 
increase in the number of extra constraints to only one. We 
are not aware of any method that can do that.
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