На рис. 5 видны глобулярные твердые частицы медного осадка, отнесенные под действием центробежной силы к краю катода. С увеличением перегрузки размер частиц, сдвинутых относительно поверхности осадка, значительно возрастает. Врастание частиц в матрицу (рис. 5,а,б) и конфигурация освободившихся мест, ранее занятых такими частицами (рис. 5,б) свидетельствует о затвердевании медной матрицы из жидкого состояния.

Аналогичные результаты были получены и при изучении особенностей развития осадков электроосаждаемого никеля за краем катода в направлении силового воздействия.

Таким образом, преимущественное развитие осадков электроосаждаемых металлов за краем катода в направлении действия центробежной силы параллельно фронту кристаллизации доказывает достоверность открытого явления.

5. Выводы

- 1. В результате проведения модельных экспериментов установлено преимущественное развитие осадков электроосаждаемых металлов за краем катода в направлении действия центробежной силы параллельно фронту кристаллизации.
- 2. Полученный результат доказывает достоверность явления электрохимического фазообразования металлических материалов через стадию жидкого состояния.

Литература

- Girin, O. B. Phenomenon of Precipitation of Metal Being Electrodeposited, Occurring via Formation of an Undercooled Liquid Metal Phase and its Subsequent Solidification. Part 1. Experimental Detection and Theoretical Grounding [Text] / O. B. Girin // Materials Development and Processing. – Weinheim: WILEY-VCH, 2000. – Vol. 8. – P. 183–188.
- 2. Гирин, О. Б. Механизм образования жидкой фазы электроосаждаемых металлов [Текст] / О. Б. Гирин, В. П. Хлынцев // Электронная обработка материалов. 2000. № 3. С. 13–18.
- 3. Гирин, О. Б. Увеличение плотности электроосаждаемых металлов под действием центробежной силы [Текст] / О. Б. Гирин, И.Д. Захаров // Восточно-Европейский журнал передовых технологий. 2011. № 5/5. С. 4–7.
- 4. Гирин, О. Б. Волнообразное течение поверхностных слоев электроосаждаемых металлов под действием центробежной силы [Текст] / О. Б. Гирин // Восточно-Европейский журнал передовых технологий. − 2011. − № 5/5. − С. 21−25.

Вирішено електродинамічне завдання за визначенням параметрів імпульсних сигналів для знищення шкідників кореневої системи саджанців плодових культур

Ключові слова: біологічні шкідники, коренева система саджанців

Решена электродинамическая задача по определению параметров импульсных сигналов для уничтожения вредителей корневой системы саженцев плодовых культур

Ключевые слова: биологические вредители, корневая система саженцев

The electrodynamic problem of determining the parameters of pulse signals for the pests destruction of root system of seedlings of fruit crops is solved

Keywords: biological pest, root system of seedlings

УДК 621.374

ВЛИЯНИЕ ЭМП ДЛЯ УГНЕТЕНИЯ В ПОЧВЕ БИОЛОГИЧЕСКИХ ВРЕДИТЕЛЕЙ КОРНЕВОЙ СИСТЕМЫ РАСТЕНИЙ

А. В. Козак

Ассистент

Кафедра «Энергетика и электротехнические системы в

Подольский государственный аграрно-технический университет

ул. Шевченко, 13, г. Каменец-Подольский, Хмельницкая обл., Украина, 32300

Контактный тел.: (057) 712-42-32

1. Введение

Установлено, что в садоводстве потери урожая и снижение его качества, причиняемые вредными насекомыми и клещами, пока еще велика [1]. Кроме того, почвенные насекомые, повреждая и проникая в корне-

вую систему саженцев, вызывают грибковые и инфекционные заболевания корневой системы [1].

В настоящее время для борьбы с вредителями корневой системы плодовых культур применяют, в основном, ядохимикаты [1]. Применение ядохимикатов для уничтожения почвенных вредителей корневой

системы растений является не всегда эффективным и, кроме того, ядохимикаты наносят вред окружающей среде и уничтожают полезные насекомые. Многолетние исследования, связанные с воздействием электромагнитного поля (ЭМП) на вредные микроорганизмы, дают основание по их применению для уничтожения вредителей корневой системы саженцев плодовых культур [2].

2. Анализ предшествующих исследований

Литературный анализ показывает, что электромагнитные излучения разной интенсивности находят применение для уничтожения патогенных микроорганизмов, лечения животных и людей [2]. Также установлено, что наиболее эффективным для уничтожения вредителей растений является импульсное излучения [2]. Однако следует отметить, что эти результаты невозможно использовать для уничтожения вредителей корневой системы саженцев плодовых культур.

3. Цель статьи

Целью статьи является проведение теоретических исследований по определению оптимальных биотропных параметров импульсного электромагнитного излучения для уничтожения вредителей корневой системы саженцев плодовых культур.

4. Изложение основного материала

Применение импульсного электромагнитного поля для уничтожения биологических вредителей (личинок майского жука, проволочников, личинок хруща и др.), находящихся в почве, сопровождается нагревом тканей организма вредителей или разрушением мембран биологических клеток. С точки зрения электродинамики все задачи подобного типа сводятся к задаче дифракции электромагнитных волн на области, содержащей биологические вредители, которые моделируются изотропной средой с комплексной диэлектрической проницаемостью (ДП). В качестве модели почвы рассматривается среда с относительной ДП, описываемой выражением [3]:

$$\varepsilon = a \sum_{n=1}^{N} V_n \varepsilon_n + \frac{1 - a}{\sum_{n=1}^{N} V_n \varepsilon_n}$$
 (1)

где V_n , ϵ_n — объемная доля и диэлектрическая проницаемость компонент смеси (связанная и свободная вода, воздух, твердые частицы и т.п.); a — свободный параметр. Будем для определенности предполагать, что почва состоит из четырех компонент (N=4).

Для решения задачи введем декартовую систему координат XYZ таким образом, что граница раздела воздух — почва совпадает с плоскостью XY, а полупространство Z<0 заполнено почвой. Также считаем, что на плоском раскрыве антенны задан ток с плотностью $\vec{j}(t)$, зависящий от времени следующим образом:

$$\vec{j}(t) = F(t)\vec{e}_x \tag{2}$$

Здесь \vec{e}_x , \vec{e}_y , \vec{e}_z – орты декартовой системы коор

динат, а функция $F(t, T, \tau, I)$ равна нулю при t<0, а при $t\ge0$ является периодическим прямоугольным импульсом; I — амплитуда импульса тока; τ — длительность импульса; T — период повторения импульсов.

Возбужденное источником (2) электромагнитное поле должно удовлетворять системе нестационарных уравнений Максвелла [4]:

при z>0; rot
$$\vec{H}_1 = \varepsilon_0 \frac{\partial \vec{E}_1}{\partial t} + \vec{j}$$
 rot $\vec{E}_1 = -\mu_0 \frac{\partial \vec{H}_1}{\partial t}$; (3)

при z<0: rot
$$\vec{H}_2 = \epsilon \epsilon_0 \frac{\partial \vec{E}_2}{\partial t} + \sigma \vec{E}_2$$
; rot $\vec{E}_2 = -\mu_0 \frac{\partial \vec{H}_2}{\partial t}$, (4)

где ε_0 , μ_0 — диэлектрическая и магнитная проницаемости вакуума (предполагается, что относительная диэлектрическая проницаемость воздуха равна единице); ε и σ — соответственно относительная ДП и удельная проводимость почвы.

Пусть область D, находящаяся в почве, содержит биологические вредители. Тогда электромагнитное поле в этой области должно удовлетворять уравнениям Максвелла:

$$\operatorname{rot}\vec{H}_{3} = \varepsilon_{1}\varepsilon_{0}\frac{\partial\vec{E}_{3}}{\partial t} + \sigma_{1}\vec{E}_{3} \quad \operatorname{rot}\vec{E}_{3} = -\mu_{0}\frac{\partial\vec{H}_{3}}{\partial t}$$
 (5)

где ϵ_1 и σ_1 — эффективные ДП и удельная проницаемость области D.

Величины $\epsilon 1$ и $\sigma 1$ выражаются через ДП ϵ и проводимость σ почвы, и диэлектрическую проницаемость $\tilde{\epsilon}$ и проводимость $\tilde{\sigma}$ биологического вредителя по

следующей формуле:

$$\varepsilon_1 = (1 - b)\varepsilon + b\tilde{\varepsilon}, \sigma_1 = (1 - b)\sigma + b\tilde{\sigma},$$
 (6)

где параметр $b=V_1/V; V$ – объем области $D; V_1$ – объем области, занимаемой биологическими объектами.

На границе раздела сред ЭМП должно удовлетворять условию сопряжения и начальным условиям, которые при выбранной зависимости плотности тока от времени имеют вид:

$$\vec{E}_{1}|_{t<0} = \vec{H}_{1}|_{t<0} = 0, \ \vec{E}_{2}|_{t<0} = \vec{H}_{2}|_{t<0} = 0, \ \vec{E}_{3}|_{t<0} = \vec{H}_{3}|_{t<0} = 0.$$
 (7)

Решение данной задачи проводилось в два этапа. На первом этапе решается задача о прохождении ЭМП, возбуждаемого плотностью тока (2) в почву. Далее, решается задача о взаимодействии прошедшего в почву поля с областью D, в которой находятся биологические вредители.

Для решения этих задач используется операционный метод (преобразования Лапласа по временной переменной) и метод объемных интегральных уравнений [5, 6].

В результате решения задачи первого этапа было получено выражение для напряженности электриче-

ского поля в почве на границе области с биологическими вредителями:

$$E_{x2}(z,t) = -\frac{\sqrt{\frac{\mu_0}{\epsilon_0}}I}{\pi i} \times \int_{a-i\infty}^{a+i\infty} \frac{\left(1 - e^{-p\tau}\right)e^{pt + \gamma_2 z - \gamma_1 h}}{\sqrt{p}\left(1 - e^{-pT}\right)\left(\sqrt{p} + \sqrt{\epsilon p + \frac{\sigma}{\epsilon_0}}\right)} dp \qquad (8)$$

где h — расстояние от раскрыва антенны до почвы; $a{>}0.$

Поле (9), прошедшее почву, дифрагирует на области D. В результате возникает вторичное \ni M поле $\ddot{\mathbf{H}}_3$

 $\vec{\mathbf{E}}_3$, преобразование Лапласа которого должно удов-

летворять системе уравнений Максвелла (6). Решение задачи второго этапа для напряженности электрического поля в области, содержащей биологических вредителей, было получено в виде:

$$\begin{split} E_x &= \frac{1}{2\pi i} \int_{a_{-i\infty}}^{a_{+i\infty}} \overline{E}_x e^{ipt} dp \\ \text{где } \overline{E}_x &= B \Big[e^{\gamma_i z_0} - k_0^2 \Big(\overline{\epsilon} - \overline{\epsilon}_1 \Big) G \Big] \; ; \; G = G1 + G2. \end{split}$$

$$G_1 &= -\frac{1}{4\pi k^2} \times \times \int_{-h_1 - d_1}^{-h_1} e^{\gamma_i z} \times \\ \times dz' \int_{-d/2}^{d/2} \Bigg[\frac{e^{-ikR_+} \Big(d/2 - x_0 \Big) \Big(1 + ikR_+ \Big)}{R_+^3} - \frac{e^{-ikR_-} \Big(d/2 - x_0 \Big) \Big(1 + ikR_- \Big)}{R_-^3} \Bigg] dy \\ G_2 &= \frac{1}{4\pi} \int_{-h_1 - d_1}^{-h_1} dz \int_{-d/2}^{d/2} dx \int_{-d/2}^{d/2} \frac{e^{-ikR}}{R} dy \\ \vdots \\ B &= \sqrt{\frac{\mu_0}{\epsilon_0}} I \frac{\Big(1 - e^{-p\tau} \Big) e^{-\gamma_1 h}}{\Big(1 - e^{-p\tau} \Big) p} \\ \vdots \\ \end{split}$$

 $R_{\pm} = \sqrt{\left(\pm d / 2 - x_0\right)^2 + \left(y - y_0\right)^2 + \left(z - z_0\right)^2}.$

$$\begin{split} \gamma_{_1} = -ik_{_0}\sqrt{\epsilon + i\frac{\sigma}{p\epsilon_{_0}}} \; ; \; k = k_{_0}\sqrt{\epsilon\epsilon_{_0}\mu_{_0}} \; ; \; k_{_0} = p\sqrt{\epsilon_{_0}\mu_{_0}} \; ; \\ \overline{\epsilon} = \epsilon + i\frac{\sigma}{\epsilon_{_0}p} \; ; \; \overline{\epsilon}_{_1} = \epsilon_{_1} + \frac{\sigma_{_1}}{p\epsilon_{_0}} \; . \end{split}$$

h — расстояние от антенны до границы раздела воздух-почва; h_1 — глубина, на которой расположены биологические вредители.

В дальнейшем вместо величины ${\bf E}_{\bf x}$ введем усредненную характеристику напряженности электрического поля, а именно:

$$E_{x}^{cp} = \frac{1}{\tau V} \int_{t_{0}}^{t_{0}+\tau} dt \int_{D} E_{x} dV$$
 (10)

где
$$t_0 = \sqrt{\epsilon_0 \mu_0} h + \sqrt{\epsilon \epsilon_0 \mu_0} h_1$$
 — время, за которое им-

пульс доходит до области D, содержащей биологических вредителей; τ – длительность импульса; V – объем области D.

С помощью (10) были проведены численные расчеты по определению оптимальных параметров электромагнитного импульсного сигнала, при которых среднее значение напряженности электрического поля достигает максимального значения. Исследовалась зависимость $\mathbf{E}_{\mathbf{x}}^{\mathrm{cp}}$ от скважности импульса \mathbf{Q} = \mathbf{T}/τ .

Как следует из анализа результатов оптимальное значение скважности $Q=T/\tau$ электромагнитного импульса соответствует значению $Q=200,\tau=100$ нс. При этом значении скважности реализуется максимум среднего значения напряженности электрического поля в области, содержащей биологические вредители. Нормированное значение напряженности электрического поля, в зависимости от вида почвы, лежит в пределах 0,5...0,7.

Литература

- 1. Поляков И. Я. Энтомологические основы защиты растений от вредителей / Поляков И. Я. // Энтомологическое обозрение. 1966. T. 47. Вып. 2. C. 165 180.
- 2. Исмаилов Э. III. Биофизическое действие СВЧ-излучений / Э. III. Исмаилов. М.: Энергоатомиздат, 1987. 144 с.
- 3. Подковко Н. Ф. Модель комплексной диэлектрической проницаемости почвогрунтов в диапазоне СВЧ / Н. Ф. Подковко // Вопросы радиоэлектроники. 1990. Вып. 1. С. 73 80.
- 4. Семенов А. А. Теория электромагнитных волн / А. А. Семенов. М.: Изд. Моск. университета, 1968. 317 с.
- 5. Дмитриев В. И. Интегральные уравнения в краевых задачах электродинамики / В. И. Дмитриев, Е. В. Захаров. М.: Изд-во Моск. ун-та, 1987. 167 с.
- 6. Лаврентьев М. А. Методы теории функций комплексного переменного / М. А. Лаврентьев, Б. В. Шабат. М.: ГИФМЛ, 1958. 647 с.