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This paper proposes a method to solve a mathematical 
programming problem under the conditions of uncertainty 
in the original data.

The structural basis of the proposed method for solv-
ing optimization problems under the conditions of uncer-
tainty is the function of criterion value distribution, which 
depends on the type of uncertainty and the values of the 
problem’s uncertain variables. In the case where indepen-
dent variables are random values, this function then is the 
conventional theoretical-probabilistic density of the distri-
bution of the random criterion value; if the variables are 
fuzzy numbers, it is then a membership function of the fuzzy 
criterion value.

The proposed method, for the case where uncertainty is 
described in the terms of a fuzzy set theory, is implemented 
using the following two-step procedure. In the first stage, 
using the membership functions of the fuzzy values of cri-
terion parameters, the values for these parameters are set 
to be equal to the modal, which are fitted in the analytical 
expression for the objective function. The resulting deter-
ministic problem is solved. The second stage implies solv-
ing the problem by minimizing the comprehensive criterion, 
which is built as follows. By using an analytical expression 
for the objective function, as well as the membership func-
tion of the problem’s fuzzy parameters, applying the rules 
for operations over fuzzy numbers, one finds a membership 
function of the criterion’s fuzzy value. Next, one calculates 
a measure of the compactness of the resulting membership 
function of the fuzzy value of the problem’s objective func-
tion whose numerical value defines the first component of 
the integrated criterion. The second component is the rate 
of deviation of the desired solution to the problem from the 
previously received modal one.

Absolutely similarly designed is the computational pro-
cedure for the case where uncertainty is described in the 
terms of a probability theory. Thus, the proposed meth-
od for solving optimization problems is universal in rela-
tion to the nature of the uncertainty in the original data. 
An important advantage of the proposed method is the 
ability to use it when solving any problem of mathemati-
cal programming under the conditions of fuzzily assigned 
original data, regardless of its nature, structure, and type
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1. Introduction

A characteristic feature of the development of the mo-
dern theory of operations research is the complexity of math-
ematical models of real systems and processes, associated 
with the desire to improve their accuracy and efficiency. The 
serious difficulties that arise along the way are due to the 
incomplete and inaccurate initial data on the status of the 
objects under study and the environment in which they ope-
rate [1–5]. The issues to adequately account for uncertainty 
manifest themselves in solving many real-world tasks, includ-
ing the rational allocation of resources, inventory manage-

ment, routing and transportation management tasks, mana-
gement of technical systems and technological processes,  
the structural and parametric optimization of complex sys-
tems, scheduling, and many others. The diversity of the 
arsenal of modern mathematics is a natural consequence 
and, above all, is determined by objective differences in the 
mathematical models for relevant practical tasks. The basic 
mathematical apparatus, originally used in solving these 
and, especially, optimization problems, is the probability 
theory. In this case, the initial approach was that the origi-
nal problems, stated under the conditions of uncertainty, 
were reduced to the standard mathematical programming 
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problems by replacing all random problem parameters with 
their averages [6–10]. The fundamental drawback of such 
optimization on average is the difficult-to-predict uncertain-
ty of the result. This flaw is particularly demonstrative in si-
tuations where the variances of random problem parameters 
are large. In this regard, a different approach was proposed, 
which used the probability that the efficiency of the system 
would be at least above the set threshold as an alternative 
criterion for optimizing the system. Therefore, to solve the 
problem, one needs to derive a function of the distribution of 
the random value of the corresponding indicator. It is clear 
that the actual possibilities of implementing this approach in 
most practical tasks are limited by the difficulties of building 
appropriate mathematical models. The situation is further 
complicated by the increasingly clear understanding of the 
inadequacy of standard theoretical-probabilistic models to 
describe systems and how they function given a small sample 
of initial data. At the same time, the axiomatic limitations 
of the possibility of using probability theory technologies 
are violated. The impossibility of correctly calculating the 
unknown distribution densities of random parameters of 
the formed models leads to results whose implementation 
quality level is not predictable. Further development of the 
theory is associated with the emergence of an effective and 
advanced alternative to the probability theory under these 
conditions – the theory of fuzzy sets. The methods from this 
theory successfully solve the problems of fuzzy logic, the con-
struction of fuzzy derivation systems, the task of analyzing 
fuzzy relationships and mapping. This theory is successfully 
developing in the following areas. Strict rules for fuzzy and 
bifuzzy numbers of the (L–R)-type have been devised [15].  
A method for determining the density of distribution for 
fuzzy numbers is proposed, which makes it possible to cal-
culate the moments of these values. Characteristic numbers 
for fuzzy numbers, used in the tasks of finding their compo-
sitions, have been introduced. The limiting theorem for the 
sum of a large number of loosely connected fuzzy numbers 
has been proven, leading to its Gaussian distribution [16].

The expansion of the arsenal of analytical and computa-
tional methods from the fuzzy set theory significantly increa-
ses the field of its practical use, bringing it closer to theoreti-
cal-probabilistic. It should be noted that the most significant 
and structurally important result of the continuing improve-
ment of the fuzzy set theory is the emerging possibility of 
unifying the arsenal of approaches, techniques, and methods 
for dealing with practical tasks, regardless of the nature and 
type of uncertainty in the optimization problems under the 
conditions of uncertainty. It follows that when one solves 
problems with different types of uncertainty while maintain-
ing the basic idea of building a method, its formal content 
and computational pattern may differ only in inconsequen-
tial details related to differences in setting the original data.  
However, that does not eliminate the task of developing 
common methods for solving optimization problems under 
the conditions of uncertainty. Still, the success of forming an 
adequate criterion and obtaining the actual solution to the 
optimization problem depends on the level of complexity of 
the relevant mathematical model. Thus, it is a relevant task to  
devise a common, uncertainty-free method for solving mathe-
matical programming problems. In the future, for certainty, 
the analysis of known results based on the methods for solving 
optimization problems under conditions of uncertainty, as 
well as the description of the proposed approaches to solving 
them will be performed in relation to the theory of fuzzy sets.

2. Literature review and problem statement

The overall mathematical model of an optimization prob-
lem with fuzzily defined parameters is conventionally sta-
ted [13, 14] as follows: it is required to find a set of variables 
X x x xn= ( )1 2, ,..., , which maximizes the objective function:

f X a a aq; , ,...,1 2( )  (1)

and satisfies the following constraints:

G X b b bi i i ip; , ,..., ,1 2 0( ) ≤  i m= 1 2, ,..., ,  (2)

where the parameters ak, k q= 1 2, ,..., ,  and bil, i m= 1 2, ,..., , 
l p= 1 2, ,..., ,  are the fuzzy numbers with the assigned mem-
bership functions:

μk ka( ),  k q= 1 2, ,..., ,  νil ilb( ),

i m= 1 2, ,..., ,  l p= 1 2, ,..., .  (3)

The general approach to solving a fuzzy problem of ma-
thematical programming [13, 17–19] is to transform original 
problem (1), (2) with fuzzy parameters into the deterministic 
problem of mathematical programming. The wording of the 
problem received takes the following form: it is required 
to find the sets X x x xn= ( )1 2, ,..., , A a a aq= ( )1 2, ,..., , B bij= ( ), 
which maximize (1) that satisfy constraints (2) and the  
following additional limitations:

μ αk ka( ) ≥ ,  k q= 1 2, ,..., ,  (4)

ν αil ilb( ) ≥ ,  i m= 1 2, ,..., ,  l p= 1 2, ,..., .  (5)

Here α is the value of the membership function of the 
problem’s parameters that is chosen from any natural con-
sideration.

The set X*, obtained from solving the problem (1) to (5), 
belongs to a combination of maximizing alternatives with a 
power not less than α. With the same power, the value f X A*,( ) 
belongs to the fuzzy assessment of this alternative X* [1].  
The drawbacks of this approach are obvious:

– the increased dimensionality and computational com-
plexity of the resulting problem compared to the original one;

– the non-predictability of the result of converting the 
levels of uncertainty of the original data into the uncertainty 
of the solution; 

– a problem-solving procedure involves choosing the 
same power of the membership to all the fuzzily assigned pa-
rameters of the problem with the same α value; in this case, 
there are no recommendations for this value.

Another common approach is related to the concept 
of the expected fuzzy value proposed in [20]. This method 
provides a determined function of the problem’s variables 
that are varied and thus converts the original fuzzy problem 
to a standard mathematical programming problem. The 
shortcomings of optimization on average have already been 
discussed.

A completely different idea leads to a method based on 
the operation of building a membership function of the fuzzy 
value of the problem’s objective function. Using this feature 
also makes it possible to transition from the original fuzzy 
problem to a clear optimization problem. Applying this me-
thod is especially effective when only the parameters for the  
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problem’s objective function are fuzzy. In this case, the pro-
cedure for constructing the membership function of the fuzzy 
value of the problem’s objective function is implemented 
as follows from [21]. Using the membership functions of 
the fuzzy parameters for the objective function calculates 
their values for which the level of membership is in any way 
set (for example, equal to α). These fuzzy parameter values 
naturally determine the value of the membership function of 
the objective function at the same level of α. Then, by chang-
ing the value of α, the corresponding values of the member-
ship function of the objective function are calculated, the set 
of which is then approximated by a suitable curve. The result-
ing numerical sets are used in a standard way to calculate the 
analytical description of the membership function of the ob-
jective function, which ensures that a clear solution is found.

Knowing the membership function of the problem’s ob-
jective function can be used to assess the level of prefe rence 
for one fuzzy function value over another. Taking into consi-
deration this circumstance, the next solution to the problem 
implements a procedure to find a sequence of solutions, in 
which the next solution is preferable to the previous one.  
At the same time, any method of zero-order can be used. 
For example, the branch and boundary method was used 
in [21] to solve the problem. It is clear that the effectiveness 
of the methods based on this variant of the original problem 
depends significantly on the level of complexity of the ana-
lytical description of the objective function. Therefore, they 
can actually be used only in problems of low dimensionality.

Let us finally consider another known approach [18]. Let 
the membership function μ f X A,( )( )  of the fuzzy value of the 
problem’s objective function is built using (1), (3) according 
to the rules given in [16, 17] (or by any other technique). 
Next, select some specific fixed value α<1 for the μ f X A,( )( ) 
membership level and solve the following equation:

μ μ αf X A y, .( )( ) = ( ) =  (6)

Since the membership functions are upward convex, the 
resulting equation has two roots:

y1 2 1
1

2
1

, , .= ( ) ( )( )− −μ α μ α

Choose the smaller one from these roots, L1, and state the 
problem to find an X* set that maximizes L1(X) and satisfies 
constraints (2). It is clear that, in this case, the body of un-
certainty that corresponds to the membership function of the 
fuzzy value of the problem’s objective function is moved as 
much as possible to the right, in the region of the large values 
of the objective function. There are obvious drawbacks to 
this approach. First, the resulting solution to the X* problem 
depends on which of the resulting roots L1 or L2 in equa-
tion (6) is used to solve the maximization problem. At the 
same time, it is clear that the solutions are different. Second, 
the question of the choice of value for α, on which the desired 
result undoubtedly depends, remains open.

The noted shortcomings of known methods of solving 
the problems of mathematical programming under the condi-
tions of uncertainty in the original data allow us to state the 
problem of searching for an alternative technology. At the 
same time, our brief analysis of available publications related 
to solving problems of mathematical programming reveals 
that there are no attempts to devise any common approach 
to solving such problems, which is not rigidly tied to their 
nature and structure, as well as to the type of uncertainty.

3. The aim and objectives of the study

The aim of this work is to devise a universal method for 
solving the problems of mathematical programming under 
the conditions of uncertainty.

To accomplish the aim, the following tasks have been set:
– to develop the concept of building a universal method 

for solving optimization problems; 
– to construct computational schemes that implement  

a universal procedure for solving optimization problems.

4. Method for solving the problems of mathematical 
programming under the conditions of uncertainty 

4. 1. The formal description of the concept of building  
a universal method for solving the problems of mathemati-
cal programming under the conditions of uncertainty

Let a mathematical programming problem be set that 
matches the formalism K A Z, ,( )  describing the objective 
function depending on the set of parameters A and the set 
of varied variables Z. In addition, the formalism G B Z, ,( )  is 
assigned that describes the region of permissible solutions, 
determined by a set of parameters В. The composition of 
formalisms K A Z,( )  and G B Z,( )  sets a certain formalism 
M K A Z G B Z, , , .( ) ( ){ }  Let the parameters A and B for the 
formalisms K A Z,( )  and G B Z,( )  are not defined accurately 
but are described, for example, in the terms of the theory of  
fuzzy sets by the set of membership functions of these parame-
ters μA Z( ),  μB Z( ).  Using these membership functions can 
determine the membership function of the criterion K A Z,( ) 
for any set Z. Similarly, this membership function can be 
determined if the uncertainty about the values A and B is 
theoretic-probabilistic and is set by the set of distribution 
densities of these parameters’ random values. Optimization 
problems under the conditions of uncertainty are solved us-
ing the next two-step computational scheme. The first step is 
to solve the original problem for any natural deterministic set 
of values for parameters A and B, such as a set of modal values 
of these parameters. The second step is to find a set Z that 
minimizes the integrated additive criterion that is formed.  
The first term of this criterion determines the numerical 
value of an important indicator of the effectiveness of the 
system, in terms of the problem considered. The value of this 
criterion’s term is calculated through the resulting member-
ship function of the problem’s criterion. It can determine, for 
example, the compactness of the objective function or the 
probability that the criterion’s numerical value is within the 
acceptable range. The second term assigns the norm of devia-
tion of the required set of variables from the modal set. The 
resulting integrated criterion should be minimized.

4. 2. A formal description of the computational scheme 
of problem-solving

The main element of this scheme is the justification, selec-
tion, and formal description of an integrated criterion for the 
quality of operation taking into consideration uncertainty.  
The importance of this choice lies in the fact that it fun-
damentally affects the level of complexity of the analytical 
description of the first term in the integrated criterion and 
the corresponding optimization problem. It is clear that the 
problem obtained is easier than the original one. However, 
the need for a solution that satisfies the original limitations 
does not make it trivial. It should be noted that the additive  
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structure of the integrated criterion makes it possible to take 
into consideration the possible difference in the importance 
of its components.

Let us move on to a more detailed description of the 
technology for solving optimization problems under the con-
ditions of uncertainty.

The structural basis of the proposed method to solve 
optimization problems under the conditions of uncertainty 
is some specific function of the distribution of criterion 
values depending on the values for the fuzzy variables of 
the problem. If independent variables are random values, 
this function then is the theoretic-probabilistic density of 
distribution, if the variables are fuzzy numbers, it is then  
a membership function of the fuzzy criteria values. Since, as 
shown in [16], a theoretical-probabilistic analog can be built 
for the membership function of fuzzy numbers, our further 
presentation involves the terms from a fuzzy set theory.

The proposed method is implemented as follows. In the 
beginning, by using the membership functions of the fuzzy 
parameters’ values, we set their values equal to modal and fit 
them in an analytical expression for the objective function. 
This raises the next deterministic problem of mathematical 
programming: it is required to find a set X x x xn= ( )1 2, ,..., , 
which maximizes the following objective function:

f X a a aq, , ,...,( ) ( ) ( )
1

0
2

0 0( )  (7)

and satisfies the following constraints:

G X b b bi i i ip; , ,..., ,1 2 0( ) ≤  i m= 1 2, ,..., ,  (8)

where the parameters ak, k q= 1 2, ,..., ,  are the fuzzy numbers 
with the membership functions μk ka( ),  accepting modal 
values ak

0.  Let X ( )0  be a solution to the resulting problem. 
Let us solve another deterministic problem of mathematical 
programming: it is required to find a set X x x xn= ( )1 2, ,..., , 
which minimizes the integrated criteria, which is to be built 
as follows. By using an analytical expression for the objective 
function, as well as the membership function of the prob-
lem’s fuzzy parameters, based on the rules of operations over 
fuzzy numbers [15, 16], we find the membership function 
of the fuzzy value of the objective function of the problem 
μ f X A, .( )( )  Next, we introduce the following criterion:

Φ μ

λ λ μ

f X A A

F X A F f X A

, ,

, , .

( )( )  =

= ( ) + −( ) ( )( )( )
( )

( )

0

1
0

21  (9)

In ratio (9), the first term determines the deviation of 
the solution X from the modal X(0), while the second term 
sets a measure of the compactness of the resulting member-
ship function of the fuzzy value of the problem’s objective 
function.

The measure of the compactness of the membership func-
tion is to be defined as the ratio of squares of two areas. The 
first is the area under the curve corresponding to the mem-
bership function of the fuzzy value of the problem’s objective 
function, derived to solve X. The second is the value of this 
area, calculated for the modal set of X(0) variables. It is clear 
that the lower this ratio, the lower the level of uncertainty of 
the solution.

Given the above, we obtain the following expression for 
criterion (9).

Φ1
0

0 0

0 0

1

μ λ

λ
μ

f X A A
X X X X

X X

T

T
, , ( )

( ) ( )

( ) ( )( )( )  =
−( ) −( )

( ) +

+ −( )
ff X A f X A

f X A f X A

, ,

, ,

( )( ) ( )






( )( ) ( )






−∞

∞

( ) ( )

−∞

∞

∫

∫

d

d

2

0 0μ 

2 .  (10)

The regularization parameter λ establishes the desired 
ratio between the conflicting requirements to the criterion: 
the maximum compactness of the membership function of the 
fuzzy value of the problem’s objective function and the mi-
nimal deviation of the solution derived from the modal one. 
The typically low computational complexity of the proposed 
method makes it possible to use it effectively when solving  
a large number of practical tasks.

The technology of implementing the method is especially 
simple if the objective function of the problem is separable. In 
this case, the task of assessing the compactness of the crite-
rion is simplified by the possibility of its decomposition into 
additive components.

At the same time, a direct method of obtaining this solution 
can be used to solve problems under the conditions of uncer-
tainty. Let us consider the technology of applying this method 
using a transport problem of linear programming as an example.

The canonical transport problem of linear programming 
is stated as follows. The production points of some product 
A1, A2, …, Am, and the consumption points of this product 
B1, B2, …, Bn are assigned. For each production point Ai, the 
volume of production ai is defined, i = 1, 2, …, m, and for each 
point Bj – the volume of consumption bj, j = 1, 2, …, n. It is 
also assumed that the routes of transportation of the product 
from manufacturers to consumers are known and the corre-
sponding matrix Cij of the averages of transportation cost per 
unit of the product i m= 1 2, ,..., ,  j n= 1 2, ,...,  is assigned. It 
is required to find a matrix X xij= ( ) of the values of planned 
transportation volumes, which minimizes:

L x c xij ij
j

n

i

m

( ) =
==

∑∑
11

 (11)

and satisfies the following constraints:

x aij i
j

n

=
=

∑
1

,  i m= 1 2, ,..., ,  (12)

x bij j
i

m

=
=
∑

1

,  j n= 1 2, ,..., ,  (13)

a bi j
j

n

i

m

=
==

∑∑
11

.  (14)

In this case, to take into consideration the stochastic 
nature of the cost of transportation, a set of averages cij( ) of 
these costs is introduced for each pair supplier-consumer, 
i = 1, 2, …, m, j = 1, 2, …, n. Then the objective function (11), 
which determines the total average cost of transportation, 
takes the following form:

L x c xij ij
j

n

i

m

( ) =
==

∑∑
11

.  (15)

In this situation, the canonical transport problem is 
transformed to the following: it is required to find a trans-
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portation plan X xij= ( ), minimizing (15) and satisfying 
constraints (12) to (14). The resulting problem is solved by 
the standard method of potentials. The drawbacks of this 
problem’s model are obvious. First, given the high values of 
variances in the original random parameters of the problem, 
it may be unsatisfactory to solve the problem in the form (2),  
(4) to (6) for each specific implementation of the plan. Se-
cond, the variance in the evaluation of the result (the average 
criterion value) under these conditions would be unaccept-
ably large and, therefore, the criterion could prove to be little 
informative.

We shall improve the model (12) to (15) by using the 
probability that random total costs do not exceed a given 
threshold as a more informative criterion for the effectiveness 
of transportation. It is clear that this probability depends 
simultaneously on the values of mathematical expectations 
and variances in the random transportation costs for each 
route, it will be the greater, the smaller these statistical char-
acteristics of the corresponding random variables.

Let the results of preliminary studies for each pair (I, j)  
(producer-consumer) determine the estimates of mathemati-
cal expectation mij  and variance σij

2  of the random value of 
the cost of transporting a unit of product cij .  Let us assume 
that the density of distribution of the corresponding ran-
dom values is Gaussian. Then, for the transportation plan 
X xij= ( ), the random value of the total cost of transportation 

L x A xij ij
j

n

i

m

( ) =
==

∑∑
11

 follows a gaussian distribution with pa-

rameters m m xij ij
j

n

i

m

S =
==

∑∑
11

 and σ σS
2 2 2

11

=
==

∑∑ ij ij
j

n

i

m

x .  In this case, 

the probability that the random total cost L(x) exceeds the 
allowable threshold dП is determined by the following ratio:

P L x d

L x m
L x

d

( ) ≥( ) =

= −
( ) −( )











( )

∞

∫

Π

S

S

SΠ

1

2 2

2

2πσ σ
exp .d

Transform the resulting ratio:

1

2 2

1

2

2

2πσ σ
σ

π

S

S

S S

S

Π

exp −
( ) −( )











( )

( ) −
=

=

=

∞

∫
L x m

L x
L x m

ud

d

ee u
u

d m

−

−

∞

∫
2

2 d
Π S

Sσ

.  (16)

The problem of minimization (16) is equivalent to the 
problem of maximization:

J x
d m

d m x

x

ij ij
j

n

i

m

ij ij
j

n

i

m

( ) =
−

=

=
−








==

==

∑∑

∑∑

Π S

S

Π

σ

σ

11

2 2

11

1
22

1111

2 2

11

=
−






====

==

∑∑∑∑
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d
A

x m x

x

ij ij ij
j

n

i

m

j

n

i

m

ij ij
j

n

i

m

Π

σ


=

=
−












==

==

∑∑

∑∑

1
2

11

2 2

11

1

d
A

m x

x

ij ij
j

n

i

m

ij ij
j

n

i

m

Π

σ
22

11

2 2

11

1
2

=







==

==

∑∑
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s x

x

ij ij
j

n

i

m

ij ij
j

n

i

m

σ

;

A x s
d
A

mij
j

n

i

m

ij ij= = −
==

∑∑
11

, .Π  (17)

Thus, a non-linear optimization problem has been ob-
tained, with a fractional-quadratic objective function and 
linear constraints of the transportation type [22]. It is conve-
nient to replace the problem of function maximization (17) 
with the equivalent problem of function minimization:

G x

x

s x

ij ij
j

n

i

m

ij ij
j

n

i

m
( ) =








==

==

∑∑

∑∑

σ2 2

11

11

2 .  (18)

To solve the resulting problem in the fractional-quadratic 
programming form, we introduce a new variable:

y
s xij ij

j

n

i

m0

11

1
=

==
∑∑

,

hence:

y s xij ij
j

n

i

m

0
11

1=
==

∑∑ .  (19)

Formulate a new set of variables:

y y xij ij= 0 ,  i m= 1 2, ,..., ,  j n= 1 2, ,..., .  (20)

In this case, ratios (12) to (14), (18), (19) take the fol-
lowing form:

G y yij ij
j

n

i

m

( ) =
==

∑∑ σ2 2

11

,  (21)

s yij ij
j

n

i

m

=
==

∑∑ 1
11

.

x
y

y aij
j

n

ij i
j

n

= =
= =

∑ ∑1

01 1

,  i m= 1 2, ,..., ,  (22)

x
y

y bij ij j
i

m

i

m

= =
==
∑∑ 1

0 11

,  j n= 1 2, ,..., , 

hence:

y y aij i
j

n

=
=

∑ 0
1

,  i m= 1 2, ,..., ,  (23)

y y bij j
i

m

=
=
∑ 0

1

,  j n= 1 2, ,..., .  (24)

Now, the original problem is reduced to the follow-
ing form: it is required to find a set Y = (yij), i = 1, 2, …, m, 
j = 1, 2, …, n, which minimizes (21) and satisfies constraints 
(22) to (24). Let us solve the resulting problem of quadratic 
programming.

Introduce a Lagrange function:

Φ y y y y a

y y

ij ij
j

n

i

m

i
ij
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.
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Next:

d y

dy
y

ij
ij ij i j

Φ( )
= − − =2 02σ λ μ ,

i m= 1 2, ,..., ,  j n= 1, , 2,...,

yij
ij

i j= +( )1
2 2σ

λ μ ,  i m= 1 2, ,..., ,  j n= 1, . 2,...,  (25)

By fitting (25) in (22) to (24), we obtain:

1
2 2

1
0σ

λ μ
ij

i j
j

n

iy a+( ) =
=

∑ ,  i m= 1 2, ,..., , 

1
2 2 0

1 σ
λ μ

ij
i j j

i

m

y b+( ) =
=
∑ ,  j n= 1, . 2,...,

By solving the resulting system of linear algebraic equa-
tions, we derive expressions for {λi}, {μj} via y0 and the initial 
data {ai}, {bj}. By substituting these expressions in (25), we 
obtain ratios for yij through y0. Next, we find the value of y0  
from (19). Finally, we calculate the values of the original 
variables xij by using (20). The problem has been solved.

Let us consider the simplest example of applying the pro-
posed procedure. Let the following transport problem be set.  
There are two supply points for some product in the quanti-
ties of a1 and a2 units, as well as two points of consumption 
of the product in the volume of b1 and b2 units. Let us set the 
parameters for the relevant transportation network: a1 = 90, 
a2 = 120, b1 = 80, b2 = 130, and the matrix of average shipping 
costs of a unit from suppliers to consumers:

M
m m

m m
=







=






11 12

21 22

12 10

13 11
.

Let us introduce the matrix X = (xij), which assigns the 
desired transportation plan. In this case, the problem’s objec-
tive function, the average total cost of transportation, takes 
the following form:

R x m xij ij
ji

( ) =
==

∑∑
1

2

1

2

.

Constraints for the variables xij are defined by the follow-
ing expressions:

x x a11 12 1 90+ = = ,  x x a21 22 2 120+ = = ,

x x b11 21 1 80+ = = ,  x x b12 22 2 130+ = = .

It is required to find a plan X = (xij) that minimizes the 
objective function R x( )  and satisfies the introduced con-
straints. A solution to this simple problem, derived by the 
method of the minimum element of the M matrix, takes the 
following form:

x11
0 0( ) ,=  x12

0 90( ) ,=

x21
0 80( ) ,=  x22

0 40( ) .=

The total average cost of transportation corresponding to 
the resulting plan X(0) is:

R X 0 90 10 80 13 40 11 2340( )( ) = ⋅ + ⋅ + ⋅ = unit.

Next, solve this problem for the case when a matrix of 
variances of random shipping costs of a unit of cargo is set:

σ
σ σ
σ σ

2 11
2

12
2

21
2

22
2

7 5 20

17 5 5
=







=






.

.
.

In accordance with the proposed methodology, we find 
a constraint-satisfying transportation plan that minimizes 
the probability that the accidental value of the total cost of 
transportation exceeds the specified threshold. Build a La-
grange function:

Φ y y y y a

y y

ij ij
ji

i
ij

ij i
j

j ij

( ) = − −
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.

and solve the resulting system of linear algebraic equations 
relative to the variables introduced yij. These equations take 
the following form:

2 02σ λ μij ij i jy − − = ,  i = 1 2, ,  j = 1,  2.

Hence:

yij
ij

i j= +( )1
2 2σ

λ μ ,  i = 1 2, ,  j = 1,  2.

By substituting the resulting expressions for yij and 
the numerical values of the problem’s parameters in the 
equations for constraints, we obtain the following system of 
algebraic equations:

y y y11 12 1 1 1 2 0

1
15

1
40

90+ = +( ) + +( ) =λ μ λ μ ,

y y y21 22 2 1 2 2 0

1
35

1
10

120+ = +( ) + +( ) =λ μ λ μ ,

y y y11 21 1 1 2 1 0

1
15

1
35

80+ = +( ) + +( ) =λ μ λ μ ,

y y y12 22 1 2 2 2 0

1
40

1
10

130+ = +( ) + +( ) =λ μ λ μ .

The solution to this system produces a description of the 
parameters λi, μj via y0: λ1 0300= y ,  λ2 0100= y ,  μ1 0600= y , 
μ2 0900= y .

Hence:

y y11 1 1 0

1
15

60= +( ) =λ μ ,  y y12 1 2 0

1
40

30= +( ) =λ μ ,

y y21 2 1 0

1
35

20= +( ) =λ μ ,  y y22 2 2 0

1
10

100= +( ) =λ μ .

Next, considering (20), we find the desired transporta-
tion plan.

x11
1 60( ) ,=  x12

1 30( ) ,=  x21
1 20( ) ,=  x22

1 100( ) .=

The solution is derived. 
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We shall evaluate the practical usefulness of the proposed 
procedure for optimizing a transportation plan under the 
conditions of uncertainty. A scalar preference criterion used, 
in accordance with the recommendations from [23], is the 
probability that a random value of the total cost of trans-
portation exceeds the assigned threshold. As a threshold, we 
choose a value exceeding the average total cost of transpor-
tation by 15 %.

For plan X(0), derived from optimizing on average with-
out taking into consideration the variances in the cost of 
transportation, we obtain:

R m xij ij
ji
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For plan X(1), derived by considering the variances in the 
cost of transportation, we obtain:
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Thus, the probability of exceeding the acceptable thresh-
old in the event of uncertainty in the original data is twice 
less than the previous one. 

It should be noted that the fundamental advantage of the 
proposed method of solving a transportation problem under 
the conditions of uncertainty is the possibility to derive an 
accurate and rapid result due to a one-time solution to the 
problem of fractional-quadratic programming.

5. Discussion of results of devising a method for 
solving mathematical programming problems under the 

conditions of uncertainty

Thus, a universal method has been proposed for solving 
the problems of mathematical programming under condi-
tions where the original data are random values or fuzzy 
numbers with known distribution densities or membership 
functions, respectively. The practical independence of the 
computational scheme to solve a problem on the type of 
uncertainty is a fundamental difference and an undoubted 

advantage of the method. The method is based on the de-
veloped new concept about solving optimization problems, 
the implementation of which is not tied to the structure 
and features of the problem under consideration, the nature 
of the objective function, and constraints for its variables.  
It is important, however, that if the level of uncertainty of 
the original data is such that there is no analytical descrip-
tion of their distribution densities (or membership func-
tions), then the problem is solved by using the technology of 
continual linear programming [24]. In addition, it is signi-
ficant that in a very common private case, when a problem’s 
objective function is separable, the computational procedure 
for solving the problem is significantly simplified. At the 
same time, the desired solution can be obtained by applying 
the method of fractional-nonlinear optimization.

The reported results can be interpreted and explained as 
follows.

First, the possible difficulties in solving the original 
problem of mathematical programming and its complexity 
due to the uncertainty of the original data do not affect 
the structure and technology of the proposed method. The 
formulated concept and the process of implementing the de-
veloped computational scheme reduce the original problem 
of mathematical programming, regardless of its complexity, 
to a simpler problem of minimizing the integrated criterion 
being constructed.

Second, the proposed method resolves the issue related 
to solving problems of mathematical programming under the 
conditions of uncertainty, regardless of its type.

The limitations that may arise in the process of im-
plementing the method are determined by the difficulty 
of the procedure for constructing a membership function 
of the fuzzy value of the original criterion. In this regard, 
the direction of further research is to advance the method 
in order to simplify the computational procedure of its 
application in cases where the criterion of the original 
problem is complexly dependent on parameters. A possible 
approach to solving the problem, in this case, is to linearize 
the criterion by expanding it into a series. It is clear that 
the accuracy of a relevant solution to the problem could be 
compromised.

6. Conclusions

1. A concept for building a universal method to solve 
optimization problems under the conditions of uncertainty 
has been proposed. The fundamental basis of this concept 
is the reduction of the original optimization problem, 
stated under the conditions of uncertainty, to the deter-
ministic problem to be solved by the appropriate method 
of mathematical programming. In this case, the fuzzily set 
variables for the original problem are described by their 
modal values.

2. A computational scheme for implementing a universal 
optimization method, consisting of two stages, has been de-
veloped. In the first stage, the original problem is reduced to 
a deterministic problem, which is solved by the appropriate 
method. In the second stage, the desired solution to the 
problem is found by minimizing the integrated criterion, 
which takes into consideration the compactness of the 
membership function of the problem’s objective function, 
and the rate of difference between a given solution and  
a modal one.
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