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This research has established the possibility of improving the effectiveness 
of the visual-matrix form of the analytical Boolean function minimization me- 
thod by identifying reserves in a more complex algorithm for the operations of 
logical absorption and super-gluing the variables in terms of logical functions.

An improvement in the efficiency of the Boolean function minimization pro-
cedure was also established, due to selecting, according to the predefined cri-
teria, the optimal stack of logical operations for the first and second binary 
matrices of Boolean functions. When combining a sequence of logical opera-
tions using different techniques for gluing variables such as simple gluing and 
super-gluing, there are a small number of cases when function minimization 
is more effective if an operation of simply gluing the variables is first applied 
to the first matrix. Thus, a short analysis is required for the primary applica-
tion of operations in the first binary matrix. That ensures the proper minimiza-
tion efficiency regarding the earlier unaccounted-for variants for simplifying 
the Boolean functions by the visual-matrix form of the analytical method. For  
a series of cases, the choice of the optimal stack is also necessary for the second 
binary matrix.

The experimental study has confirmed that the visual-matrix form of the 
analytical method, whose special feature is the use of 2-(n, b)-design and 
2-(n, x/b)-design systems in the first matrix, improves the process efficiency, as 
well as the reliability of the result of Boolean function minimization. This sim-
plifies the procedure of searching for a minimal function. Compared to analogs, 
that makes it possible to improve the productivity of the Boolean function mini-
mization process by 100–200 %.

There is reason to assert the possibility of improving the efficiency of the 
Boolean function minimization process by the visual-matrix form of the analy
tical method, through the use of more complex logical operations of absorbing 
and super-gluing the variables. Also, by optimally combining the sequence of 
logical operations of super-gluing the variables and simply gluing the variables, 
based on the selection, according to the established criteria, of the stack of logi-
cal operations in the first binary matrix of the assigned function
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1. Introduction

The analytical method, which is based on equivalent 
transformations by means of laws and equalities of Boolean 
algebra, is effective in simplifying relatively simple Boolean 
functions. The essence is to move from PDNF (PKNF) to 
DNF (KNF) at a minimum number of terms. The number of 
literals in each term should also be minimal. The disadvan-
tage of the analytical method is the uncertainty in the se-
quence of logical operations in the simplification of functions, 
and, consequently, the lack of an algorithm for minimizing 
Boolean functions. In turn, the absence of an algorithm 
does not always warrant that the resulting expression of the  
Boolean function would be minimal, implying the impossibi
lity of further simplification.

Two forms of information, which are determined by re-
flective and continual thinking, are presented in paper [1].

In the first case, a person receives information in words, 
thinks in words, and, sometimes, converts them into images.  
This method of information transmission (verbal) has a small  

information capacity, requires the active participation of 
brain structures to decipher, process, and supplement the 
information received.

In continual consciousness, thinking occurs not in 
words but in images. Figurative thinking is characterized by 
a  large inflow of information per unit of time, incomparable  
with verbal.

Work [2] states that «information is transferred not only 
by books strewn with letters or by human speech but also 
sunlight, folds of a mountain range, the noise of a waterfall, 
and the rustle of grass». 

The visual-matrix Boolean function minimization me
thods were considered in studies [3–6] and others.

The verbal form of information is the most common 
variant of representing a description of the subject area. Any 
algebraic expression is primarily a text formed according to 
certain rules. The algebraic technique of Boolean function 
minimization is a verbal procedure. Illustrations are turned 
to when there is an attempt to explain what is difficult to 
express by text.
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An illustrative (figurative) description is visual, which 
makes it possible to simultaneously represent a system of re-
lations among the individual variables of a task. A characte
ristic feature of an image is its semantic capacity, the ability 
to transmit a large amount of information with a small num-
ber of characters and, as a result, ensuring the implication of 
a significant part of this information [7].

Thus, the figurative form of information in the form of 
combinatorial objects should provide for a better chance to 
determine the algorithm of the analytical method of Boolean 
function minimization. Combinatorial objects, in this case, 
are the two-dimensional binary matrices and the presence in 
the structure of truth table of complete repeated 2-(n, b)-de-
sign, or incomplete 2-(n, x/b)-design systems, as well as the 
combinatorial images themselves [8–10]. As a result, the 
verbal procedures of algebraic transformations are replaced 
by equivalent figurative transformations [8].

Example 1: It is required to minimize the function 
f(x1, x2, x3, x4) (1) [11] using the Blake-Poretsky method.

f x x x x x x x x x x x x x x x1 2 3 4 1 2 2 3 4 1 3 4 2 3 4, , , .( ) = + + + 	 (1)

The blake-Poretsky method is based on the use of a logi-
cal operation of the generalized gluing of variables:

A x B x A x B x A B⋅ + ⋅ = ⋅ + ⋅ + ⋅ ,

which makes it possible to find a minimum function accord-
ing to the arbitrary DNF of its representation. The second 
and fourth variables of the function f(x1, x2, x3, x4) (1) allow 
the generalized gluing for variable x3.

x x x x x x x x x x x x x x2 3 4 2 3 4 2 3 4 2 3 4 2 4+ = + + .

Obviously, no other variables of the function f(x1, x2, x3, x4) (1) 
permit the generalized gluing for other variables. 

Upon completing the last generalized gluing, one obtains:

f x x x x x x x x x x x x x x x x x1 2 3 4 1 2 2 3 4 1 3 4 2 3 4 2 4, , , .( ) = + + + +

Following all absorptions, one obtains a minimum function:

f x x x x x x x x x x x1 2 3 4 1 2 1 3 4 2 4, , , .( ) = + + 	 (2)

Further use of the generalized operations of gluing the 
variables and absorptions does not yield results. 

Minimizing the function f(x1, x2, x3,x4) (1) [11] with 
equivalent figurative transformations takes the following form:

f x x x x

x x x x

1 2 3 4

1 2 3 4

0 1

0 1 1

1 0 1

1 1 1

, , ,( ) = =

                         = = + +
0 1

0 1 1

1 1
1 2 1 3 4 2 4x x x x x x x .

The minimum function, derived from the operation of 
simple gluing of variables, is:

f x x x x x x x x x x x1 2 3 4 1 2 1 3 4 2 4, , , .( ) = + + 	 (3)

It is also possible to simplify function (1) by means of the 
operation of the generalized gluing of variables:

f x x x x

x x x x

1 2 3 4

1 2 3 4

0 1

0 1 1

0 1

0 1 11 0 1

1 1 1

1 0 1

1 1 1

1 1

, , ,( ) = = =

                         = = + +
0 1

0 1 1

1 1
1 2 1 3 4 2 4x x x x x x x .

The alternation of zeros and unities in the third column 
of the first matrix is a hyper parament (more than a prere
quisite) for the operation of generalized gluing, for variable x3.  
In the second matrix, the operation of the absorption of va
riables was carried out. The results of the minimization (2) 
and (3) coincide but the method of figurative transforma-
tions is a much simpler procedure for simplifying a function.

The visual-matrix technique of Boolean function minimi-
zation is, to some extent, a complete and independent method 
based on the use of some properties of the visual perception 
of information [3–6]. The most compact form of information 
representation, in this case, is a two-dimensional matrix. The 
order of the mutual arrangement of matrix elements, the 
same under an algebraic approach, plays an essential role in 
the visual perception of two-dimensional data. The potential 
possibilities of minimizing Boolean functions represented 
by the matrix are provided by the properties of frequency 
and symmetry of the image [3, 5]. Although visual-matrix 
methods became known in the late 1940s-early 1950s, the 
visual method, based on binary combinatoric systems with 
the repeated 2-(n, b)-design, 2-(n, x/b)-design, represent-
ing something separate from the frequency and symmetry 
of matrix image, the product of a specific assumption, was 
launched and has been developing since 2017 [8].

Paper [12] considers the consistent alternation of logical 
operations of super-gluing the variables (if such an operation 
is possible) and simple gluing of variables in the first matrix 
of the Boolean function, which ensures the efficiency of 
minimization and is the basis for the algorithmization of the 
analytical method. The authors demonstrated an example of 
minimizing the 4-bit Boolean function when the consistent 
use of these logical operations is not always optimal in terms 
of the procedure effectiveness.

The evolution of the analytical method of simplification 
of logical functions and its algorithmization is the result 
of continuous optimization, so it has remained relevant to 
undertake research aimed, in particular, at making an update 
to the minimization algorithm by the analytical method, 
considered in work [12]. That would render proper efficiency 
to the previously unaccounted-for variants for simplifying 
Boolean functions by the analytical method, in particular 
in the class of PDNF and PKNF representations, as well as 
make it possible to optimize the cost of technology of Boolean  
function minimization by the analytical method.

2. Literature review and problem statement

A new method of minimizing logical functions at a rela
tively small number of variables is proposed in work [13].  
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The method implies the inclusion of the ordering of the 
optimal minterms of the logical function. The selected mint-
erms and a minimization procedure ensure optimal coverage. 
This type of optimal arrangement helps the minimization 
algorithm quickly cover the necessary minterms, which re-
duces the complexity of the assigned functions in the end. 
The method is also designed and used to minimize complex 
Boolean functions. Comparative analysis showed that the 
proposed technique of including the procedure for orga-
nizing optimal minterms makes it possible to obtain more  
accurate simplification results; it uses less time and memo-
ry compared to the ESPRESSO software. The practice of  
organizing optimal minterms to minimize Boolean func-
tions  is given.

Approximate synthesis is a recent trend of logical syn-
thesis when some results of the logical specification change 
within the permissible error of the assigned application in 
order to reduce complexity and accelerate the implemen-
tation of the final digital component; it was considered 
in paper [14]. The task of synthesis is solved by using the 
permissible flexibility of technology to maximize the reg-
ularity of the assigned Boolean functions. In particular, 
the authors consider two types of regularity: symmetry 
and D-contractility. Two algorithms are implemented in 
order to find, respectively, symmetrical and D-contracted 
approximation of the assigned function, within the per-
missible error, if possible. When pointing to symmetry, the 
technology characterizes and computes the nearest sym-
metrical approximation. The authors presented a polyno-
mial heuristic algorithm to calculate the D-approximation 
of the incompletely assigned Boolean function according 
to the bitmap error metric. Experimental results on the 
classical and new standards confirm the effectiveness of the 
proposed approaches.

The issue of covering the logical structure and mini-
mizing PLA is considered in paper [15]. The issue of min-
imal coverage is resolved by using the so-called implicit 
enumeration method. The specified method in paper [15] 
is a modification of the Quine-McClusky method, adapted 
for computer processing. The method has extensions that 
use some new properties of minimal coverage algorithms 
to speed up the procedure. To solve large-scale problems, a 
heuristic algorithm is presented. Its application to minimize 
programmable logical arrays (PLA) is shown as an example. 
The authors discuss the computational experience presented 
to confirm the improvement of the tasks of minimal coverage 
by the implicit enumeration method.

The software implementation of the Quine-McClusky 
method for minimizing Boolean expressions is considered 
in paper [16]. The Quine-McCluskey (QM) method is one 
of the most powerful techniques for simplifying Boolean ex-
pressions. Compared to other methods, the QM method can 
handle logical functions with a larger number of variables. In 
addition, the QM method is easier to implement in computer 
programs, which makes it an effective technique. For the QM 
algorithm of Boolean function minimization, the C-language 
code is presented.

A new fast method for minimizing Boolean functions 
is reported in work [17]. The method employs neural net-
works (FNN) implemented in the frequency domain. The 
network is entrusted with the execution of cross-correlation 
in the frequency domain. It was proven by calculations and 
confirmed in practice that the number of computation stag-
es required for FNN networks is less than is necessary for 

standard neural networks (CNN). Modeling results using 
MATLAB confirm theoretical calculations.

Advanced QMC algorithm (eQMC), which improves the 
productivity of the Boolean function minimization process 
by the Quine-McClusky method, is described in work [18]. 
The authors demonstrated the increased speed and perfor-
mance of the computer’s memory operation by simulating the 
process of Boolean function minimization.

Over the past few decades, much effort has been made 
in the field of QCA methodology to develop effective algo-
rithms for minimizing Boolean functions in order to obtain 
an accurate, and most importantly, a complete list of minimal 
simple implicants. As the complexity of the method increases 
exponentially with each new state, the required computer 
memory is past the current computer resources and the poly-
nomial time required to solve this problem. Article [19] pres-
ents a new alternative to existing non-polynomial attempts 
that fully solves the memory issue. Previous tests show that 
the problem is resolved hundreds of times faster compared 
to the eQMC method. Although speed is not a big issue at 
the moment (the eQMC algorithm is fast enough for simple 
data), it may prove important when further developing to all 
possible time orders or searching for configurations in the 
panel data over time, combined with/or automatic detection 
of complex facts of the procedure, etc.

The considered literary sources [13–19] mainly report 
complex algorithms for minimizing Boolean functions based 
on the Quine-McClusky method, its modifications, and 
cubic technique. Compensation for the complexity of the 
search for the optimal function for such algorithms may be 
an approximate synthesis – the tendency of logical synthe-
sis when some results of the logical specification change 
within the permissible optimality of the digital circuit being 
designed. A regular technological point for such algorithms 
is the comparison of the result with the result of minimi-
zation by the heuristic ESPRESSO algorithm. Although 
ESPRESSO does not warrant that the result of minimi-
zation would be a global minimum, in practice it is very 
close, and, at the same time, the solution is always devoid of  
redundancy [20].

The visual-matrix form of the analytical method, based 
on the binary combinatorial systems with the repeated 
2-(n, b)-design, 2-(n, x/b)-design, as somewhat separate from 
the complex Quine-McClusky algorithms and cubic tech-
nique, does not imply an approximate minimization result 
and does not exclude the manual method of Boolean function 
minimization. Algorithms for automating the procedure of 
simplification of logical functions by the analytical method 
are presented in [12].

Thus, the complex Quine-McClusky algorithms, their 
modifications, cubic technique, software tools developed 
for them, covering the general procedure for minimizing 
logical functions [13–19], and the visual-matrix form of the 
analytical method, follow different approaches (principles of 
minimization). Therefore, they imply different prospects re-
garding the possibility of algorithmic minimization of logical 
functions.

Such components of the technology as «approximate syn-
thesis», «heuristic algorithm», «adaptation to computer pro-
cessing» are technological tools for current practice, which is 
changing. This is the reason to believe that the software and 
technological base, represented by the Quine-McClusky al-
gorithms, their modifications, and cubic technique [13–19], 
is insufficient (in a state of change) for theoretical research 
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on the optimal Boolean function minimization. That neces-
sitates research into the visual-matrix form of the analytical 
method of minimizing logical functions. In particular, the 
peculiarities of relatively complex algorithms for logical op-
erations of absorption and super-gluing the variables, a stack 
of logical operations for the first binary matrix of the assigned 
function, techniques for the simplification of the general form 
by using Boolean functions.

In applied terms, this approach would expand the ca-
pabilities of technology in designing digital components. 
Although the Quine-McClusky algorithm is well suited 
for software implementation, the result is still inefficient in 
terms of computing time and memory usage. The addition of 
a variable to a function roughly doubles both, since the size 
of the truth table increases exponentially with the growth of 
the number of variables [20]. With an increase in the bit size 
of Boolean functions, the data array, not suitable for simplifi-
cation, increases, while the 2-(n, b)-design, 2-(n, x/b)-design 
systems in the binary configuration of the function are placed 
less frequently (example 12). The greater the bit size of 
logical functions, the lower the efficiency of the Quine-Mc-
Clusky algorithm. In turn, the visual-matrix procedure pri-
marily finds the 2-(n, b)-design, 2-(n, x/b)-design systems, 
followed by the minimization. Therefore, with an increase in 
the bit size of logical functions, the effectiveness of the visu-
al-matrix procedure does not decrease.

3. The aim and objectives of the study

The purpose of this study is to establish an updated 
procedure for alternating the protocols of equivalent trans-
formations for the first and second matrices of the assigned 
logical function, compared to what was considered in [12]. 
This would make it possible to define the new standard of 
the procedure, which could ensure proper efficiency for the 
previously unaccounted-for variants for simplifying Boolean 
functions by analytical method, specifically in the class of 
PDNF and PKNF representations.

To accomplish the aim, the following tasks have been set:
– to establish patterns in using the logical operations of 

absorption and super-gluing the variables to minimize Bool-
ean functions by the analytical method; 

– to determine the stack of logical operations under the 
analytical method for minimizing the assigned logical func-
tion within the first and second matrices; 

– to analyze methods of simplifying the Boolean func-
tions of the general form; 

– to demonstrate examples of Boolean function mini-
mization in order to assess the effectiveness of the visual- 
matrix form of the analytical method at minimizing logi-
cal  functions.

4. Features in using the logical operations of absorption 
and super-gluing the variables

Logical operations with variables on the binary and 
algebraic function structures, to a certain extent, would be 
highlighted in color. That could provide better didactics of 
the method. 

For the analytical method of Boolean function minimiza-
tion, the absorption of variables with duplication of elemen-
tary conjunctions may take the following form:

1 1 1

2 1 0

3 1 1

4

5 0 0 1

1 1

1 0

1 1

0 0 1

1 1

1 0

1 1

0 0 1

1 1

1 0

1 1

1 0
1 0 0

1 0 1
1 0 0

1 0 0 0

1

= = =

=

00 0 1
1 0 0 1

1 0 0 0 1

1 1 0 0 1

0 0 1

1 1

1 0

1 1

0 0 1

1 1

1 0

1 1

0 0 1
1 1

1 0

1 1

0 0 1

= = =

= .

    x x x x x x x x x

x x x x x x

x x

x x x x x
1 4 1 5 1 2 2 3 5

1 4 1 5 1 2

1 3

1 3 4 1 3

+ + + + =

= + + + + xx

x x x

x

x x x

x x x x x x x x x

x x x x x x

4

1 3 4

2 3 5

1 4 1 5 1 2 2 3 5

1 4 1 5 1 2

+ =

= + + + + =

= + + + 11 3 4 5

1 3 4 5

1 3 4 5

2 3 5 1 4 1 5 1 2

2 3 5

x x x

x x x x

x x x x

x x x x x x x x x

x x x

+

+ + = + + +

+ + = xx x x x x x

x x x

x x x x x

x x x x x x x x x x
1 4 1 5 1 2

2 3 5

1 4 1 5

1 2 3 4 5 1 2 3 4 5

+ + +

+ + + =

= + + 11 2 2 3 5x x x x+ .

Duplication of the constituents followed by the logical 
operation of the simple gluing of variables may take, for ex-
ample, the following form:

0 0
0 0 0

0 1 0
0 1 1

1 0 0

1 1

0 1 1

1 0 0

1 1

0 1

0 0

1 1

= = . 	 (4)

It is possible to derive another minimal expression when 
duplicating the constituent for the lower row of the first 
binary matrix (4).

Duplication of the constituents followed by the opera-
tion of super-gluing the variables may take, for example, the 
following form:

  

1 1 0 1 0

1 1 1 0 0

1 1 0 1 0

1 1 1 0

1 1 0 1 0 0

1 1 0 1 0 1

1 1 0 1 1 1

1 1 1 0 0 1

1 1 1 0 1 0

1 1 1 0 1 1

=

00

1 1 0 1 0

1

1 1 0 1 0 0

1 1 0 1 0 1

1 1 0 1 1 1

1 1 0 1 1 0

1 1 1 0 0 1

1 1 1 0 1 0

1 1 1 0 1 1

1 1 1 0 0 0

=

=
11 1 0 0

1 1 0 1

1 1 1 0

. 	 (5)
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    x x x x x x x x x x x x x x x x

x x x x x x x x x

1 2 3 5 6 1 2 3 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2

+ + +

+ + 33 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 5

x x x

x x x x x x x x x x x x

x x x x x x x x x x

+

+ + +

+ = xx x x x x x

x x x x x x x x x x x x x x x x x x

x

6 1 2 3 5 6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

+ +

+ + + +

+

 

11 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2

x x x x x x x x x x x x x x x x x

x x x x x x x x x

+ + +

+ + 33 4 5 6 1 2 3 5 6

1 2 3 5 6 1 2 3 4 5 6 5 6 5 6 5

x x x x x x x x

x x x x x x x x x x x x x x x x x

= +

+ + + ++ 66

1 2 3 4 5 6 5 6 5 6 5 6

1 2 3 5 6 1 2 3 5 6

( ) +

+ + + + =

= +

( )x x x x x x x x x x x x

x x x x x x x x x x ++ +

+

x x x x

x x x x

1 2 3 4

1 2 3 4. 	 (6)

The results of the matrix (5) and algebraic (6) techniques 
of minimizing a logical expression coincide.

The reported relatively more complex algorithms for the 
application of logical operations of absorption and super- 
gluing of variables expand the variants for their use, which 
improves the efficiency of the Boolean function minimization 
procedure by the analytical method.

5. A stack of logical operations in the first and second 
binary matrices of the analytical method

The effectiveness of minimizing Boolean functions by 
the analytical method depends on combining a sequence of 
logical operations involving different techniques for gluing 
the variables – simple gluing and super-gluing in the first ma-
trix, and, in some cases, in the second binary matrix as well. 
To evaluate the result of transformations in the first matrix, 
based on the selected stack (list) of logical operations, one 
can set the criterion for the effectiveness of the conversion 
of logical expressions. One can evaluate the result of the 
transformation of the first matrix by the number of remain-
ing terms. With an equal number of terms, the criterion can 
be the number of literals. With equality of the number of  
terms and literals, the criterion may be the number of inver
ted variables.

Example 2: It is required to select the optimal stack of lo
gical operations in the first matrix of the 4-variable Boolean 
function from eight sets represented in PDNF. 

The first stack of logical operations: simple gluing of va
riables.

0 0 1 1

1 0 1 1

0 1 1

0 1 0 1

1 1 0 1

1 0 1

1 0 0 0

1 0 0 1

1 0 0

1 1 1 0

1 1 1 1

1 1 1

=

The second stack of logical operations: super-gluing the 
variables.

  

0 0 1 1

0 1 0 1

1 0 0 0

1 1 1 0

0 0 1 1

0 1 0 1

1 0 0 0

1 1 1 0

0 1 1

1
1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

1 1

= =
00 1

1 0 0

1 1 1

0 1 1

1 0 1

1 0 0

1 1 1

0 1 1

1 0 1

1 0 0

1 1 1

1 1

1 0 0 1

1 1 0 1

1 0 1 1

1 1 1 1

=

= =

Two stacks of logical operations yield the same result of mi
nimizing the Boolean function. However, the conversion of the 
first stack results in four terms (rewritten in the second matrix), 
and the conversion of the second stack results in five terms. 
Therefore, the optimal conversion, according to the criterion, 
is the conversion based on the first stack of logical operations.

The considered binary configuration of the Boolean func-
tion is a rare case when logical operations of simple gluing 
of variables are optimal to minimize the function. In most 
cases, optimal transformations in the first matrix are carried 
out through the operation of super-gluing the variables [12]. 

Example 3: It is required to minimize the logical function 
F(x1, x2, x3, x4) by the analytical method, which is given in 
the canonical form [13]:

F = S (4, 7, 9, 10, 12, 13, 14, 15).	 (7)

Note: the values in S are the minterms for the rows of the 
truth table when the function F(x1, x2, x3, x4) returns «1» at 
the output. 

After analyzing the binary configuration of the function 
F(x1, x2, x3, x4) (7) truth table (7), it is concluded that the op-
timal stack of logical operations for equivalent transformations 
in the first matrix is operations of the simple gluing of variables. 
Then the simplification of the function F(x1, x2, x3, x4) (7) [13] 
by the analytic method takes the following optimal form:

F x x x x1 2 3 4

4

7

9

10 1 0 1 0

12

13

14 1 1 1 0

15

0 1 0 0

1 1 0 0

0 1 1 1

1

1 0 0 1

1 1 0 1

, , ,( ) =

=

11 1 1

1 1 1

1 0 0

1 0 1

1 1 0

2 3 4 2 3 4 1 3 4 1 3 4

= =

= + + +x x x x x x x x x x x x . 	 (8)

The result of minimizing (8) the function F(x1, x2, x3, x4) (7) 
 coincides with the result of minimizing when using the me
thod of the optimal ordering of minterms [13] but the minimi-
zation procedure involving the analytical method is simpler. 
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Example 4: It is required to choose the optimal stack 
of logical operations to simplify the Boolean function 
F(x1, x2, x3) [21], represented in the algebraic form.

f x x x x x x x x x x x x

x x x x x x x x x

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

, ,

.

( ) = + + +

+ + + 	 (9)

Solution:
To simplify f(x1, x2, x3) (9), apply the duplication of the 

constituents followed by the operation of the simple gluing 
of variables (p. 4):

f x x x1 2 3

0 0 0

1 0 0

0 1 0

1 0 1

0 1 1

1 1 1

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 1

0 1 1

1 0 0

0 0

, ,( ) = = =

11 1

0 1 1

1 0 0

1 1

0 1

0 0

1 1

0 0 0

0 1 0

=

= =                   . 	 (10)

Sets of variables in the first matrix (10) are recorded in 
lexicographic order. Such arrangement should always be done 
when using the visual-matrix form of the analytical method. 
The result of ordering is rewritten to the second matrix (10). 
In the second matrix (10), implement two operations of the 
simple gluing of variables, after which the result of gluing the 
variables is rewritten to the third matrix (10). Next, apply the 
duplication of the constituents (highlighted in red). In the 
fourth matrix, perform two operations of the simple gluing of 
variables. The result is the following minimum function:

f x x x x x x x x x1 2 3 1 2 2 3 1 3, , .( ) = + + 	 (11)

The result of minimizing (11) the function F(x1, x2, x3) (9)  
coincides with the result of minimization when using a dis-
tance matrix [21]. For the example in question, the procedure 
for minimizing via the analytical method is simpler. 

Example 5: It is required to choose the optimal stack 
of logical operations for equivalent transformations in the 
first and second binary matrices of the Boolean function 
F(x1, x2, x3, x4, x5) (Fig. 1) [12], represented in PDNF.

The effectiveness of minimizing the function F(x1, x2, x3, 
x4, x5) (Fig. 1) is based on the primary application of the 
logical operation of super-gluing the variables in the first 
matrix. Super-gluing the variables is possible for blocks: 1, 3,  
5, 7 (highlighted in green), 4, 12, 20, 28 (highlighted in 
red), 14, 15, 30, 31 (highlighted in blue). These blocks are 
a complete binary combinatory system with the repeated 
2-(2, 4)-design [9]. The logical operation of the simple gluing 
of variables is not used in the first matrix. The result of minimi-
zation in the first matrix by means of the logical operations of 
super-gluing the variables is rewritten to the second matrix.

Minimization of the function in the second matrix is also 
carried out by means of super-gluing the variables, however, 
to form the 2-(2, 4)-design systems, duplication of the corre-
sponding constituents (p. 4) must be applied. The result of 
duplicating the constituents is rewritten to the third matrix. 
Further, the minimization of the function is carried out by 
simply gluing the variables, duplicating the elementary con-
junctions, and variable absorption operations.

The result of minimizing the function F(x1, x2, x3, x4, x5) 
(Fig. 1) coincides with the result of minimizing in [12]. In 
each case, the minimization of the function F(x1, x2, x3, x4, x5) 
(Fig. 1) is carried out efficiently, although the minimization 
procedures use different protocols.

When combining a sequence of logical operations using 
different techniques of gluing the variables such as simple 
gluing and super-gluing, there are a small number of cases 
when the minimization of the function is more effective if the 
operation of simply gluing the variables is first applied in the 
first matrix [12].

Fig. 1. Simplification of the Boolean function by duplicating the constituents and elementary conjunctions

0 0 1 0 0

0 1 1 0 0

1 0 0
1

1
2 0 0 0 1 0
3
4

0 0 1
5

0
7

0 0 0 1 0
9 0 1 0 0 1

0 1 0 0 1
11 0 1 0 1 1

0 1 0 1 1
12

0 1 1 0 1
13 0 1 1 0 1

1 0 0 0 0
14 =

1 0 0 0 1
15

1 0 0 1 0
16 1 0 0 0 0

1 0 1 1 0
17 1 0 0 0 1

1 1 0 1 0
18 1 0 0 1 0
20
22 1

0 0 0 0 1

0 0

0
0 1 1 0

26 1 1 0 1 0
28
30
31

0 1

1 0 0

1 1

1 1 0
0 1 1 1 1

1 1 1

1 1 1 1 0

0 1 1

0 0 1 0 1
0 0 1

1 1 1 1

0 0 1

0

1

1

0

1

1



0 0 1 0

0 0 1 0 1 0 1
0 1

0 0 0 1 0 0 0 0 1 0 0 0 1 0 1
0 0 0 1

0 0 0 1
1 0 0 0

= = 1 0 0 0 = = = .
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0

1 1 0
1 1 1 0 1 1 0 1 1 0 1 0 0

1 0 0
1 0 0 1 0 0 1 0 0 1 1 1

1 1 1

0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1 0 1 1 1 0 0 0 1

1 1 1 1 1 1 1 1 1
1 1 0 1 0

1 0 0
1 1

0 0 0 0
1

1 0 0 0 0 1 0 0

1 0 0 1 0
1 0 1 0 0
1 0 1 1

0 0
1 0 1 0 1 0 1 0 0

1

0
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Thus, a short analysis is required for the priority appli-
cation of operations in the first binary matrix (to establish 
the optimal stack of logical operations). That ensures proper 
minimization efficiency for the earlier unaccounted-for va
riants of simplifying Boolean functions by the visual-matrix 
form of the analytical method [12]. For a series of cases, the 
choice of the optimal stack is also necessary for calculations 
in the second binary matrix.

6. Analysis of methods for simplifying  
a Boolean function of the general form

The equivalent transformations of the first matrix convert 
the PDNF of the assigned function into an arbitrary DNF.  
Effective simplification of the arbitrary DNF of the Boolean 
function is carried out with the help of logical operations 
discussed in p. 4, 5. It is possible that arbitrary DNF can be 
simplified by decoupling the parallel conjunct terms [22]. 
The function’s DNF, in particular, is simplified using the 
Blake-Poretsky method [23].

Example 6: It is required to find the minimum algebraic 
form of the Boolean function f(a, b, c, d, e) (12) [3, 24].

f a b c d e ab acd bc bde ade cde, , , , .( ) = + + + + + 	 (12)

Solution:

f a b c d e, , , ,( ) = = =

1 1

1 1 1

0 1 1

1 1

0 1 1

1 0 1

1 1

0 1 1

1 0 1

1 1

0 1 1

For didactic convenience of figurative transformations, 
the right-hand matrix is rewritten to a new row since the 
current simplification procedure uses a common block from 
the previous logical operation:

= = =

= +( ) + +( )

1 1

1 1

1 1

1 1

1 0 1

0 1 1

0 1 1

1 0 1

0 1 1

b a c d ac ae .

The result f a b c d e b a c d ac ae, , , ,( ) = +( ) + +( )  contains 
eight literals. This is one literal less than in [3] and two lite
rals less than in [24].

7. The results of Boolean function minimization  
by the visual-matrix form of the analytical method

A protocol with a relatively complex algorithm for apply-
ing absorption operation and the operation of super-gluing 
the variables (p. 4), a stack of logical operations in the first 
matrix (p. 5), defines a new standard, compared to [12], for 
minimizing Boolean functions. This improves the efficiency 
of the procedure, which makes it possible, in particular, to 
simplify logical functions with a relatively larger number of 
input variables manually.

Example 7: It is required to minimize the logical function 
F(x1, x2, x3, x4, x5) by the analytical method, which is repre-
sented in the canonical form [25].

F = S (0, 2, 5, 6, 7, 8, 10, 16, 19, 20, 23, 27, 31).	 (13)

Solution:

F x x x x x1 2 3 4 5

0

2

5 0 0 1 0 1

6

7

8

10

0 0 0 0 0

0 0 0 1 0

0 1 0 0 0

0

0 0 1 1 0

0 0 1 1 1

, , , ,( ) =

= 11 0 1 0

0 0 0

16

19

20

23

27

31

0 0 1 0 1

1 0 0 0 0

1 0 1 0 0

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

0 0= 11 1

1 0 0 0

1 1 1

0 0 0

0 0 1 1

0 0 1 1

1 0 0 0

1 1 1

= . 	(14)

Table 1 gives the results of minimizing the function 
F(x1, x2, x3, x4, x5) (13) using the Karnaugh map, the Quine- 
McCluskey method, the method of undefined coefficients [25], 
and the analytical method.

Table 1

Result of minimizing the function F(x1, x2, x3, x4, x5) (13)

Karnaugh map, Quine-Mc-
Clusky method, the method of 

undefined coefficients
Analytical method

F x x x x x x x x

x x x x x x x x

x x x x x x

= + +

+ + +

+ +

1 2 3 5 1 2 4 5

1 3 4 5 1 2 4 5

1 3 4 5 1

   

   44 5x

F x x x x x x x

x x x x x x x x

x x x

= + +

+ + +
+

1 3 5 1 2 3 5

1 2 3 4 1 2 4 5

1 4 5

   

   

Contemplating Table 1 reveals that the result of mini-
mizing the function F(x1, x2, x3, x4, x5) (14) by the analytical 
method is the minimum function containing five minterms. 
This is one minterm less than in [25].

The result of minimizing the function F(x1, x2, x3, x4, x5) 
(13) using the software Logic Friday 1.1.4 [26] is as follows:

F = A′B′DE′+A′C ′E′+ADE+AB′D′E′+A′B′CE.	 (15)

The minimum function (15) contains 11 inverted variables.  
This is one inverted variable more than in (14).

Logic Friday provides a graphical interface for the Espres
so program [27].

Example 8: It is required to minimize the logical function 
F(x1, x2, x3, x4, x5, x6) by the analytical method, which is rep-
resented in the canonical form [28].

F =

0 1 2 3 4 9 10 11 12 15 18 19

20 21 22 23

, , , , , , , , , , , ,

, , , ,

          

    226 27 28 29 32

33 38 39 40 41 42 43 46 47

4

, , , , ,

, , , , , , , , ,

     

         

88 51 52 53 54 55 56 57 62 63, , , , , , , , ,

.

         



















∑ 	 (16)



Mathematics and cybernetics – applied aspects

13

Solution:

F x x x x x x1 2 3 4 5 6

0

1

2

3

4

9

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 0 1 0 0

, , , , ,( ) =

=

00 0 1 0 0 1

10 0 0 1 0 1 0

11

12

15

18

19

20

0 0 1 0 1 1

0 0 1 1 1 1

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 0 1 1

0 11 0 1 0 0

0 1 0 1 0 1

0 1 0 1 1 0

0 1 0 1 1 1

21

22

23

26

27

28

29

0 1 1 0 1 0

0 1 1 0 1 1

0 1 1 1 0 0

0 1 11 1 0 1

1 0 0 1 1 0

1 0 0 1 1 1

32

33

38

39

40

41

42

1 0 0 0 0 0

1 0 0 0 0 1

1 0 1 0 0 0

1 0 1 0 0 1

1 0 1 00 1 0

1 0 1 0 1 143

46

47

48 1 1 0 0 0 0

51 1 1 0 0 1 1

52

53

1 0 1 1 1 0

1 0 1 1 1 1

1 1 0 1 0 0

1 1 0 1 00 1

1 1 0 1 1 0

1 1 0 1 1 1

54

55

56

57

62

63

1 1 1 0 0 0

1 1 1 0 0 1

0 0 0 0

1 1 1 1 1 0

1 1 1 1 1 1

0 0

=

11 0 0

1 0 1 0

0 0 1 0 0 1

0 0 1 0 1 0

1 1 0 0 0 0

1 1 0 0 1 1

0 0 1 1 1

0 1 1 1 0

1 0 1 1

0 1 0 1

1 0 1

1 0 0 0 0

11 1 1 0 0

0 0 0 0

1 1 1 1 1

0 0 0 0

0 1 0 0

0 0 1 0 1

0 0 1 0 1

0 0 1 1 1

0 1 1 0

0 1 0 1

1 0 1

=

=       

11 0 1 1

1 0 1 0

1 0 0 0 0

1 0 0 1 1

0 0 0 0

0 1 0 0

0 1 0 1

0 1 0 1

0 0 1 1 1

0 1 0 1

1 0 1

0 1

1 1 0 0

1 1 1 1

=
11 0

0 0 0 0

1 0 1 0

1 0 0 0

1 0 1 1

1 1 0 0

0 0 0 0 1

0 1 0 0

0 1 0 1

0 1 0 1

0 1 0 1

1 0 1

0 1

1 1 1

0 0 1 1 1

=
11 0

0 0 0 0

1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

0 1 0 0

0 1 0 1

0 1 0 1

0 0 0 1

0 0 1 0 1 1

0 0 1 1 1

=

=       

11

0 1 1 1

0 1 0 1

0 0 1

1 0 1

0 1 1 0

0 0 0 0

1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

0 1 0 0

0 1 0 1

0 1 0 1

1 0 1

0 1 1
=

00

0 0 0 0

1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

.
	

	 (17)

Table 2 gives the results of minimizing the function 
F(x1, x2, x3, x4, x5, x6) (16) using the software that employs 
ASCII files to import and export data and is based on the 
Quine-McClusky method [28] and the analytical method.

Table 2

Result of minimizing the function F(x1, x2, x3, x4, x5, x6) (16)

Software based on the Quine-Mc-
Cluskey method [28]

Analytical method

F x x x x x x x x

x x x x x x x x

x x x x x x

= + +

+ + +

+ +

1 4 5 6 2 3 5 6

1 2 4 5 1 2 4 6

1 4 5 2 3

   

   44 2 3 4 5

2 3 4 5 1 4 5

1 4 5 6 2 3 5 6

+ +

+ + +

+ + +

+

x x x x

x x x x x x x

x x x x x x x x

   

   

   xx x x x1 3 4 5

F x x x x x x x x

x x x x x x x x

x x x x x x

= + +

+ + +

+ +

1 4 5 6 2 3 4 6

2 3 4 5 2 3 5 6

1 4 5 2 3

   

   44

1 2 4 5 2 3 4 5

1 4 5 1 4 5 6

2 3 5 6

+

+ + +

+ + +

+ +

   

   

   

x x x x x x x x

x x x x x x x

x x x x xx x x x1 3 4 5

Table 2 demonstrates that the result of minimizing the 
function F(x1, x2, x3, x4, x5, x6) (16) by the analytical method 
is a minimal function containing twenty-three inverted va
riables. This is one inverted variable less than in [28]. 

The results of minimizing the function F(x1, x2, x3, x4, x5, 
x6) (16) using the software JQM–Java Quine-McClusky, 
1.2.4 [29] and the analytical method match. 

The result of minimizing the function F(x1, x2, x3, x4, 
x5, x6) (16) using the software Logic Friday 1.1.4 [26] is as 
follows:

F = AD′E′F′+B′CD′E+B′D′E′F+B′C′D′E′+
+A′DE′F ′+A′BDE′+ACD′E′+BC′D+ADE+
+B′CEF+A′D′E+BC ′EF.	 (18)

The minimum function (18) contains 24 inverted variables.  
This is one inverted variable more than in (17).

Example 9: It is required to minimize the logical function 
F(x1, x2, x3, x4, x5, x6) by the analytical method assigned in 
DNF (Table 3) [25].

Table 3

Logical function F (x1, x2, x3, x4, x5, x6) truth table [25]

x1 x2 x3 x4 x5 x6 x1 x2 x3 x4 x5 x6

0 0 1 – 0 1 0 1 1 0 0 1

0 1 0 – 1 0 0 1 1 0 1 1

0 1 0 – 1 1 0 1 1 1 0 0

0 1 1 – 0 1 0 1 1 1 1 1

1 0 0 – 1 1 1 0 0 1 1 0

1 0 1 – 0 1 1 0 0 1 1 1

1 1 0 – 0 1 1 0 1 0 1 1

1 1 0 – 1 0 1 0 1 1 0 1

1 1 1 – 0 0 1 0 1 1 1 0

0 0 0 0 0 0 1 0 1 1 1 1

0 0 0 1 1 0 1 1 0 0 0 1

0 0 1 0 1 1 1 1 0 0 1 1

0 0 1 1 1 0 1 1 0 1 0 0

0 0 1 1 1 1 1 1 0 1 0 1

0 1 0 0 0 1 1 1 0 1 1 1

0 1 0 1 0 1 1 1 1 0 0 1

0 1 0 1 1 1 1 1 1 0 1 0

0 1 1 0 0 0 1 1 1 0 1 1
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Solution:

 

 

F x x x x x x
1 2 3 4 5 6

0 0 1 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 1

1 0 0 1 1

1 0 1 0 1

1 1 0 0

, , , , ,( ) =

=

11

1 1 0 1 0

1 1 1 0 0

0 0 0 0 0 0

0 0 0 1 1 0

0 0 1 0 1 1

0 0 1 1 1 0

0 0 1 1 1 1

0 1 0 0 0 1

0 1 0 1 0 1

0 1 0 1 11 1

0 1 1 0 0 0

0

0 1 1 0 1 1

0 1 1 1 0 0

0 1 1 1 1 1

1 0 0 1 1 0

1 0 1 0 1 1

1

0 1 1 0 1

1 0 0 1 1 1

1 0 1 1 0 1

00 1 1 1 0

1 0 1 1 1 1

1 1 0 0 1 1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

1

1

1

1

1

1

0

0

0

0

0

1

0

1

1

0

1

1

1

1 1 0 0 0 1

00

1

0 0 1 0 1

0 1 0 1 0

1 1 0 1 0

1 1 1 0 0

0 0 0 0 0 0

0 0 0

0 1 0 1 1

0 1 1 0 1

1 0 0 1 1

1 0 1 0 1

1 1 0 0 1

=

11 1 0

0 0 1 0 1 1

0 0 1 1 1 0

0 0 1 1 1 1

0 1 0 0 0 1

0 1 0 1 0 1

0 1 1 0 0 0

0 1 1 0 1 1

0 1 1 1 0 0

0 1 1 1 1 1

11 0 0 1 1 0

1 0 1 0 1 1

1 0 1 1 1 0

1 0 1 1 1 1

1 1 0 0 1 1

1 1 0 1 0 0

1 1 0 1 0 1

1 1 0 1 1 1

1 1 1 0 0 1

1 1 1 00 1 0

1

1

1

1

1

1

0

0

1

0

1

0

1 1 0 1 0

1 1 0 1 1 0

0 1 0 1

0 1 0 1

1 0 0 1 1

1 0 1 0 1

1 1 0 0 1

1 1 1 0 0

0 0

=

00 0 0 0

0 0 0 1 1 0

0 0 1 0 1 1

0 0 1 1 1 0

0 0 1 1 1 1

0 1 0 0 0 1

0 1 0 1 0 1

0 1 1 0 0 0

0 1 1 1 0

0 1 1 0 1 1

00

0 1 1 1 1 1

1 0 0 1 1 0

1 0 1 0 1 1

1 0 1 1 1 0

1 0 1 1 1 1

1 1 0 1 1

1 1 1 0

0 1 0 1

1 1 0 1

0 1 0 1

1 0 0 1

=

11

1 0 1 0 1

1 1 0 0 1

1 1 1 0 0

0 0 0 0 0 0

1 1

1 1 0 1

0 0 1 1 0

0 1 0 1 1

0 1 1 1

0 1 0 0 1

0 1 1 0 0

0 1 1 1 1

00 1

1 1 1 0

0 1 0 1

1 0 0 1 1

1 0 1 0 1

0 0 0 0 0 0

0 0 1 1 0

0 1 1 1

1 0 1

1 1 0 0 1

0 1 0 0

1 1 1 0 0

0 1 1 1

=

11

1 0 0 1

0 1 1 0 0

1 1 0 0

0 1 1 1 1

0 1 0 1

1 1 0 1

1 1 1 0

1 0 1

1 0 0 1 1

1 0 1 0 1

0 0 0 0 0 0

0 0 1 1 0

0

=

11 1 1

1 1 0 1

1 1 1 0

1 0 1

1 0 0 1 1

1 0 1 0 1

1 0 0 1

1 1 0 0

0 0 0 0 0 0

0 0 1 1 0

0 1 1 1

0 1 1 1

0 1 1

=

= 

00 1 1 1

1 1 0 1

1 1 1 0

0 1 1

1 0 1

1 0 0 1 1

1 0 1 0 1

1 0 0 1

1 1 0 0

0 0 0 0 0 0

0 1 1 1 0

0 1 1 1 1

0 1 1 0

=

00 1 1 1
0 0 1 1 1

1 0 1 1 1
1 1 0 1

1 1 1 0

0 1 1

1 0 1

1 0 0 1 1

1 0 1 0 1

1 0 0 1

1 1 0 0

0 0 0 0 0 0

0 1 1 0

=

11 1 0 1

1 1 1 0

0 1 1

1 0 1

1 0 1 0 1

1 0 0 1

1 1 0 0

0 0 0 0 0 0

0 1 1 0

1 1 0 1

1 1 1 0

0 1 1

1 0 1

1 0 1 1

= =

11 0 1 1

1 0 1 1

1 0 1

1 1 0 0

0 0 0 0 0 0

0 1 1 0

1 1 0 1

1 1 1 0

0 1 1

1 0 1

1 0 1 1

0 1 1

1 0 1

1 1 0 0

0 0 0

=

00 0 0

0 1 1 0

1 1 0 1

1 1 1 0

.
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Table 4 gives the results of minimizing the function 
F(x1, x2, x3, x4, x5, x6) (Table 3) using a Karnaugh map, 
a Quine-McClusky method, the method of undefined coeffi-
cients [25], and the analytical method.

Table 4

Result of minimizing 	
the function F(x1, x2, x3, x4, x5, x6) (Table 3) [25]

Karnaugh map, Quine-McClusky 
method, method of undefined 

coefficients
Analytical method

F x x x x x x

x x x x x x x

x x x x x x x

= + +

+ + +

+ + +

1 2 6 2 3 5

1 2 5 6 2 3 6

2 3 6 2 3 4 5

   

   

    

   

   

+ +

+ + +

+ +

x x x x

x x x x x x x x x x

x x x x x x x x

2 3 5 6

1 2 3 4 5 6 2 4 5 6

1 2 3 4 1 2 4 55

F x x x x x x

x x x x x x x

x x x x x x x

= + +

+ + +

+ + +

1 3 6 2 3 5

1 2 5 6 2 3 6

2 3 6 2 3 5 6

   

   

    

   

   

+ +

+ +

+

x x x x x x

x x x x x x x x

x x x x

1 2 3 4 5 6

2 4 5 6 1 2 3 4

1 2 3 4

Contemplating Table 4 reveals that the result of mini-
mizing the function F(x1, x2, x3, x4, x5, x6) (Table 3) using the 
analytical method is the minimum function containing ten 
minterms. This is one minterm less than in [25]. 

Example 10: It is required to minimize the logical func-
tion F(x1, x2, x3, x4, x5, x6, x7) by the analytical method, which 
is represented in the canonical form [30]:

F =
1 3 5 7 20 21 33 61 63 73 75 77

79 81 83 8

, , , , , , , , , , , ,

, , ,

           

   55 96 97 99 124 125 127, , , , , ,
.

      







∑ 	 (19)

Solution:

Table 5 gives the results of minimizing the function 
F(x1, x2, x3, x4, x5, x6, x7) (19) using a Karnaugh map [30] and 
the analytical method.

Table 5

Result of minimizing 	
the function F(x1, x2, x3, x4, x5, x6, x7) (19)

Tabular method (Karnaugh map) Analytical method

F A BC DG A BC D E F

ABC D E FG BCDEG

ABCDG ABC DEG

ABC D

= + +

+ + +

+ + +

+

   

   

   FFG ABC D E F

ABC D EG ABCDE F

+ +

+ +   

F A BC DG A BC DE F

AC D E FG BCDEG

ABCDG ABC D EG

ABC D F

= + +

+ + +

+ + +

+

   

   

   GG ABC D E F

ABC D EG ABCDE F

+ +

+ +   

Table 5 demonstrates that the result of minimizing the 
function F(x1, x2, x3, x4, x5, x6, x7) (19) by the analytical 
method is the minimum function containing 57 literals. This 
is one literal less than in [30]. 

The results of minimizing the function F(x1, x2, x3, x4, x5, 
x6, x7) (19) using the software Logic Friday 1.1.4 [26] and the 
analytical method match. 

Example 11: It is required to minimize the logical func-
tion F(x1, x2, x3, x4, x5, x6, x7) by the analytical method, which 
is assigned in the canonical form [30]:

F =

1 3 5 7 8 9 10 18 20 21 23 24

29 31 33 35

, , , , , , , , , , , ,

, , ,

            

   ,, , , , , , ,

, , , , , , , ,

       

       

37 39 40 43 48 51

53 55 57 59 61 63 64 65     

          

  

66 69

73 77 79 81 83 84 85 89 91 93

97 99

, ,

, , , , , , , , , ,

, , 1101 102 103 105 106 108

113 115 116 118 121 12

, , , , , ,

, , , , ,

      

     33 124 127, ,

.

  

























∑ 	 (20)

Note: the values in S are the min-
terms for the rows of the truth table 
when the function F(x1, x2, x3, x4, x5, 
x6, x7) returns «1» at the output. 

Solution:
Define the stack of logical ope

rations of the first matrix of the 
function F(x1, x2, x3, x4, x5, x6, x7) 
(20) as follows. By constructing the 
truth table of function (20) and cal-
culating the number of unities and 
zeros separately in each column of 
the constructed table (according to 
the algorithm given in [12]), it can 
be established that the largest num-
ber of unities is in the extreme right 
column. The next step is to combine 
the sets of variables that contain  
a unity in the far-right position of the 
set into a separate matrix. Such a ma-
trix is given in (21) as the first one. 
In another separate matrix, combine 
the sets of variables for function (20),  
which contain zeros in the far-right 
position of the set. Such a matrix 
is given in (22) as the first one. 
The simplification of function (20) in 
each matrix is carried out separately.

F A B C D E F G, , , , , ,( ) =

=

1

3

5

7

20

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 0 1

0 0 0 0 1 1 1

0 0 1 0 1 0 00

0 0 1 0 1 0 121

33 0 1 0 0 0 0 1

61

63

73

75

77

0 1 1 1 1 0 1

0 1 1 1 1 1 1

1 0 0 1 0 0 1

1 0 0 1 0 1 1

11 0 0 1 1 0 1

1 0 0 1 1 1 179

81

83

85 1 0 1 0 1 0 1

96 1 1 0 0 0 0 0

97

1 0 1 0 0 0 1

1 0 1 0 0 1 1

1 1 0 00 0 0 1

1 1 0 0 0 1 199

124 1 1 1 1 1 0 0

125

127

0 1

1 1 1 1 1 0 1

1 1 1 1 1 1 1

0 0 0 0 1

0 0 1 0 1 0

=

00 0 0 0 1

1 0 1 0 1 0 1

1 1 0 0 0 0 0

1 1 1 1 1 0 0

0 0 0 0 1

0 0 1

1 1 1 1 1

1 0 0 1 1

1 0 1 0 0 1

1 1 0 0 0 1

=

00 1 0

0 1 0 0 0 0 1

1 1 1 1 1

1 0 0 1 1

1 0 1 0 0 1

1 0 1 0 0 1

1 1 0 0 0 0

1 1 0 0 0 1

1 1 1 1 1 0

0 0 0 0 1

0

=

00 1 0 1 0

1 0 0 0 0 1

1 1 1 1 1

1 0 0 1 1

1 0 1 0 0 1

1 0 1 0 0 1

1 1 0 0 0 0

1 1 0 0 0 1

1 1 1 1 1 0

.
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The matrix with the same unities in the extreme right 
column and its simplification takes the following form (21):

The matrix with the same zeros in the extreme right co
lumn and its simplification is as follows (22):

8 0

10 0

18 0 0 1 0 0 1 0

20 0

24 0 0 1 1 0 0 0

40 0 1 0 1 0 0 0

48 0 1 1

0 0 0 1 0 0

0 0 0 1 0 1

0 0 1 0 1 0

00 0 0 0

64 0

66 0

84 0

102 1 1 0 0 1 1 0

106 1 1 0 1 0 1 0

108

1 0 0 0 0 0

1 0 0 0 0 1

1 0 1 0 1 0

1 1 0 11 1 0 0

1 1 1 1 1 0

116 0

118 0

124 0

0 0 1 0 0 1

1 1 1 0 1 0

1 1 1 0 1 1

0 0 0 1 0

0 1 0 1 0

=

=     

00 0 1 1 0 0

0 1 0 1 0 0

0 1 1 0 0 0

1 1 0 0 1 1

1 1 0 1 0 1

0 0 0 1 0

1 0 0 0 0

1 1 1 1 0

1 1 1 0 1

=

=     

00 0 1 0 0 1

0 1 0 1 0

0 0 1 0 0

0 0 1 0 0

0 1 1 0 0 0

1 0 0 0 0

1 1 0 1 1

1 1 0 1 0 1

1 1 1 1 0

1 1 1 0 1

. 	 (22)

By combining the results of min-
imization of two matrices, taking 
into consideration the bits of the 
extreme right column of the first ma-
trices in (21) and (22) one obtains 
MDNF (23) of the assigned Boolean 
function (20).

1 1

3 1

5 1

7 1

9 0 0 0 1 0 0 1

21 1

23 1

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 1 1

0 0 1 0 1 0

0 0 1 0 1 1

229 1

31 1

33 1

35 1

37 1

39 1

43 0

0 0 1 1 1 0

0 0 1 1 1 1

0 1 0 0 0 0

0 1 0 0 0 1

0 1 0 0 1 0

0 1 0 0 1 1

11 0 1 0 1 1

51 0 1 1 0 0 1 1

53 1

55 1

57 1

59 1

61

0 1 1 0 1 0

0 1 1 0 1 1

0 1 1 1 0 0

0 1 1 1 0 1

0 1 1 1 11 0

0 1 1 1 1 1

1

63 1

65 1

69 1

73 1

77 1

79 1 0 0 1 1 1 1

1 0 0 0 0 0

1 0

1 0 0 1 0 0

1 0 0 1 1 0

0 0 1 0

881 1

83 1

85 1

89 1

91 1

93 1

97

1 0 1 0 0 0

1 0 1 0 0 1

1 0 1 1 0 0

1 0 1 1 0 1

1 0 1 0 1 0

1 0 1 1 1 0

1 11 0 0 0 0

1 1 0 0 0 1

1 1 0 0 1 0

1 1 0 0 1 1

1

99 1

101 1

103 1

105 1 1 0 1 0 0 1

113

11

1 1 1 0 0 0 1

55 1

121 1

123 1

127 1 1 1 1 1 1 1

0 0 0 1 0 0

0 1 0 1 0

1 1 1 0 0 1

1 1 1 1 0 0

1 1 1 1 0 1

0 0 0

0 0 1 1

=

11

0 1 1 0 0 1

1 0 0 1 1 1

1 1 0 1 0 0

1 1 1 1 1 1

0 1 1 0 1

1 0 1 1 0

0 1 1 1

1 0 0 0

1 1 0

1 1 0 0

0 0

=

=   

00

0 0 0 1 0 0

0 1 1 0 1

0 1 1 0 1

1 0 0 1 1

1 1 0 0 0

1 1 1

0 0 1 1

1 1 0 0

0 1 1 1

1 0 1 0

0 1 1 1

1 0 0 0

1 1 0

11

0 0 0

0 0 0 0 0

0 1 1 0 1

0 1 1 0 1

0 1 1 1

1 0 0 1 1

1 1 0

1 0 0

1 1 0 0 0

1 1 1 1

0 0 0

0 0 0

0 1 1

1 0 0
= =

00

0 1 1

0 1 1 0 1

0 1 1 0 1

0 1 1 1

1 0 0

1 0 0 1 1

1 1 0

1 0 0

1 0 0 0

1 1 1 1

0 0 0

0 0 0 0

0 1 1

0

0 1 1 0 1

=

11 1 0 1

0 1 1 1

1 0 0

1 0 0 1 1

1 1 0

1 0 0

1 0 0

1 1 1 1

0 0 0

0 0 0 0

0 1 1

0

0 1 0 1 0 1

0 1 1 1 0 1

=

=   

11 1 0 1

0 1 1 1

1 0 0

1 0 0 1 1

1 1 0

1 0 0

1 0 0

1 1 1 1

0 0 0

0 0 0 0

0 1 1

0 1 1 0 1

0 1 1 1

1 0 0

0 1 0 0 1

=

11 0 0 1 1

1 1 0

1 0 0

1 0 0

1 1 1 1

0 0 0

0 0 0 0

0 1 1

0 1 1 1

1 0 0

1 0 0 1 1

1 1 0

1 0 0

1 0 0

1 1 1

0 1 0 1

=

11

.   (21)
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Table 6
Truth table for the 64-bit PDNF of logical function [28] 

0000000000011101101001110010010100000000100111000110111011110101
0000000000011101101001110010110100000000100111000110111011110101
0000000000011101101001110011010100000000100111000110111011110101
0000000000011101101001110011110100000000100111000110111011110101
0000000000100011110101011101001000000001001000000010111100110011
0000000000100011110101011101001000100001001000000010111100110011
0000000000100011110101011101001001000001001000000010111100110011
0000000000100011110101011101001001100001001000000010111100110011
0000000010011100011011101111010100000001100111100111110100001100
0000000010011100011011101111010100001001100111100111111100001100
0000000010011100011011101111010100010001100111100111110100001100
0000000010011100011011101111010100011001100111100111110100001100
0000000010100010001111000111001000000001101000010010000111010011
0000000010100010001111000111001000000001101000010010000111011011
0000000010100010001111000111001000000001101000010010000111110011
0000000010100010001111000111001000000001101000010010000111110011
0000000010100010001111000111001000000001101000010010000111111011
0000000010100010101111000111001000000001101000010010000111110011
0000000010100011001111000111001000000001101000010010000111110011
0000000010100011101111000111001000000001101000010010000111110011
0000000100100000001011110011001100000000101000100011110001110010
0000000100100000001011110011001100010000101000100011110001110010
0000000100100000001011110011001100100000101000100011110001110010
0000000100100000001011110011001100110000101000100011110001110010
0000000101111111000010011011110100000000111111001001101101110100
0000000101111111000010011011110100100000111111001001101101110100
0000000101111111000010011011110101000000111111001001101101110100
0000000101111111000010011011110101100000111111001001101101110100
0000000110000001010000101010001100000000010000110101000101100010
0000000110000001010000101010001100000001010000110101000101100010
0000000110000001010000101010001100000010010000110101000101100010
0000000110000001010000101010001100000011010000110101000101100010
0000000110111110000000001101110000000000011111010001001000111101
0000000110111110000000001101110000100000011111010001001000111101
0000000110111110000000001101110001000000011111010001001000111101
0000000110111110000000001101110001100000011111010001001000111101
0000000111101110100001000000001100000000000000111001011010000010
0000000111101110100001000000001100100000000000111001011010000010
0000000111101110100001000000001101000000000000111001011010000010
0000000111101110100001000000001101100000000000111001011010000010
0000011000001110100101011001100000000111000011000100111101011001
0000011000001110110101011001100000000111000011000100111101011001
0000011000001111100101011001100000000111000011000100111101011001
0000011000001111110101011001100000000111000011000100111101011001
0000011001100111001000000000000100000111011001001011001010000000
0000011001110101000000101100100100000110011101110001000100101000
0000011001110101001000101100100100000110011101110001000100101000
0000011001110101010000101100100100000110011101110001000100101000
0000011001110101011000101100100100000110011101110001000100101000
0000011011010110111010110011000000000111110101011111100001110001
0000011101110100100010111010100100000110111101101001100011101000
0001011011010110111010110011000000000111110101011111100001110001
0001011101110100100010111010100100000110111101101001100011101000
0010011000110111111001101111000000000111001101000000110100001001
0010011000110111111001101111000001000111001101000000110100001001
0010011000110111111001101111000010000111001101000000110100001001
0010011000110111111001101111000011000111001101000000110100001001
0010011011010110111010110011000000000111110101011111100001110001
0010011101110100100010111010100100000110111101101001100011101000
0011011011010110111010110011000000000111110101011111100001110001
0011011101110100100010111010100100000110111101101001100011101000
0100011001100111001000000000000100000111011001001011001010000000
1000011001100111001000000000000100000111011001001011001010000000
1100011001100111001000000000000100000111011001001011001010000000

FMDNF =

=

0 0 0 1

0 0 0 0 1

0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1

1 0 0 1 1 1

1 1 0 1

1 0 0 1

1 0 0 1

1 1 1 1 1

.

00 0 0 1 0 0

0 0 1 0 0 1 0

0 1 0 1 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 1 1 0 0 0 0

1 0 0 0 0 0

1 1 0 1 1 0

1 1 0 1 0 1 0

11 1 1 1 0 0

1 1 1 0 1 0

. 	 (23)

The minimum function (23) consists of 22 min
terms and contains 118 literals. 

The result of minimizing the function F(x1, x2, x3, 
x4, x5, x6, x7) (20) using a Karnaugh map [30] is as 
follows:

F = A′C′D′G+A′B′C′DE′F ′+
+A′B′C′DE′G′+A′B′CD′E′FG′+
+B′CD′EF ′+A′B′CEG+
+A′B′CDE′F ′G′+A′BCG+
+A′BC′DE′G′+AB′C′D′E′G′+
+AB′F ′G+AB′C′DEG+
+ACE′F+ABCEF ′G′+ABCD′EG′+
+ABCDFG+BC′D′G+ABC′D′EF+
+ABC′E′F ′G+ABC ′DEF ′G′+
+ABC ′DE′FG′. (24)

However, when tested by code No. 43 – 0101011, 
function (24) does not yield unity. Given this, an er-
ror would be made in the expression of the minimum 
function (24) [30].

The result of minimizing the function F(x1, x2, x3, 
x4, x5, x6, x7) (20) using the Python software [31] is 
as follows:

F = A′B′C ′DE′G′+A′B′CD′E′FG′+
+B′CD′EF ′+A′B′DE′F ′G′+
+A′C′DE ′F ′G′+A′BE′FG+
+A′BCD′E′F ′G′+AB′C′D′E′G′+
+AB′C′DEG+ABC′DE′FG′+
+ABDEF ′G′+BCDFG+C ′D′F ′G+
+ACE′G+A′CEG+A′C ′D′G+
+B′C′E′F ′G+BC′D′G+ABD′EFG′+
+A′BCDG+AB′F ′G+AE′F′G+
+ACD′EF ′G′. (25)

The minimum function (25) contains 23 min
terms, which is one minterm more than the minimum 
function derived by the analytical method (23). 

The results of minimizing the function F(x1, x2, x3, 
x4, x5, x6, x7) (20) using the software Logic Friday 
1.1.4 [26] and the analytical method match. 

Example 12. It is required to minimize a 64-bit 
Boolean function represented in PDNF by the analy
tical method (Table 6) [28].
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In Table 6, color highlights complete binary combinatori-
al 2-(n, b)-design systems: 15 systems of 2-(2, 4)-design, and 
1 system of 2-(1, 2)-design. To minimize the function, one 
needs to carry out 15 logical operations of super-gluing the 
variables and one operation of simply gluing the variables. 
After that, one needs to perform two more consecutive ope
rations of semi-gluing the variables, first in the third row 
at the top, and then in the fourth row from above; thus, the 
minimum function (26) is obtained:

The results of the simplification of the function (Table 6) us-
ing software that uses ASCII files to import and export data and 
is based on the Quine-McCluskey method [28] and the analy
tical method are the same in the number of minterms. However, 
in [28], the fourth line at the top of the minimum function does 
not indicate a logical operation over the variable, so one must 
assume that the minimum function (26) contains one literal less.

8. Discussion of the results of Boolean function 
minimization by the visual-matrix form of the analytical 

method

A mathematical apparatus of the visual-matrix form of the 
analytical method is considered in works [8–10, 12, 32, 33] and 
others. The components of the method are given in Table 7.

Table 7

Technology of the analytical method for the visual-matrix form

1 Binary combinatorial systems with repeated 2-(n, b)-design, 
2-(n, x/b)-design

2 Verbal and figurative representation of information

3 Logical operation of super-gluing the variables

4 Logical operation of incomplete super-gluing the variables

5 Hermeneutics of logical operations on binary structures

6 Protocols of figurative transformations

7 Attribute of the minimum logical function

8 Minimization of Boolean functions on the complete truth table

9 Algorithm of analytical method and its automation

10 Extension of the analytical method to other logical bases

This work has added new components to the technology 
for minimizing Boolean functions by the visual-matrix form 
of the analytical method (Table 8).

When simplifying logical functions, it is not always 
obvious which of the laws from the algebra of logic should 
be applied at a specific step. The visual structures of binary 
matrices and the unification of original procedures make it 
possible, to some extent, to resolve this issue.

The special feature of the 
visual-matrix form of the analyt-
ical method is that the method 
is based on the binary combina-
torial repeated 2-(n, b)-design, 
2-(n, x/b)-design systems. The 
truth table of logical functions 
is also a repeated combinatorial 
system. That makes it possible, 
during function minimization, to 
do without auxiliary objects such 
as Karnaugh maps, Mahony maps, 
Weich diagrams, acyclic graph, 
non-directed graph, cover tables, 
cubes, etc. The visualization of 
2-dimensional binary matrices 
makes it possible to manually 
simplify the Boolean functions 
(using a mathematical editor, for 
example, MathType 7.4.0) with-
in the limits of up to 64 input 
variables (example 12) for the 
PDNF (PKNF) representation of 
the function.

Table 8

New components in the technology of minimization 	
by the visual-matrix form of the analytical method

1
Relatively complex algorithms for the use of logical absorption 
operation and the operation of super-gluing the variables

2 Stack of logical operations

Table 9 gives the results of Boolean function minimi-
zation borrowed from works by other authors and by the 
analytical method.

Table 9 demonstrates that the results of minimizing by 
the analytical method, JQM software – Java Quine-McClus-
key 1.2.4 [29], and, in some cases, Logic Friday 1.1.4 [26], are 
the same. For other examples, the minimization by an analy
tical method demonstrates a minimal logical function, either 
less by one minterm, or less by one literal, or a function that 
contains less than one inverted variable.

Limiting the use of the visual-matrix form of the ana-
lytical method are those cases when the switch function is 
represented by a mixed basis. In this case, the function must 
be represented by one logical basis.

The weak side of the method considered is in the small 
practical application of the visual-matrix form of the analy
tical method to minimize Boolean functions, followed by the 
design and manufacture of the corresponding computational 
components. The negative internal factors of the method 
are associated with additional time costs for establishing 
protocols for simplifying logical functions, followed by the 
creation of a library of protocols that may illustrate the cor-
responding figurative transformations.

000000000001110110100111001 10100000000100111000110111011~~ 1110101

000000000010001111010101110100100 0000100100000001~~ 00111100110011

00000000100111000110111011110101000 00011001~ 111100111110100001100

0000000010011100011011101111010100001000110011110011111 100001100

000000001001110001101110111101

~

0010001 001100111100111110100001100

00000000101000100011110

~

000111001000000001101000010010000111 1 011

000000001010001

~ ~

~~~ 01111000111001000000001101000010010000111110011

00000001000100000001011110011001100 0000101000100011110001110010

00

~~

00000010111111100001001101111010 000001111110010011011011~~ 110100

00000001100000010100001010100011000000 010000110101~~ 0000101100010

000000011011111000000000110111000 0000001111~~ 11010001001000111101

000000011110111010000100000000110 000~~ 000000000111001011010000010

000001100000111 1 0101011001100~ ~ 0000000111000011000100111101011001

0001100110011100100000~~ 00000000100000111011001001011001010000000

00000110011101010 ~~~

~~

000101100100100000110011101110001000100101000

00 0110110010110111010110011000000000111110101011111100001110001

00 ~~~ 0111011101001000101110101001000001101111011010011000111011000

00100110001101111110011011110000 0001110011010000001~~ 110100001001

  (26)
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The prospect of further research may be the search for 
new rules for converting logical functions based on the Ham-
ming distance.

9. Conclusions

1. Comparatively more complex algorithms for the use of 
logical operations of absorption and super-gluing the variables 
expand variants for their use, which makes it possible to improve 
the efficiency of the procedure for minimizing Boolean functions.

2. The optimal solution for minimizing Boolean functions 
by the analytical method is based on the primary application 
of the operation of super-gluing the variables (if such an opera-
tion is possible) within the truth table of the assigned Boolean 
function [12]. However, there are a small number of exceptions 
when minimization is more effective if one first applies the logi
cal operation of simply gluing the variables [12]. Thus, a brief 
analysis is required for the primary use of logical operations in 
the first binary matrix. Such analysis is carried out by selecting, 
according to the established criteria, the optimal stack of logical 
operations for the first binary matrix, and, in some cases, for the 
second binary matrix (Example 5). This ensures the proper effi-
ciency of minimization for the earlier unaccounted-for variants 
for simplifying Boolean functions by the analytical method.

3. After simplifying PDNF (PKNF) in the first binary 
matrix, the assigned function takes the form of DNF (KNF) 
representation, whereby becoming a function of the general 
form. The classic algorithm for minimizing the Boolean func-
tions of the general form is the Blake-Poretsky method. How-
ever, in most cases, it would suffice to carry out 1–3 logical  
operations of the generalized gluing of variables. The minimi-
zation of logical functions of the general form is also possible 

when the operation of absorption of variables is applied. The 
visual-matrix form adjusts to a semi-intuitive approach to 
minimizing Boolean functions, based on some properties in 
the perception of binary matrices. Such methods are needed 
to manually minimize Boolean functions [3].

4. The effectiveness of the visual-matrix form of the ana-
lytical method to minimize Boolean functions is demonstra
ted by the following examples:

– example 3 [13] – the minimization of a 4-bit Boolean 
function; 

– example 4 [21] – the minimization of a 3-bit Boolean 
function; 

– example 5 [12], example 7 [25] – the minimization of 
5-bit Boolean functions;

– example 8 [28], example 9 [25] – the minimization of 
6-bit Boolean functions; 

– example 10 [30], example 11 [30] – the minimization of 
7-bit Boolean functions;

– example 12 [28] – the minimization of a 64-bit Boolean 
function.

The results of the comparison have established that the 
effectiveness of the visual-matrix form of the analytical me
thod for minimizing Boolean functions gives grounds for the 
feasibility of its application in the procedures for minimizing 
logical functions since the visual-matrix form of the analyti-
cal method allows the following:

– ensure the prompt selection of the stack of logical opera-
tions in the first and second binary matrices, which ultimately 
gives the optimal scenario for minimizing logical functions; 

– improve the efficiency of the procedure for minimizing 
logical functions by implementing relatively complex algo-
rithms for the use of logical operations of absorption and 
super-gluing the variables.

Table 9

Comparative table of the examples of Boolean function minimization borrowed from works by other authors 	
and by the visual-matrix form of the analytical method

Example 
No.

Minimization method name
Number of 

input variables
Minimization  

result
Analytical method 

result

7
Karnaugh map, Quine-McCluskey method, the method 
of undefined coefficients [25]

5 6 minterms 5 minterms

7 Logic Friday 1.1.4 [26] 5 11 inverted variables 10 inverted variables

8
Software that uses ASCII files to import and export 
data and is based on the Quine-McCluskey method [28]

6 24 inverted variables 23 inverted variables

8 Software JQM – Java Quine-McCluskey 1.2.4 [29] 6 12 minterms 12 minterms

8 Logic Friday 1.1.4 [26] 6 24 inverted variables 23 inverted variables

9
Karnaugh map, Quine-McCluskey method, the method 
of undefined coefficients [25]

6 11 minterms 10 minterms

10 Karnaugh map [30] 7 58 literals 57 literals

10 Logic Friday 1.1.4 [26] 7 The results of minimization coincide

11 Karnaugh map [30] 7 21 minterms (verification failed) 22 minterms

11 Software Python [31] 7 23 minterms 22 minterms

11 Logic Friday 1.1.4 [26] 7 The results of minimization coincide

12
Software that uses ASCII files to import and export 
data and is based on the Quine-McCluskey method [28]

64 1,120 literals 1,119 literals
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1. Introduction

A surface-to-air missile (SAM) is a missile of the type 
used in anti-aircraft missile systems and designed to hit air 
targets [1].

A tactical missile (TM) is a type of ballistic missile 
designed to hit targets directly in the field of hostilities [2].

The TM and SAM designing practice shows that the 
choice of optimal reference paths in the process of deter-
mining design variables (DP) of missiles of these types is 
extremely important.

Besides, the problem of calculating the optimal paths is 
an important problem in aircraft designing.

The TM and SAM, as design objects, are united by the 
fact that their flight takes place in dense layers of the atmo-
sphere in aero-ballistic paths. Purely ballistic paths for such 
missiles are not optimal as the path length increases when 

flying in such paths and, accordingly, the flight time in-
creases as well. In contrast to ballistic paths, their rectifying 
results in large speed losses because of aerodynamic drag.

Elaboration of effective methods of optimization of de-
sign variables of TM and SAM while taking into account 
optimal flight paths is an urgent problem. A solution to this 
problem will significantly speed up the TM and SAM design 
process. To solve the problem of this type, it is necessary 
to apply analytical methods of setting various paths, i.e. 
the models of programmed flight. An optimal flight path is 
sought by varying the control parameters.

2. Literature review and problem statement

In the framework of classical aircraft design, initial DP 
are assessed on the basis of previous experience in design 

Copyright © 2021, A. Chubarov

This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0)

CONSTRUCTING 
THE MODELS OF 

PROGRAMMED 
FLIGHT FOR PATH 

CALCULATION 
IN DESIGNING 

TACTICAL AND 
ANTI-AIRCRAFT 

GUIDED MISSILES
А .  C h u b a r o v

Postgraduate Student
Department of Designing 

and Construction
Oles Honchar Dnipro National University

Gagarina ave, 72, Dnipro,  
Ukraine, 49000

E-mail: achlp600@gmail.com

Several models of programmed flight have been constructed to 
perform calculations on flight path optimization in designing tactical 
and anti-aircraft-guided missiles. The developed models are based 
on the determination of interrelated programmed values of altitude 
and the flight path angle depending on the range which have a dif-
ferential relationship. The combination of flight altitude and flight-
path angle programs allows the users to simulate the steady flight of 
a guided missile to the predicted intercept endpoint using the meth-
ods of proportional control.

Good correspondence of the developed models to the physics of 
flight was shown by assessing the quality of approximation of the 
developed models of flight paths of anti-aircraft guided missiles 
obtained using other known models. The obtained approximation 
error was less than 5 % which indicates a good correspondence of the 
developed models to the physics of flight.

Compliance of the developed models of programmed flight with 
the intended purpose and the advantage over the most common 
known models were proved by optimizing the flight paths of the 
anti-aircraft-guided missile. In most of the considered calculation 
cases, the value of the objective function was improved to 2.9 %. The 
flight path was optimized using a genetic algorithm.

The developed models have a simple algebraic form and a small 
number of control parameters are presented in a ready-to-use form 
and do not require refinement for a concrete task. This allows them 
to be implemented in design practice without spending much time 
to speed up the calculation of optimal design variables and optimal 
flight paths of tactical and anti-aircraft-guided missiles
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