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1. Introduction

The application of computer systems and components 
over recent years has been characterized by an increase in 
productivity, performance, and energy efficiency. At the 
same time, their mass-dimension parameters continue to 
decrease. New technologies and design algorithms are used 
to modernize and build new computerized systems, in partic-
ular for solving tasks of information transfer and processing, 
flight trajectory planning, video data processing, etc. Most 
of these tasks relate to the process of observing and bypass-
ing fixed objects [1].

A special role in the operation of robotic systems belongs 
to the processes that track surrounding moving objects 
within the field of view of a given system’s optical modules.  

When considering an unmanned aircraft vehicle (UAV) or 
a remotely-piloted aviation system (RPAS), those processes 
include the planning of a natural motion trajectory with 
respect to the observed objects.

To resolve such tasks, the most used tools are the neural 
network planning algorithms, the construction of algo-
rithms on graphs [2, 3], as well as the application of random 
tree methods [4, 5]. When supporting a moving object and 
constructing a trajectory of its movement, the initial data 
employed are the coordinates of the observation objects.

The existing methods and algorithms do not properly 
enough highlight the choice of a motion trajectory, or a flight 
trajectory, considering the bypassing of obstacles because no 
information about obstacles is stored in the memory before 
the movement started. This is an absolutely relevant issue 
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This paper addresses the issue of developing 
a computerized system for processing informa-
tion in the construction of the trajectory of an 
unmanned aircraft vehicle (UAV), a remotely-
piloted aviation system (RPAS), or another 
robotic system. Resolving this task involves the 
neural network learning algorithms based on the 
mathematical model of movement.

The construction of such a trajectory between 
two specified destinations has been considered 
that provides for the possibility of bypassing static 
and dynamic obstacles. The specified trajectory is 
divided into several smaller parts. The possibility 
of restructuring when changing the position of 
obstacles in space has been considered. A UAV 
flight control algorithm has been developed, which 
implies training a neural network for bypassing 
obstacles of different sizes.

To predict the development of the situation 
when an object moves between two specified points 
in space, it is proposed to use the Q-Learning 
algorithm. It has been shown that the smallest 
number of steps required for moving along a 
specified trajectory is 18, the largest is 273 steps. 
In case of distortion during data transmission, the 
training of the neural network makes it possible to 
reduce the possibility of collision with obstacles by 
improving the accuracy and speed of information 
transfer between the on-board computer and 
operator. A system of the video support to moving 
objects was modeled; dependence charts of the 
normalized frame size at different parameter values 
were built. Using the charts makes it possible to 
determine the function of the maneuver intensity. 
Existing neural network learning methods such 
as CNN and LSTM were compared. It has been 
proven that the success rate reaches 74 % when 
using CNN only, while it amounts to 92 % at the 
hybrid application of CNN+LSTM. The simulation 
results have demonstrated the high efficiency of the 
developed algorithm

Keywords: computerized system, information 
processing, motion trajectory, neural network

UDC 004
DOI: 10.15587/1729-4061.2021.225501

Copyright © 2021, V. Kvasnikov, D. Ornatskyi, M. Graf, O. Shelukha

This is an open access article under the CC BY license  

(http://creativecommons.org/licenses/by/4.0)

Received date 04.01.2021

Accepted date 05.02.2021

Published date  26.02.2021



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 1/9 ( 109 ) 2021

34

within a dynamic environment that requires the redevel-
opment of a motion trajectory when obstacles change their 
position without human intervention, that is, the automated 
operation of a computerized information processing system.

The process of highlighting an object in the image is shown 
in works [6, 7], which give algorithms for processing images 
and selecting moving objects on them. Papers [8‒10] examine 
the methods of processing data about a moving object and de-
signing tracking systems. However, these methods are meant 
for stationary surveillance systems. Studies [12–14] describe a 
mathematical apparatus of the computerized control over mo-
bile complexes, use which could help develop a mobile system 
of video surveillance and support.

To build an algorithm to study a computerized system, it 
is necessary to collect, process data, as well as prepare, devel-
op, and find a model based on the obtained data, conduct an 
experiment on the training of the resulting model. If we con-
sider UAV, its control system resolves the task of achieving 
the specified coordinates. In [15], to guide UAV along the 
trajectory of the motion control, it is proposed to build an 
intelligent information processing system within the UAV 
control unit. Work [15] suggests its construction by solving 
the problem of calculating generalized coordinates and se-
lecting a trajectory to achieve a specified position.

Therefore, there is a need to design a computerized in-
formation processing system for the construction of UAV 
movement trajectory with improved characteristics.

2. Literature review and problem statement

Existing mathematical models of information processing 
when controlling UAV are considered in study [16], which 
reports the analysis of factors taken into consideration in the 
development and application of UAV mathematical models; 
the equations for modeling UAV movement were analyzed. 
To solve the tasks of movement description, the construction 
of mathematical models involves different levels of models 
at different stages, described in [17]. The models’ descrip-
tion is considered depending on the level of complexity and 
purpose. In general, there are four levels of models: initial 
models, linearized or nonlinear simplified models, linear 
models simplified for certain types of movement, and ma-
chine models. However, the factors proposed to be taken into 
consideration in this work do not provide for the possibility 
of restructuring the trajectory in the process of movement 
without the intervention of the operator.

Schematic representation of a model to control the UAV 
movement is given in [18]. The work describes the dynamic 
modeling of UAV equipped with a fixed wing. The mathe-
matical model is considered for any mode of flight and type 
of movement, relying on a system of equations that include 
equations of the dynamics and kinematics of the center of 
masses, the dynamics and kinematics of angular motion.

Paper [19] shows that additional equations can be in-
cluded in the initial system to describe the relationship 
between angles in different coordinate systems. In addition, 
expressions for the aerodynamic forces and moments, the ac-
celeration of the gravitational field, as well as its dependence 
on altitude and air density, can be added to such a system.

Detailed analysis of the existing methods of information 
processing in the UAV control unit is reported in [20]. In 
the study, in order to process data when controlling UAV 

the greatest attention is paid to methods such as neural 
networks, genetic algorithms, and fuzzy logic. In addition to 
the theoretical methods based on the construction of mathe-
matical models, much attention is paid to methods based on 
learning. It is clear that training is executed through com-
mands or by reproducing certain actions. Most often, meth-
ods based on the use of artificial neural networks (ANN) or 
methods based on the use of expert systems are used in ro-
botics to build computerized systems for image recognition 
and motion trajectory construction. When using ANN, the 
efficiency of operation is improved due to the rapid develop-
ment of modern methods of parallel calculations [21]. The 
methods based on the use of ANN require the construction 
of an array of input data, the selection of network architec-
ture, and a learning algorithm [22]. However, when applied, 
it is often not implied that in the event of obstacle and/or 
radio interference, the input data may be unknown and con-
stantly changing.

To solve the tasks of planning a UAV movement trajec-
tory, genetic algorithms are used that have a certain advan-
tage over other technologies. These are advantages such as 
stability as a result of the possibility to encode parameters, 
the use of minimum information at random choice, as well as 
operations over populations [23]. However, such advantages 
are directly dependent on the solution coding technique 
while most mutations do not lead to improved results.

To determine the nature of body movement according 
to the specified forces, there are algorithms and methods 
involving the inverse problem. If a given task is considered 
from the point of view of control systems, then it comes 
down to finding generalized coordinates in the reference 
coordinate system [24]. Using inverse problems, it is possible 
to design control algorithms that provide the necessary dy-
namic properties of the system [25]. However, a given meth-
od is complicated for implementation and requires solving a 
system of differential equations, which leads to a decrease in 
the accuracy and performance of data transmission.

Recently, the method of specified synergy [26], which 
arises from the combined influence of factors, has become 
widespread. The described method is characterized by the 
fact that the combined action significantly exceeds the effect 
of each individual component and a simple sum, which is also 
described by the authors of work [27]. The synergistic meth-
od belongs to the class of semi-inverse methods; it boils down 
to the fact that some coordinates are specified explicitly 
while all others are determined from equations and relation-
ships. However, when using methods with the predefined 
synergy, there is a difficulty in predicting the results, which 
complicates decision-making and leads to low accuracy and 
speed of data transmission.

For a long time, the main approach to solving the tasks of 
constructing a route was simultaneous location and cartog-
raphy. That allows the use of UAV among trees and houses. 
A stereo camera, lidar, or other sensors are used as the mon-
itoring systems. This approach makes it possible to partially 
resolve issues related to the construction of a motion trajec-
tory [28]; however, there remain certain limitations when 
changing the position of objects along the trajectory.

The systematization of the identified subtasks, the con-
struction of new algorithms and methods for building a UAV 
movement trajectory would make it possible to design a com-
puterized system of information processing with improved 
characteristics.



Information and controlling system

35

3. The aim and objectives of the study

The aim of this study is to design a computerized in-
formation processing system to solve the task of planning 
a movement trajectory of UAV or RPAS taking into con-
sideration the bypassing of obstacles within the static and 
dynamic space.

To accomplish the aim, the following tasks have been set:
– to devise a machine learning method based on the exist-

ing reinforcement learning (RL) algorithm in an unchanging 
environment in order to plan a UAV flight trajectory;

– to simulate a system for the video support to moving 
objects and calculate the parameters of obstacle movement;

– to build a structural scheme of the computerized in-
formation processing system for constructing a movement 
trajectory in a dynamic environment and a step-by-step 
algorithm for calculating the parameters of movement of the 
observed object;

– to suggest an algorithm for planning the trajectory  
of UAV movement in a dynamic environment.

4. The study materials and methods 

4. 1. Devising a machine learning method
Consider machine reinforcement learning (RL) methods. 
Typically, RL configuration consists of two components: 

the agent and the environment. Their interaction is schemat-
ically shown in Fig. 1.

Fig. 1. Interaction of components in reinforcement learning

The environment refers to the object the agent acts on, 
while the agent represents the RL algorithm. From the en-
vironment, there is a dispatch of the state to the agent that 
takes actions in response to this state, based on the acquired, 
recorded, or obtained as a result of training, knowledge. 
After that, the next state data are received from the environ-
ment and the agent’s reward is sent again. At the same time, 
the agent updates its knowledge taking into consideration 
the reward received, for the possibility of evaluating the lat-
est actions. This loop repeats until the environment sends a 
status value to complete the phase. The goal is to learn how 
to act in such a way as to get the maximum reward.

The described actions are templated for most RL al-
gorithms, including Q-Learning, SARSA, DQN (Deep Q 
Network), DDPG (Deep Deterministic Policy Gradient).

Q-Learning Algorithm.
This learning algorithm is based on the equation de-

scribed in work [29]. In a given equation, the first value is the 
value of a certain state, the second is the sum of the value of 
this state and all possible actions from this state. That is, at 
Q-Learning, the value of Q is determined by the method of 
trial and error. To determine Q, one must initialize Q, select 
an action and perform it, conduct an assessment taking into 
consideration the reward received and update the Q value. 
The objective function takes the following form [30]:

( ) ( )
( ) ( )( )

, ,

max , , ,

k k k

k k k

Q s a Q s a

r Q s a Q s a

= +

+ϑ + γ ⋅ − 	 (1)

where Q(s, a) is the current value of the function; 
Qk(sk, ak) is the value of the function in the next step; 

max Qk(sk, ak) is the choice of the maximum value of all pos-
sible in the next step;

s – the current position of the agent; 
a – current state; 
ϑ – the speed of training; 
r – reward received in the current position; 
γ – decrease in a reward; 
sk – the next selected position in accordance with the 

next selected action; 
ak ‒ the next selected action.
The purpose of the Q-Learning algorithm is to maximize 

the Q value. Based on the received reward, the agent forms 
the utility function Q. Further, at each following step, the 
strategy of behavior is chosen taking into account the previ-
ous experience of interaction. That is, one needs to maximize 
the total reward using the utility function, rather than the 
reward in the current step.

4. 2. Simulation of a system for the video support to 
moving objects

Consider methods for calculating and extrapolation of 
obstacle movement parameters. 

Bypassing the task of detecting an object in the frame of 
the tracking system, we shall consider the process of calcu-
lating and extrapolating the parameters of the trajectory of 
the obstacle as an object of observation.

The tasks of the filtration and extrapolation of the pa-
rameters of the trajectory of an observed object are stated 
as a problem of evaluating the state vector of a dynamic 
system, whose state equation corresponds to the nature of 
the movement. To solve this problem, [10] proposed using 
the recurrent algorithms, namely exponential smoothing, 
and Kalman filter. Given their simplicity, these tools are 
convenient to implement in computer systems.

In a general case, the sequence of values for bypassing 
the tracked object is represented as white noise with a math-
ematical expectation, equal to zero, and a variance of 2

( ),gθ
σ  

{ }, , .x y zθ =  In uniform, discrete measurements, the Kalman 
filter coefficients An, and Bn/T0 are used as constant coeffi-
cients A=α and B=β, termed α, β filters. We shall represent 
a scheme of the filtration algorithm using the Kalman filter’s 
constant coefficients, α, β-filters [7], for one separate coor-
dinate in the form of the following formulae:

( )* * ,n n n nx x x x= + α −  

( )1 *0 ,n n n nx x T x x−= + β −
 



 

* 1 1 0 ,n n nx x x T− −= +
 



  	 (2)

where n is the measurement step, n–1 is the preliminary 
measurement step, n* is the data extrapolated (predicted) 
per step n, xn is the coordinate of the observed object mea-
sured at step n*, nx



 is the calculated (predicted) coordinate 
at step n, nx



  is the speed of change in a coordinate in one 
step (period) of measurement T0.

The algorithm defined by formulae (2) is a discrete auto-
matic control system with feedback and constant smoothing 
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coefficients α and β. Such a system has certain characteris-
tics: transient process, stability, random and dynamic errors 
under the established mode of operation. Having considered 
the study of the filtration algorithm [10], we can determine:

– the conditions of stability (required and sufficient) of 
the α, β-filter take the following form:

0,α >  0,β ≥  2 4;α + β <

– for most of the stability region, the transition process 
has an oscillatory or slightly damping character;

– the variance of random parameter filtering errors un-
der a stable operation mode is determined from the following 
expressions:

( )
2

2 22 3 2
,

4 2n nx x

α − αβ + β
σ = σ

α − α − β
 		  (3)

( )
2

2 2

0

2
;

4 2 nn xx T
β

σ = σ
α − α − β





– the variance of a random error in the extrapolation of a 
coordinate by one step:

( )*

2
2 22 2

;
4 2n nx x

α + αβ + β
σ = σ

α − α − β


– a dynamic error in the extrapolation of a coordinate 
by one step, due to the constant acceleration of the observed 
object gM, is:

2
* 0 .d n Mx g T∆ = β

4. 3. Designing a computerized information process-
ing system for building a movement trajectory in a dy-
namic environment

Consider a system of automated support to moving 
objects in the form of a UAV structure or other remotely 
controlled mobile complex. The structure, in a general case, 
includes the following:

– an observed object; 
– an operator’s control panel; 
– the platform and moving turret of the mobile complex; 
– the units mounted on them, intended for acquiring data 

on the state of the system and the external environment (opti-
cal modules, accelerometers, gyroscopic devices, etc.); 

– data processing and signal generation units (control 
unit); 

– system state change units (displacement drives of the 
mobile complex in space: chassis, engines, turret suspen-
sions, etc.).

The use of manual and semi-automated control in such 
systems requires the construction of a new algorithm for 
the automated calculation of movement parameters for an 
observed object employing methods of forecasting and ex-
trapolation.

4. 4. Algorithms for planning a movement trajectory 
in a dynamic environment taking obstacles into consid-
eration

Studies that model the process of training automatic 
agents often employ simulation methods. These methods 
make it possible to monitor the state and actions at every 
step. This approach can be used to process information in 

order to build an optimal movement trajectory, in order to 
accompany objects (targets), in order to bypass obstacles 
in the static or dynamic environment, etc. There is also the 
issue of cloning behavior so that the agent can make the 
right decision regarding its future actions. It is proposed 
to use neural networks and a modern trajectory planning 
algorithm, using cloning the behavior of the agent moving 
through obstacles to reach the final coordinate of the initial 
trajectory [31]. For a convenient choice of changing the 
position of the agent, it is proposed to split the movement 
trajectory into smaller sections [32]. To improve the ability 
to process information when controlling UAC, it is proposed 
to apply methods based on neural networks [33], in order to 
effectively avoid obstacles [34].

The hypothesis, put forward, assumes that the accuracy 
of forecasting and performance of the model could depend 
on losses during training. Therefore, it is proposed to use 
the convolutional neural network (CNN) models, as well as 
the combinations with the recurrent long short-term memo-
ry (LSTM) neural network, CNN+LSTM.

5. Implementing the construction of a computerized 
information processing system to solve the task of 

planning UAV movement trajectory 

5. 1. Results of developing a machine learning method 
using the Q-Learning algorithm

The approach described above regarding the develop-
ment of machine learning methods can be represented as a 
sequence of the following steps:

1) initialize a table of values for Q and the current value 
for the Q(s,a) function;

2) monitor the current state, s;
3) select an action, a, for a given state based on one of the 

action selection policies;
4) execute the action taking into consideration the re-

ward, r, as well as the new state, sk;
5) update the Q value for the observed state, using the 

reward, as well as the maximum possible reward for the 
next state;

6) set a new state, and, if the final value is not reached, 
then return to step 2; if the final value is reached – complete 
the operation of the algorithm.

A function to select the agent’s action is recorded using 
the Python programming language:

def choose_action(my, looks):
	 my.check_state_exist(looks)
	 if np.random.uniform() < my.epsilon:
		  state_action=my.q_table.loc[looks, :]
		  state_action=state_action.reindex (np.ran-

dom.permutation(state_action.index))
		  action = state_action.idxmax()
	 else: 
		  action=np.random.choice(my.actions)
return action

The results of training using the Q-Learning algorithm.
The results of executing a program to create an interfer-

ence environment are shown in Fig. 2, a. The environment, 
or a field, is divided into smaller areas, the movement trajec-
tory is drawn from the coordinate of each intermediate area 
to the coordinate of the next intermediate area until the 



Information and controlling system

37

path is fully completed. The experimental result of training a 
neural network using the Q-Learning algorithm on a field of 
size 10 by 10 with the laying of a movement trajectory from 
the specified initial coordinate (an upper left angle) to the 
specified final coordinate (a flag) is shown in Fig. 2, b.

b	
	

Fig. 2. Execution of training using the Q-Learning 
algorithm: a – creation of the environment; 	

b – trajectory that bypasses obstacles

An important characteristic in the implemen-
tation of machine reinforcement learning meth-
ods is the construction of a chart illustrating the system 
state. Such a chart displays a set of all possible system 
states and the importance of the system’s response to 
various actions. At each attempt to move along a speci-
fied trajectory through the created environment, UAV 
learns to bypass obstacles, and moves from one area to 
the next and, as a result, a trajectory is built taking 
into consideration obstacles to the destination coordinate.

The results of the efficient operation of the Q-Learning 
algorithm to train a neural network are shown in Fig. 3, a. 
Training is considered depending on the number of steps 
required at a certain stage. In Fig. 3, b, each stage considered 
depends on receiving a reward at this stage.

To determine the shortest path, Table 1 was built by soft-
ware to give the corresponding target values resulting from 
the execution of the program.

Table 1 gives the summary values of the final trajectory: the 
coordinates of changing the position of the agent with the val-
ues of the shortest route in the movement environment. Based 
on the obtained values given in Table 1, one can see a decision 
made on the next action of the agent (UAV, RPAS). The se-
quence of movements as a result of training the neural network 
using the Q-Learning algorithm is as follows: down-right-
down-down-down-down-right-right-right-down-down-right-
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Table 1

Value of the shortest movement trajectory for the created environment

Coordinate Move up Move down Move right Move left

[0.0, 40.0] 2.183082e-11 1.015156e-08 1.625024e 9.736734e-11

[0.0, 80.0] 7.407652e-11 –5.433903e-01 5.036295e-08 3.755632e-10

[40.0, 80.0] 1.392400e-11 2.563086e-07 1.347848e-11 2.886692e-10

[40.0, 120.0] 3.491871e-09 1.184092e-06 –3.573884e-01 3.888828e-01

[40.0, 160.0] 2.414627e-08 5.154729e-06 4.070336e-01 2.341310e-10

[40.0, 200.0] 3.652324e-08 –2.221786e-01 2.322062e-05 1.224790e-01

[80.0, 200.0] –1.312542e-01 2.288132e-07 1.019095e-04 1.208706e-08

[120.0, 200.0] 1.406879e-10 4.066968e-04 1.705528e-06 1.021977e-06

[120.0, 240.0] 1.181061e-06 2.978240e-09 1.600272e-03 1.430772e-07

[160.0, 240.0] 5.288286e-07 1.057878e-07 5.549060e-03 2.735345e-05

[200.0, 240.0] 1.479461e-05 –1.224790e-01 1.612705e-02 9.514968e-05

[240.0, 240.0] 4.938648e-08 4.298275e-02 –1.136151e-01 2.199097e-05

[240.0, 280.0] 7.717672e-04 1.050327e-01 –4.900995e-02 –1.136151e-01

[240.0, 320.0] 1.659431e-03 -3.940399e-02 2.275248e-01 1.535019e-04

[280.0, 320.0] –5.851985e-02 4.266747e-01 1.157103e-03 6.044271e-03

[280.0, 360.0] 2.321957e-02 3.268646e-02 6.795845e-01 –1.046617e-01

[320.0, 360.0] 3.129242e-03 5.094010e-02 9.323556e-01 2.482690e-02

Fig. 3. The number of steps and rewards received at each stage of 
training a neural network using the Q-Learning algorithm: 	

a – the dependence of stages on steps; 	
b – the dependence of stages on a reward
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right-right. A given trajectory is the shortest path between 
two specified coordinates within the created environment. The 
result of this algorithm operation has established that for train-
ing a neural network in a specified environment, the smallest 
number of steps required to move along a specified trajectory 
is 18, the largest number is 273 steps. A given algorithm was 
implemented to work in the static (unchanging) environment 
but it is also possible to execute it in a dynamic environment if 
the position of observed objects and/or obstacles changes be-
fore the onset of training or after the completion of movement.

5. 2. Results of simulating a system for 
the video support to moving objects

After analyzing the above expressions, we 
can conclude that the effect of measurement 
errors can be reduced when selecting lower 
values for the coefficients α and β, but, to re-
duce the dynamic errors, the values for these 
coefficients should be chosen large enough. Ac-
cordingly, it is necessary to choose the best 
option that would ensure the proper smoothing 
of measurement errors and a sufficient speed 
of response to an observed object’s maneuver.

It is possible to determine the optimal 
values for α and β according to the criterion 
of a minimum error of one step of coordinate 
extrapolation:

( ) ( )( ),( )
* * * ,

min.
Mx x g nxα β βα+β

α β
σ = σ + ∆ = 



To minimize the dynamic error of coordi-
nate extrapolation, the following ratio is pro-
posed in [10]:

( )2 2 .β = α − α 	 (4)

The α and β values should be 
selected to meet the requirement for 
a specified probability at which a 
moving object is captured by the field 
of view of the video support system. 
In this case, the frame size should be 
chosen so that the number of false 
marks is minimal. The condition for 
the frame to be captured by the video 
support is written down in the fol-
lowing form:

2
0 2,M xg T c Lβ + σ ≤ 	 (5)

where L is the width of the frame side; 
c is the reliability factor, typically 
taken to be equal to 2–3. 

By equating the left-hand and 
right-hand parts in expression (5) 
and by dividing them by an average 
quadratic measurement error ,

nxσ  we 
obtain:

 σ
= − β σ σ σ 



2
0 .

2
n

n n n

xM

x x x

cg T L

Considering (3) and (4), we ob-
tain:

2 2 2
0

2

6 5
.

2 8 8 2
n n

M

x x

g T L
c

 α − α α
= − σ σ − α + α − α 

Results of calculating the obstacles captured by the video 
support frame. 

We modeled a system for the video support to moving ob-
jects by using Construct 2. Examples of the results from model-
ing and tracking moving objects are shown in Fig. 4.

Fig. 5 shows the 2
0 nM xg T σ dependence charts on the 

coefficient α for different 2
nxq L= σ parameter values at 

c=2 (Fig. 5, a) and c=3 (Fig. 5, b).
 

 
  

Fig. 4. Examples of the operation of a system for the video support 	
to moving objects
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Fig. 5. Dependence charts 2
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Knowing the period of acquiring frames T0 and the nor-
malized frame size q, these charts make it possible to deter-
mine the value of α as a function of the maneuver intensity 
gM, and to apply the selected coefficient to calculate the 
coordinate of the observed object in the next step.

5. 3. Results of developing a structural scheme of 
the computerized information processing system and a 
step-by-step algorithm for calculating the parameters of 
movement of the observed object

The results of developing a structural scheme are shown 
in Fig. 6. In this case, the object of observation is not only an 
obstacle that occurs along the movement trajectory but also 
other arbitrary targets.

Fig. 6 shows that the complex includes an operator’s 
control panel, the units and elements of a communication in-
frastructure, the turret itself. It shows the units of the com-
puterized forecasting and control system, data processing 
units, the drive of the horizontal control for the observation 
system’s turret. The turret hosts a vertical control drive unit 
and an optical-electronic detector module.

Under a semi-automatic mode, the line of vision is stabi-
lized and maintained (compensation for swings and turns) 
using data acquired from gyroscopic devices and accelerom-
eters while guidance is performed manually by the operator.

Under an automated mode, in addition to data from the 
unit of gyroscopic devices and accelerometers, data from the 
forecasting unit is used. Based on these data, the parameters 
of the movement of the observed object are calculated, used 
to correlate the coordinates of object (2).

Algorithm for calculating coordinates for a moving ob-
served object. 

Data on the displacement of the observed object or ob-
stacle, over a single period of observations, is correlated with 
data from the forecasting unit. Based on the results of calcu-
lated deviations, rotation signals are generated for the hori-
zontal and vertical turret drives for aligning the vision line. 

The calculation of movement parameters of an observed 
object is carried out according to the following algorithm:

1) determine the coordinates of the required key points 
of the observed object in the frame of the optical module; 

2) calculate the position of the specified points for fur-
ther tracking of the object; 

3) forecast the displacement of the object by one step 
and generate control signals for guiding the horizontal and 
vertical drives;

4) update data from the optical module, compare the 
offset of the selected points with the predicted indicators. 
When determining an observed object in the frame – pro-
ceed to point 2, in the absence – point 5; 

5) extrapolate the predicted data to generate 
control signals for the horizontal and vertical drives 
for the next step;

6) increment the counter of loss of the observed 
object from the field of view, when reaching 0, pro-
ceed to point 7, otherwise ‒ point 4; 

7) generate the object loss signal and set the sys-
tem to a semi-automated control mode.

5. 4. Results of developing an algorithm for 
planning the UAV movement trajectory in a dy-
namic environment

The process of data acquisition and algorithm 
construction using LSTM was reviewed and de-
scribed in paper [15]. CNN consists of three main 
layers: a convolutional layer, a merged layer, and a ful-
ly bound layer with a linear activation function. Con-
sider analyzing one-dimensional data, meaning CNN 
would need one-dimensional data arranged in order 
of consecutive moments of time. The hybrid network 
consists of CNN layers and LSTM layers. The source 
data are passed to the next level of LSTM.

To illustrate the generated path, write the follow-
ing code:

import matplotlib.pyplot as plt
plt.rcParams[“font.family”]=”Times New Roman”
plt.rcParams[“font.size”]=14
fig, ax=plt.subplots(figsize=(6,6))
plt.xlim(0.15,1.1)
plt.ylim(0.15,1.1)
plt.scatter(starting_point[0],starting_point[1], 

c=”r”)
plt.scatter(ending_point[0],ending_point[1], 

c=”b”)
for i in center:
ax.add_artist(plt.Circle((i[0],i[1]),obstacle_size, 

color=”y”))

rrt=RRT(starting_point,ending_point,step_size=0.1,  
velocity_constraint=True)

flag,p_archive=rrt.planning(1000,all_point=False)

print(flag)
p_archive=np.array(p_archive)
ax.scatter(p_archive[1:1,0],p_archive[1:1,1],s=3,c=”k”,z

order=10);
for i in range(p_archive.shape[0]-1):
plt.plot(p_archive[i:i+5,0],p_archive[i:i+5,1],c=”r”)

The result of the algorithm operation is shown in Fig. 7.
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Fig. 6. System of automated support to moving objects based on 	
a mobile complex
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a                                               b	
	

Fig. 7. Visualization of the redevelopment of movement 
trajectory when changing the coordinates of obstacles or in 

the presence of moving objects: a – initial trajectory; 	
b – rebuilt trajectory

When using CNN only, the success rate reaches 74 %; 
during the hybrid application of CNN+LSTM, it amounts 
to 92 %. 

It can be assumed that when using LSTM, productivity 
increases due to the fact that the agent can plan in advance 
and know how to avoid the most likely case of failure. And 
in a model without the use of LSTM, it stumbles upon an 
obstacle when it is very close to the final coordinate of the 
movement trajectory, but, at the same time, there is no colli-
sion with an obstacle.

6. Discussion of results of designing the components for a 
computerized information processing system

Fig. 2, a shows that the neural network is trained in the 
first 450 stages with a series of steps at one stage from sev-
eral units to 270. The number of steps in the stage changes 
randomly. When training the network, after stage 450 and 
afterward the changes in the number of steps at one stage 
occur with a slight deviation. The same dependence can be 
traced in Fig. 2, b: after completing the first 450 stages of 
training, the reward increases dramatically. We can con-
clude that the neural network is trained for the selected 
environment in 450 stages with the smallest number of steps 
at one stage of 18, and the largest – 273.

Fig. 4 shows that the described and simulated model of 
the video support to moving object makes it possible not to 
lose the object of tracking from the video observation field. 
In other words, the described mathematical model involving 
the recurrent algorithms, exponential smoothing, and a Kal-
man filter allows the simulation of the process of observing 
a moving object. However, the effect of measurement errors 
can be reduced by selecting smaller coefficient values for the 
Kalman filter (Fig. 5, a, b), and, to reduce dynamic errors, 
the values of these coefficients should be large enough.

A new functional scheme has been developed, taking 
into consideration the additionally included functional fore-
casting unit, shown in Fig. 6, which makes it possible for the 
computerized system to independently decide on supporting 
moving objects.

The result of the program operation, shown in Fig. 7, a, b, 
demonstrates that the created agent successfully bypasses 
obstacles, automatically rebuilds the movement trajectory 
in case of changes in the position of obstacles. The success 
rate using LSTM is greater than that without LSTM: 92 % 
vs. 74 %. It can be assumed that the increased performance 

is due to the fact that LSTM can build an environment map 
implicitly and the agent can plan in advance and know how 
to avoid the most likely failure.

A computerized system has been developed that takes 
into consideration the influence of destabilizing factors, as 
well as increases the speed of information processing. That 
was achieved by using a combination of different algorithms 
to process information, the modern Python programming 
language, and the Construct 2 simulation environment.

Works [8, 9] examine data processing methods designed 
for stationary systems. When using ANN, for example, in 
work [22], it is not taken into consideration that the input 
data of obstacles may be unknown and constantly changing. 
Works [24, 25] describe the solution to a similar problem 
using an inverse problem, which leads to a decrease in ac-
curacy in data transmission and the speed of information 
processing. Unlike the above, the computerized system pro-
posed in this work can work in real time when the UAV or 
the robotic system itself move, with high accuracy and speed 
of information processing.

The proposed method refers to the processing of infor-
mation based on the mathematical model of UAV motion 
control [18, 19] and the methods of processing information 
described in [20]. The input factors and a change in the co-
ordinates of moving obstacles were taken into consideration. 
The proposed solution makes it possible to improve accuracy, 
performance, and maintain continuous communication in 
real time.

The limitations of this work are the unconsidered protec-
tion of information during transmission; the range of such a 
computerized system is limited to 15 km. In addition, the 
carrying capacity and natural factors were not taken into 
consideration: wind, icing, and others. 

In the future, it is planned to add the consideration of 
wind strength and other weather conditions to the experi-
ment. From a methodical point of view, it is planned to take 
into consideration the stability of movement.

7. Conclusions

1. It has been proposed to use machine reinforcement 
learning methods, in particular, the Q-Learning algorithm, 
to build a trajectory between two specified destination 
points with the possibility to bypass fixed obstacles. The 
result of the work is a program created to train a neural 
network, to calculate the UAV movement along a specified 
trajectory bypassing the obstacles. The effectiveness of 
the Q-Learning algorithm for training was also shown, 
depending on the number of steps in the stages of learning 
and on the rewards received. To determine the shortest 
path, a final table was compiled demonstrating the results 
of program execution when finding the optimal movement 
trajectory in a static environment. The constructed table 
makes it possible to determine the optimal solution for the 
next action of the agent.

It was determined that the smallest number of steps 
required to move along a specified trajectory is 18, and the 
largest ‒ 273 steps.

2. We have simulated a system for the video support 
to moving objects. The obstacle motion parameters were 
calculated using the exponential smoothing and a Kalman 
filter. A hypothesis has been verified that the effect of errors 
can be reduced when choosing lower values of coefficients α 
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and β but, to reduce the dynamic errors, the values for these 
coefficients must be chosen large enough. Accordingly, it 
is necessary to select the best option, which would ensure 
sufficient smoothing of measurement errors, as well as the 
sufficient speed, heel, and acceleration of response to the 
observed object’s maneuver.

Examples of the operation of the simulated system for the 
video support to moving objects have been provided. Depen-
dence charts were built of the maneuver intensity function 
on the coefficient α for different parameter values of the 
normalized frame size and reliability coefficient. 

The algorithm has been proposed, accounting for the 
coordinates of a moving object of observation, in particular 
obstacles.

3. A structural scheme of the computerized information 
processing system for the construction of a movement trajec-
tory in a dynamic environment has been built. In addition 

to the typically accepted components, the developed scheme 
was supplemented with an optical data processing unit and a 
forecasting unit. The optical data processing unit is used to 
highlight key points in an image and determine the position 
of the observed object. Data from the unit are sent to the 
operator’s screen and to the forecasting unit. The forecast-
ing unit extrapolates the coordinates of moving objects and 
predict the displacement of the observed moving object. A 
step-by-step algorithm has been developed for calculating 
the parameters of movement of the observed object.

4. We have planned the UAV movement trajectory in a 
dynamic environment, taking into consideration obstacles, 
by using the CNN neural network, and the CNN+LSTM 
hybrid. A program for the proposed implementation has been 
created. When using CNN only, the success rate reaches 
74 %, and, with the hybrid application of CNN+LSTM, it 
amounts to 92 %.
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