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1. Introduction

Spatial problems related to the theory of elasticity are 
well studied for simply connected bodies. However, in fields 
such as mining, geomechanics, construction mechanics, the 
most interesting are those spatial regions whose boundary 
consists of several non-intersecting surfaces of different or-
thogonal curvilinear coordinate systems. These can include 
underground tunnels, mines, mine workings, gas and oil 
storage facilities. When designing such structures, there are 
many different factors to consider in terms of their strength. 
Various cavities, inclusions, cracks produce a special effect 
while their geometric arrangement is of particular impor-
tance. In this regard, the boundary problems from the theory 
of elasticity are considered for respective multiply connected 
bodies. A model of those underground structures that is 
worth considering is a homogeneous isotropic half-space 
with an infinite circular cylindrical cavity, located parallel 
to its border.

The results from studying the boundary value problems 
related to the theory of elasticity are of interest at the stage 
of designing underground construction objects. An import-
ant stage is the construction and study of the correspond-

ing model of such structures, as well as the analysis of its 
stress-strain state under different types of loads at boundary 
surfaces. Of particular interest in the practical sense is the 
distribution of stresses near cavities, as well as the identifi-
cation of regions in an elastic body where the stress is maxi-
mal. Analyzing the stress-strain state of multiply connected 
bodies makes it possible to determine those regions where 
the stresses are concentrated. Therefore, such studies are 
relevant; data to be obtained could be used by engineers in 
construction mechanics and mining at the stage of modeling 
underground structures.

2. Literature review and problem statement

Paper [1] examines the axisymmetric problem from the 
theory of elasticity for a semi-infinite body with a spherical 
cavity. The solution to equilibrium equations is written in 
the Papkovic-Neuber form and expressed through harmonic 
functions. Work [2] addresses the identification of stress 
and deformation fields around the stress-free surface of an 
ellipsoidal cavity, located in a strained elastic medium . Such 
a problem is important for assessing the structural safety of 
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Designing and constructing underground structures for vari-
ous purposes, such as tunnels, mines, mine workings, necessitate 
the development of procedures for calculating their strength and 
reliability. The physical model of such objects worth considering 
is a homogeneous isotropic half-space that contains an infinite-
ly long hollow cylinder, located parallel to its border. One can 
explore problems related to the mechanics of deformable solids for 
such a multiply connected body.

This paper reports the proofs of addition theorems for the 
basic solutions to the Lamé equation regarding the half-space 
and cylinder recorded, respectively, in the Cartesian and cylin-
drical coordinate systems. This result is important from a theo-
retical point of view in order to substantiate a numerical-analyti-
cal method ‒ the generalized Fourier method. This method makes 
it possible to solve spatial boundary problems from the theory of 
elasticity and thermo-elasticity for isotropic and transversal-iso-
tropic multiply connected bodies. Similar to the classical Fourier 
method, the general solutions to equilibrium equations have been 
used here but in several coordinate systems rather than one.

From a practical point of view, this method has made it pos-
sible to investigate the combined problem of elasticity theory 
regarding the multiply-connected body described above. The 
analysis of the stressed-strained state of this elastic body has 
made it possible to draw conclusions on determining those regions 
that are most vulnerable to destruction. The highest values are 
accepted by normal stresses in the region between the boundar-
ies of the half-space and the cylinder. Changing the σy component 
along the Ox axis corresponds to the displacements assigned on 
the half-space. The τxy component contributes less to the distri-
bution of stresses than σx and σy. The applied aspect of using the 
reported results is the possibility to apply them when designing 
underground structures
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underground mine workings. An analytical solution record-
ed in ellipsoid coordinates has been obtained. Problems on 
stress concentration in the vicinity of a spheroidal nanoscale 
cavity, located near the free surface, are considered in [3]. 
The boundary problem solving methods described in pa-
pers [1‒3] are applicable to unlimited elastic regions with 
finite cavities.

Monograph [4] examines the main boundary problems 
from the theory of elasticity for a half-space weakened by a 
cavity located at an arbitrary depth from the flat boundary. 
To solve them, a method of potential in a modified form 
and a method of fictitious regions are used. The surface of 
the cavity is considered to belong to the Lyapunov surface 
class. This method cannot be applied to an elastic medium  
with an infinite cavity. The pressure of a plate on the half-
space with a circular cylindrical cavity, the surface of which 
is reinforced by elastic elements, is considered in work [5]. 
The problem is reduced to the Fredholm integral equation 
of the second kind. An analysis of the distribution of stresses 
around the underground hole, which is subjected to asym-
metrical surface load, was carried out in [6]. The holes with 
sharp angles were considered. The study involves the method 
of boundary integral equations and the Neumann series. Re-
ducing the problems related to the theory of elasticity to in-
tegral equations, described in works [5, 6], is possible purely 
for the specified regions. An analytical method to study the 
concentration of stresses around the cavity of an arbitrary 
form is proposed in [7]. This method involves the possibility 
of modeling the effect of the cavity on the redistribution of 
internal forces by introducing fictitious forces acting on its 
surface. The elastic half-space with a cavity in the form of a 
rectangular parallelepiped and a quadrangle pyramid was 
considered. The half-space is loaded with concentrated force 
applied to its free surface. A given method is applicable to 
non-limited regions with finite-size cavities.

In work [8], a finite-element method is applied to solve a 
problem on the deformation of underground mine workings 
of a circular cross-section in a mountain range. The problem 
of the concentration of stresses in an infinite medium  in a 
hydrostatic compression field, with two spherical inclusions, 
is solved in [9]. However, a finite-element method used in 
works [8, 9] is not applicable to infinite regions.

Paper [10] reports an accurate solution to a non-sta-
tionary problem for an infinite elastic layer containing a 
rigid cylindrical inclusion, with smooth contact conditions 
superimposed on the cylindrical surface. To build a solution, 
the axisymmetric equations of motion were treated with the 
integral transformations by Laplace and Weber.

A generalized Fourier method (GFM) is successfully 
applied to solve the problems related to the theory of elas-
ticity in multiply connected bodies [11, 12]. This method 
makes it possible to find solutions to the basic and mixed 
boundary problems from the theory of elasticity and ther-
mo-elasticity for isotropic and transversal-isotropic multi-
ply connected canonical bodies. Article [13] investigates 
the contact problem of thermo-elasticity for the elastic 
half-space with a rigid spherical inclusion. To solve it, the 
authors used addition theorems for the solutions to Lamé 
equations for the ball and cylinder. Paper [14] explores a 
problem on the effect of axial-concentrated force on the 
elastic transversal-isotropic half-space with a still inclu-
sion in the form of a rotation paraboloid. The problem was 
solved by the generalized Fourier method with the help 
of addition theorems for the solutions to the equilibrium 

equations of a transversal-isotropic rotation paraboloid 
and solutions for the half-space. The authors of work [15] 
use the generalized Fourier method to solve a boundary 
problem from the theory of elasticity for a cylinder with 
cylindrical cavities forming a hexagonal structure. To meet 
the boundary conditions, they applied addition theorems of 
solutions to the Lamé equation for a cylinder, recorded in 
cylindrical coordinate systems that are shifted relative to 
each other. The generalized Fourier method employed in 
works [13‒15] to solve boundary problems for half-space 
with inclusions, as well as for a cylinder with cavities, could 
be applied to solving problems related to the theory of elas-
ticity for the half-space with an infinite cylindrical cavity.

Solutions to the second, first, and mixed problems from 
the theory of elasticity for isotropic half-space with an 
infinite circular cylindrical cavity parallel to its boundary 
are reported in works [16‒18]. Paper [18] considers a case 
where stresses are set at the boundary of the half-space, and 
displacements on the cylindrical surface. The generalized 
Fourier method was used to solve the problems. At the same 
time, vector theorems of the addition of basis solutions to a 
Lamé equation for the half-space and cylinder were used to 
satisfy the boundary conditions. However, works [16‒18] 
report the addition theorems without proofs. Therefore, in 
order to fully substantiate the generalized Fourier method 
for solving the boundary problems related to the theory of 
elasticity in a half-space with an infinite cylindrical cavity, it 
is necessary to prove the addition theorems for the half-space 
and cylinder.

The authors of work [19] solved a boundary problem for 
the half-space with two cylindrical cavities, on the boundary 
surfaces of which the contact type conditions are assigned. 
The stress-strain of the layer with a cylindrical cavity on a 
hard base is investigated in [20]. he addition theorems of the 
solutions to the Lamé equation for the half-space and cylin-
der were also used to solve the problems in [19, 20].

Hence, it follows that different methods have solved 
the boundary problems related to the theory of elasticity 
for unlimited elastic bodies with cavities of finite size. 
Works [16‒20] report solving boundary problems for the 
half-space and layer with an infinite cylindrical cavity or 
cavities in different statements. However, the mixed problem 
in elasticity theory for half-space with an infinite cylindrical 
cavity in the case where displacements are assigned at the 
boundary of the half-space, and stresses on the surface of the 
cylinder, is not solved. Therefore, it is advisable to consider a 
solution to this boundary problem.

3. The aim and objectives of the study

The aim of this work is to solve the mixed problem in 
elasticity theory for half-space with an infinite circular 
cylindrical cavity using the generalized Fourier method. In 
practical terms, this would make it possible to investigate 
the stress-strain state of this spatial region, in particular, 
near a cylindrical cavity.

To accomplish the aim, the following tasks have been set:
‒ to prove the addition theorems of solutions of the Lamé 

equation for the half-space and cylinder, wrote in Cartesian 
and cylindrical coordinate systems; 

‒ to propose an analytical-numerical algorithm to solve 
the mixed problem of elasticity theory for half-space with a 
cylindrical cavity parallel to its boundary.
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4. Materials and methods to investigate the mixed problem 
in elasticity theory for the half-space with a cavity

To solve the mixed problem of the theory of elasticity 
in the half-space with an infinite cylindrical cavity parallel 
to its boundary, a generalized Fourier method was used. 
It is based on the application of addition theorems of basis 
solutions to the Lamé equation for the respective canonical 
surfaces that make up the boundary of a multi-connected 
body. The addition theorems are used to solve problems in 
different scientific fields but, in most studies, they are of a 
private nature. In order to substantiate the generalized Fou-
rier method regarding a given problem, we have proven the 
addition theorems of solutions to the Lamé equation for the 
half-space and cylinder.

Consider two equally oriented coordinate systems with 
the combined centers ‒ the Cartesian {x, y, z} and the cylin-
drical {ρ, φ, z}, with a center at point O. The connection be-
tween the coordinates is set by the following ratios: x=ρcosφ, 
y=ρsinφ, z=z, where 0≤ρ<∞, 0≤φ<2π, ‒∞<z<∞.

The elastic medium  is to be considered homogeneous 
and isotropic. Then the equilibrium Lamé equation in dis-
placements in the absence of volumetric forces takes the 
following form

( ) 1
1 2 grad div 0,u u

−∆ + − σ =
 

   (1)

where u


 is the vector of elastic displacements, σ is the Pois-
son coefficient.

Consider the sets of linearly independent particular solu-
tions to equation (1) in the specified coordinate systems (k=1, 
2, 3, m=0, ±1, ±2,…):

( ) ( ) ( ) ( ) ( )1
1 1, , ; , , , ; , ,u x y z N u x y z± ±l µ = l µ


  (2)

( )( )
( ) ( ) ( ) ( ) ( )( )( )

2

11
2

, , ; ,

4 1 grad , , ; , ,

u x y z

u e y u x y z

±

± ±−

l µ =

=l σ − + l µ




  (3)

( ) ( ) ( ) ( ) ( )1
3 3, , ; , , , ; , ,u x y z N u x y z± ±l µ = l µ


  (4)

( ) ( ) ( )2
, , , ; , , ; ,k m k mR z N r zρ ϕ l = ρ ϕ l


   (5)

( ) ( ) ( )2
, , , ; , , ; ,k m k mS z N s zρ ϕ l = ρ ϕ l


   (6)

( ) 1
1 grad,N τ −= l  ( ) ( )( )1

3 3 ,N i rot eτ τ−= l ⋅


 

1, 2,τ =

( ) ( ) ( ) ( )( )( )2 21
2 3grad 4 1 grad .N e z−= l ρ∂ ∂ρ + σ − − ∂ ∂



In formulae (2) to (6), ( )
ke τ  (k=1,2,3, τ=1.2) denote the 

orts of the Cartesian (τ=1) and cylindrical (τ=2) coordinate 
systems. Functions u(±)(x, y, z; λ, µ), rm(ρ, φ, z; λ), sm(ρ, φ, z; λ), 
where m=0, ±1, ±2, …, are the Cartesian and cylindrical basis 
solutions to the Laplace equation:

( ) ( ), , ; , ,i z y i xu x y z e± l ±γ + µl µ =  2 2 ,γ = l + µ    (7)

( ) ( ), , ; ,i z im
m mr z e Il + ϕρ ϕ l = lρ    (8)

( ) ( ) ( ), , ; .
m i z im

m ms z sign e Kl + ϕρ ϕ l = l l ρ   (9)

Here, Im(λρ) and Km(λρ) are the modified Bessel’s func-
tions of the 1st and 2nd kind, m=0, ±1, ±2,…, are the pa-
rameters of λ, µ∈(‒∞, ∞). The harmonic functions for a 

cylinder (8) and (9) are considered in work [21], and func-
tions (7) are presented there in a slightly different form. 
The functions ( ), , , ; ,k mR zρ ϕ l


 ( )( ), , , ; ,k mS zρ ϕ l


 regular in the 
region {ρ<R} ({ρ<R}), where R>0 are the internal (external) 
basis solutions to a Lamé equation for a cylinder. The func-
tions ( ) ( ), , ; , ,ku x y z+ l µ


 ( ) ( )( ), , ; , ,ku x y z− l µ


 regular in the re-
gion{y<h} ({y>h}), are the internal (external) basis solutions 
to a Lamé equation for the half-space.

An elastic half-space with an infinite cylindrical cavity 
parallel to its boundary is a two-connected body bounded 
by the canonical surfaces of the Cartesian and cylindrical 
coordinate systems. To solve the boundary problem of the 
theory of elasticity regarding this elastic body, a generalized 
Fourier method [11] has been used. The method implies the 
following:

– for each boundary surface of a multiply connected ca-
nonical body, a system of basis solutions to the homogeneous 
Lamé equation is introduced; 

– a general solution to the problem is constructed in 
the form of a superposition of the basis solutions to a Lamü 
equation for simply connected bodies in the corresponding 
coordinate systems;

– using addition theorems, a general solution to the prob-
lem is written in the coordinate system associated with each 
boundary surface; 

– substituting a general solution into the boundary con-
ditions leads to an infinite system of linear algebraic equa-
tions with a completely continuous operator within space 
l2 and the right-hand sides belonging to l2. This makes it 
possible to solve the system by the reduction method.

5. Results of investigating the mixed problem of elasticity 
theory for half-space with a cylindrical cavity 

5. 1. Proving the addition theorems of basis solutions 
to a Lamé equation for half-space and cylinder

Theorem 1. For the arbitrary λ∈R, the decomposition of 
the internal basis solutions to a Lamé equation for the half-
space ( ) ( ), , ; ,pu x y z+ l µ


 into internal basis solutions for the 

cylinder ( )p, , , ;mR zρ ϕ l


 (p=1, 2, 3) is valid:

( ) ( )

( )( ) ( )1 ,

, , ; ,

, , , ; ,

p

m

p m
m

u x y z

i R z

+

∞

=−∞

l µ =

= ω l µ ρ ϕ l∑




1, 3,p =   (10)

( ) ( ) ( )( )
( )
( ) ( ) ( )

2
2 1

1,

2, 3,

, , ; , ,

, , ;
,

, , ; 4 1 , , ;

m

m

m

m m

u x y z i

m R z

R z R z

∞
+ −

=−∞

l µ = l ω l µ ×

 µ ρ ϕ l +
 ×
 +γ ρ ϕ l + µ − σ ρ ϕ l 

∑



   (11)

where ω1(λ, µ)=(µ‒γ)/λ.
Proof. We use a ratio linking harmonic functions record-

ed in the Cartesian and cylindrical coordinate systems [21].

( )( ) ( )1 ,
my i x i m

m
m

e i I e
∞

γ + µ − ϕ

=−∞

= µ − γ l lρ∑   (12)

and the fact that the series in (12) is evenly converging at 
any λ∈R. Taking into consideration (12), we transform the 
function u(+)(x, y, z; λ, µ):
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( ) ( )( ) ( )

( )( ) ( )

1

1

,

, , , ; .

mi z i m
m

m

m

m
m

u e i I e

i r z

∞
+ l ϕ

=−∞

∞

=−∞

= ω l µ lρ =

= ω l µ ρ ϕ l

∑

∑   (13)

Then, considering expressions (5) and (6) wrote for 
k=1.3, we obtain:

( )( ) ( ) ( )

( )( ) ( )

( )( ) ( )

1

1

1 1,

, , ; , grad , , ; , /

grad , , , ; /

, , , ; ,

m

m
m

m

m
m

u x y z u x y z

i r z

i R z

+ +

∞

=−∞

∞

=−∞

l µ = l µ l =

= ω l µ ρ ϕ l l =

= ω l µ ρ ϕ l

∑

∑





( )( ) ( )( )( )
( )( )

( )( ) ( )

1
3

1
1

1 3,

, , ; , rot , , ; ,

rot ,

, , , ; .

z

m

z m
m

m

m
m

u x y z i u x y z e

i e i r

i R z

+ +−

∞
−

=−∞

∞

=−∞

l µ = l l µ ⋅ =

 
= l ω l µ =  

= ω l µ ρ ϕ l

∑

∑

 




 (14)

Prove formula (11). Considering decomposition (13) and 
assuming y=ρsinφ=‒iρ(eiφ‒e‒iφ)/2, record yu(+)(x, y, z; λ, µ):

( ) ( )

( )( ) ( )

( )( )
( ) ( ) ( )( )

1

1

1 1

, , ; ,

sin ,

,
0.5 .

mi z i m
m

m

m

i z

i m i m
m m

y u x y z

e i I e

i
i e

I e e

+

∞
l ϕ

=−∞

∞
l

+ ϕ − ϕ
=−∞

l µ =

= ρ ϕ ω l µ lρ =

 ω l µ ×
 = − ρ
 × lρ − 

∑

∑  (15)

In (15), the expression in brackets will be marked 
through Φ; transform it:

( )( ) ( )

( )( ) ( )

( )( )
( ) ( ) ( )( )

1

1 1

1

1 1

1

1

2
1 1 1

,

,

,

, .

m im
m

m

m im
m

m

m im

m

m m

i I e

i I e

i e

I I

∞ − ϕ
−

=−∞

∞ + ϕ
+

=−∞

∞ − ϕ

=−∞

− +

Φ = ω l µ lρ −

− ω l µ lρ =

= ω l µ ×

× lρ + ω l µ lρ

∑

∑

∑

Considering ( ) ( )2
1 1, 2 , / 1,ω l µ = µω l µ l +  and using a for-

mula for the derivative given in [22] 

∂Im(λρ)/∂ρ=λ(Im‒1(λρ)+Im+1(λρ))/2, 

write Φ in the following form:

( )( )
( ) ( ) ( )( )

11
1

1 1

2 ,

, .

m i m

m

m m

i e

I I

∞ −− ϕ

=−∞

+

Φ = l ω l µ ×

× ∂ lρ ∂ρ + µ ω l µ lρ

∑

Using the formula given in [22] 

ρIm+1(λρ)=ρ(∂Im(λρ)/∂ρ)/λ‒mIm(λρ)/λ, 

where m=0, ±1, ±2,…, transform ρΦ to the following form:

( )( )
( ) ( )( )

2
12 ,

.

m im

m

m m

i i e

I m I

∞
− ϕ

=−∞

ρΦ == l ω l µ ×

× γ ρ∂ lρ ∂ρ + µ lρ

∑
   (16)

Substitute the ratio for ρΦ from (16) into expression (15)

( ) ( ) ( )( )

( ) ( )

2
1, , ; , ,

, , ;

m

m

m

y u x y z i

m r z

∞
+ −

=−∞

l µ = l ω l µ ×

∂× γ ρ + µ ρ ϕ l∂ρ

∑

and, taking into consideration representation (5) recorded 
for k=1.2, find

( ) ( )( )
( )( ) ( )

( )( ) ( ) ( )

( )( ) ( )

( )( ) ( )

( )

( )( ) ( ) ( )

2
1

2
1

1 1,

1 2,

2

1

grad , , ; ,

, grad , , ;

, grad , , ;

, , , ;

, , , ;

4 1

, grad , , ; .

m

m
m

m

m
m

m

m
m

m

m
m

m

z m
m

y u x y z

i m r z

i r z

i m R z

i R z

i e r zz

+

∞
−

=−∞

∞

=−∞

∞

=−∞

∞

=−∞

−

∞

=−∞

l µ =

= µl ω l µ ρ ϕ l +

∂+γ l ω l µ ρ ρ ϕ l =∂ρ

µ
= ω l µ ρ ϕ l +

l
γ

+ ω l µ ρ ϕ l −
l

− σ − γ l ×

∂× ω l µ − ρ ϕ l∂

∑

∑

∑

∑

∑






 (17)

Substitute the resulting expression for the term 
grad(yu(±)(x, y, z; λ, µ)) from (17) into the right-hand side 
of (3). In this case, one of the terms would contain the fol-
lowing series

( )( ) ( )

2

1 , , , ; .

y

m
x m

m

y

e

ei r zx

e y

−

∞

=−∞

 − γ l ×
 

∂  +ω l µ ρ ϕ l∂  ×
∂  + ∂  

∑







Transform it using ratios (13), (7), (4) and formula (14) 
recorded for k=3:

( ) ( ) ( )

( ) ( )

( )( ) ( )

( )( ) ( )

2

2

2 1
3

1
1 3,

, , ; ,

, , , ; .

y x y

x y

z

m

m
m

e e e u x y zx y

i e i e u

i rot u e u

i R z

+−

+−

+ +− −

∞
−

=−∞

 ∂ ∂− γ l + l µ = ∂ ∂ 

= µl −γ + µ =

= − µl = − µl =

= − µl ω l µ ρ ϕ l∑

  

 

 



Substitute the resulting expression into (3), finally, write:

( ) ( )

( )( )
( )

( )
( ) ( )

2

1,

2
1 2,

3,

, , ; ,

, , ;

, , , ; .

4 1 , , ;

m

m

m
m

m

u x y z

m R z

i R z

R z

+

∞
−

=−∞

l µ =

 µ ρ ϕ l +
 
 = l ω l µ +γ ρ ϕ l +
 
+ µ − σ ρ ϕ l  

∑









Theorem 1 is proven. 
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Theorem 2. At y>0, the integral representations of the 
external basis solutions to a Lamé equation for the cylinder 

( ), , , ;k mS zρ ϕ l


 (k=1, 2, 3, m=0, ±1, ±2,…) through external 
basis solutions for the half-space ( ) ( ), , ; ,ku x y z− l µ


 (k=1, 2, 3), 

where ω2(λ,µ)=(µ‒γ)/|λ | are valid:

( ) ( )

( ) ( )( )

,

1
2

, , ; 0.5 sign

, , , ; , d ,

m

k m

m
k

S z i

u x y z
∞

−−

−∞

ρ ϕ l = − l ×

× γ ω l µ l µ µ∫




1, 3,k =   (18)

( ) ( )

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2,

2 1
1

2 2
2 2

3

, , ; 0.5 sign

, , ; ,

, , , ; , d ,

4 1 , , ; ,

m

m

m

S z i

m u x y z

u x y z

u x y z

−−

∞
− −

−∞ −

ρ ϕ l = − l ×

 µ − l γ l µ −
 
 × ω l µ −l l µ + γ µ
 
 + µ − σ l µ 

∫








 (19)

Proof. Using the following formula from [21] that holds 
for y>0 and m∈R,

( ) ( )

( )( )1 1

0.5

d ,

mi m
m

m
y i x

K e i

e

ϕ

∞
− − −γ + µ

−∞

l ρ = − ×

× µ − γ l γ µ∫   (20)

transform the functions sm(ρ, φ, z; λ) (m=0,±1,±2,…):

( ) ( )

( ) ( ) ( )1
2

, , ; 0.5 sign

, , , ; , d ,

m

m

m

s z i

u x y z
∞

−−

−∞

ρ ϕ l = − l ×

× γ ω l µ l µ µ∫ .  (21)

Considering ratios (2) and (4), record functions 
( ), , , ;k mS zρ ϕ l


 in the following form:

( )

( ) ( ) ( )

1
1,

1
2 1

, , ; grad

0.5 sign , d ,

m m

m m

S z s

i u

−

∞
−−

−∞

ρ ϕ l = l =

= − l γ ω l µ µ∫





( ) ( )

( ) ( ) ( )

1
3,

1
2 3

, , ; rot

0.5 sign , d .

m m z

m m

S z i s e

i u

−

∞
−−

−∞

ρ ϕ l = l =

= − l γ ω l µ µ∫

 



Prove formula (19). Consider function ( )2, , , ;mS zρ ϕ l


and, using representation (21), transform the first term in 
formula (6) at k=2:

( ) ( )

( ) ( )

( )
( )

( )

1
2

2

grad , , ;

grad , , ;

grad d

0.5 sign .

grad d

m

m

m

m

m

s z

x y s zx y

ix u

i

y u

∞
− −

−∞

∞
−

−∞

 ∂ρ ρ ϕ l = ∂ρ 

 ∂ ∂= + ρ ϕ l = ∂ ∂ 

  
ω µγ µ −    = − l    − ω µ    

∫

∫
 (22)

Introduce the designation ( )2( ), , /m
mH l µ = µω l µ γ  and, 

by applying the integration for parts, transform the first 
integral in (22) to the following form:

( )

( )
( ) ( ) ( )

, d

,
, d d .

i x y i z
m

m
m

ix e H

Hy u
H u

∞
µ −γ + l

−∞

∞ ∞−
−

−∞ −∞

l µ µ =

∂ l µµ
= l µ µ − µ

γ ∂µ

∫

∫ ∫   (23)

Considering (23), by introducing a gradient under the 
sign of integral, write (22) in the following form:

( ) ( )

( ) ( )( )

( ) ( )

( ) ( )( )
( )

( ) ( )( ) ( )( )

( ) ( ) ( )

1

2

1
2

grad 0.5 sign

, grad d

, grad d

, grad d

0.5 sign

, , grad d

, grad , , ; , d

m

m

m

m

m

m

m
m

m

s i

H y u

H u

yu

i

H y u

H u x y z

∞
− −

−∞

∞
−

−∞

∞
−

−∞

∞
−−

−∞

∞
−

−∞

 ∂ρ = − l × ∂ρ 

 
l µ µ γ µ − 

 
 

× − ∂ l µ ∂µ µ − = 
 
 
 − ω l µ µ  

= − l ×

 
l µ µγ − ω l µ µ − 

 ×


− ∂ l µ ∂µ l µ µ
 

∫

∫

∫

∫

∫
.




 (24)

Transform the following expressions:

( ) ( ) ( )1 2 2
2 2, , , ,m m

mH −l µ µγ − ω l µ = −l γ ω l µ   (25)

( ) ( )( )2 2 1
2, ,m

mH m− −∂ l µ ∂µ = γ ω l µ l γ − µ   (26)

and substitute them into (24). Expressing the following 
functions from formulae (2), (3)

( ) ( ) ( ) ( )1grad , , ; , , , ; , ,u x y z u x y z− −l µ = l l µ


( ) ( )( )
( ) ( ) ( ) ( ) ( )2

grad , , ; ,

, , ; , 4 1 , , ; , ,y

y u x y z

u x y z u x y z e

−

− −

l µ =

=l l µ − σ − l µ
 

substitute them into (24):

( ) ( )

( )
( ) ( )

( ) ( )
( ) ( ) ( )

2 1
1

2 3
2 2

2

grad 0.5 sign

, , , ; , d .

4 1 , , ; ,

m

m

m

y

s i

m u

u x y z

u x y z e

−−

∞
−−

−∞ −

 ∂ρ = − l × ∂ρ 

 µ − l γ l −
 
 × γ ω l µ −l l µ − µ
 
 − − σ l l µ 

∫






 (27)

Using (21), the second term in formula (6) at k=2 is writ-
ten in the following form:

( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( )1
2

grad , , ;

, , ;

0.5 sign

, , , ; , d .

z m

x y m

m

m
x y

e z s z

e x e y s z

i

i e e u x y z
∞

−−

−∞

− ∂ ∂ ρ ϕ l =

= ∂ ∂ + ∂ ∂ ρ ϕ l =

= − l ×

× γ ω l µ µ − γ l µ µ∫



 

 
 (28)

Substituting expressions (27), (28) into the same formu-
la, as well as the following function
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( ) ( )( ) ( ) ( )3rot , , ; , , , ; , ,zi u x y z e u x y z− −l µ = l l µ
 

we obtain:

( ) ( )

( )
( ) ( )( )

( ) ( )
( ) ( ) ( )

2,

2
1

2 2
2 2

3

, , ; 0.5 sign

, , ; ,

, , , ; , d ,

4 1 , , ; ,

m

m

m

S z i

m u x y z

u x y z

u x y z

−

∞
−−

−∞ −

ρ ϕ l = − l ×

 µ − γ l l µ −
 
 × γ ω l µ −l l µ + µ
 
 + µ − σ l µ 

∫









0, 1, 2,....m = ± ±

Theorem 2 is proven.

5. 2. An analytical-numerical algorithm for solving 
the mixed problem of elasticity theory for half-space with 
a cylindrical cavity parallel to its boundary

Consider the region Ω, a half-space filled with a homoge-
neous isotropic medium and containing an infinite circular 
cylindrical cavity parallel to its boundary. The Cartesian 
{x, y, z} and cylindrical {ρ, φ, z} coordinate systems are to be 
associated to the boundary surfaces of the region so that the 
Oy axis is perpendicular to the boundary of the half-space, 
and the Oz axis is directed along the axis of the cylinder. 
Denote the cylinder’s radius through a, h is the distance 
from the cylinder axis to the boundary of the half-space. The 
boundary surfaces of the half-space and the cylinder, set by 
the equations y=h and ρ=a, would be denoted through S1 
and S2. The region Ω can be described by a system of inequal-
ities: {y<h, ρ>a, h>a}.

Consider the mixed problem in elasticity theory for the 
region Ω in the following statement. Search for a solution to 
the homogeneous Lamé equation (1), which, on boundary 
surfaces, satisfies the boundary conditions:

( )
1

01 x, ,
S

u u z=
 

     (29)

( )
2

02 , .
S

Fu Fu z= ϕ
 

    (30)

Here Fu


 is the vector of elastic stresses, and the as-
signed functions ( )01 x,u z


 and ( )02 ,Fu zϕ


 are represented in 

the form of absolutely converging series and integrals:

( ) ( ) ( )
3

1
01

1

, , d d ,i z i x
j j

j

u x z C e e
∞ ∞

l + µ

= −∞ −∞

= l µ l µ∑ ∫ ∫
 

  (31)

( ) ( )
3

02
1

, d .m i z i m
j j

j m

Fu z A e e
∞∞

l + ϕ

= =−∞ −∞

ϕ = l l∑ ∑ ∫
 

  (32)

At the same time, functions Сj(λ, µ) are limited, the  

( )m
j

m

A
∞

=−∞

l∑  series is absolutely converging at all λ∈R, and  
 
vectors je


 ( j=1, 2, 3) are expressed by the following formulae:

( ) ( )( )2 2
1 1 20.5 ,ie e i e e ϕ= +
  

 
( ) ( )( )2 2

2 1 20.5 ,ie e i e e− ϕ= −
  

 

( )2
3 3 .e e=
 

 (33)

To solve the problem, a generalized Fourier method is 
applicable that employs the addition theorems 1 and 2 of the 
solutions to a Lamé equation for the half-space and cylinder 
proven above in chapter 5. 1. The solution u


 to problem (1), 

(29), (30) is written in the form of a linear combination of 

external solutions for the cylinder ( ), , , ;k mS zρ ϕ l


 and inter-
nal solutions for the half-space ( ) ( ), , ; , :pu x y z+ l µ



( )

( ) ( )

3

,
1

3

1

d

, d d .

k m k m
k m

p p
p

u B S

H u

∞∞

= =−∞ −∞

∞ ∞
+

= −∞ −∞

= l l +

+ l µ µ l

∑ ∑ ∫

∑ ∫ ∫




  (34)

Functions ( ), , , ;k mS zρ ϕ l


 and ( ) ( ), , ; ,pu x y z+ l µ


 are as-
signed by formulae (6) and (2) to (4), and the unknown in-
tegral densities Bkm(λ) and Hp(λ,µ) are to be found as a result 
of meeting the boundary conditions of the problem.

Satisfy boundary condition (32) on surface S2. To this 
end, we use formulae (10), (11) in theorem 1 that ex-
pressing the internal basis solutions for the half-space 

( ) ( ), , ; ,pu x y z+ l µ


 through the internal basis solutions for 
the cylinder ( ), , , ; ,k mR zρ ϕ l


 and write the term in expres-

sion (34) in the cylindrical system of coordinates:

( )

( )

3

,
1

3 3

,
1 1

, d d ,

km k m
k m

m
p pk k m

p k m

u B S d

H f R

∞∞

= =−∞ −∞

∞ ∞ ∞

= = =−∞−∞ −∞

= l l +

 
+ l µ µ l  

∑ ∑ ∫

∑ ∑ ∑∫ ∫




  (35)

where functions ( ),m
pkf l µ  (m=0, ±1, ±2,…) are defined in [16]. 

Using the ratio given in [23] for the stress vector ,Fu


 oper-
ating at a certain surface with an external normal vector ,n



( )
( )

1
1 2 div

2 ,
, grad 0.5 rot

n
Fu G u

n n

− σ − σ +
=  

+ + × 


 

 

where G is the shift module, in expression (35) move on to 
the stresses:

( ) ( )

( )
( )

( )

2 2

2

3

,
1

3 3

1 1 ,

, , ; d

,
, d d .

, , ;

km k mS S
k m

m
pk

p
p k m k m S

Fu B FS z

f
H

FR z

∞∞

= =−∞ −∞

∞ ∞ ∞

= = =−∞−∞ −∞

= l ρ ϕ l l +

 l µ ×
 + l µ µ l

× ρ ϕ l  

∑ ∑ ∫

∑ ∑ ∑∫ ∫

 

   (36)

Here, functions ( )
2

, , , ; ,k m S
FS zρ ϕ l


 ( )
2

, , , ;k m S
FR zρ ϕ l


are  
 
the stresses that act at surface S2 with the normals ( )

2n e+
ρ= −

 
 

and ( )
2n e−

ρ=
 

 [17]:

( )
2

3

,
1

,m i z im
k j jk m S

j

FS z a e el + ϕ

=

= l∑
   

( )
2

3

,
1

.m i z im
k j jk m S

j

FR h a e el + ϕ

=

= l∑
 

   (37)

Using representations (37), we write down the vector 
Fu


 from (36) in the coordinate form at surface S2 and, by 
satisfying boundary condition (30) at it, we obtain a system 
of linear algebraic equations relative to Bkm (λ):

( ) ( )

( ) ( ) ( )

3

1

3

1

, , d ,

m
km k j

k

m m
j p jp

p

B z a

A H q

=

∞

= −∞

l l =

= l − l µ l µ µ

∑

∑ ∫   (38)
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where ( ) ( ) ( )
3

1

, , ,m m m
jp j pq h a fα α

α=

l µ = l l µ∑  j=1,2,3. the j’1,2,3.  
 
The system’s (38) determiner at σ∈[0, 1/2) is not zero, and, 
at |m|≥2, it is limited at the bottom by the quantity С(σ)
(λ2a2+m2)Km-1(|λ |a) Km(|λ |a) Km+1(|λ |a) [24].

Satisfy boundary condition (29) at surface S1. Using in-
tegral representations (18), (19) of the external solutions for 
the cylinder ( ), , , ;k mS zρ ϕ l


 through the external solutions for 

the half-space ( ) ( ), , ; , ,lu x y z− l µ


 proven in theorem 2, trans-
form the first term in expression (34):

( ) ( ) ( )

( ) ( )

3 3

1 1

3

1

, d d

, .

m
km k l l

k m l

p p
p

u B g u

H u d d

∞ ∞∞
−

= =−∞ =−∞ −∞

∞ ∞
+

= −∞ −∞

= l l µ µ l +

+ l µ µ l

∑ ∑ ∑∫ ∫

∑ ∫ ∫

 


 (39)

The ( ),m
k lg l µ  (m=0, ±1, ±2, …) functions have been 

defined in [16]. Using the coordinate representations of 
functions from [16]:

( ) ( ) ( ) ( )
1

3
1

1

, , ; , , ,i z i x
p pS

u x y z d e e+ l + µ
ξ ξ

ξ=

l µ = l µ∑ 
 1,2,3,p =

( ) ( ) ( ) ( )
1

3
1

1

, , ; , , ,i z i x
l lS

u x y z d e e− l + µ
ξ ξ

ξ=

l µ = l µ∑   1,2,3,l =

record the function u


 from (39) at the surface S1 in the 

following form:

( ) ( ) ( )

( ) ( )
( )

1

3 3

1 1
3

3

1
1

1

, ,

, ,

d d .

S

m
km k l l

k m l

p p
p

i z i x

u

B g d

H d

e e

∞

ξ
= =−∞ =∞ ∞

ξξ=−∞ −∞
=

l + µ
ξ

=

 
l l µ l µ + 

  ×
 = + l µ l µ  

× µ l

∑ ∑ ∑

∑∫ ∫ ∑







By satisfying boundary condition (29) at the surface S1, 
we derive a system of linear algebraic equations relative to 
Hp(λ, µ) (p=1,2,3):

( ) ( )

( ) ( ) ( ) ( )

3

1

3 3

1 1

, ,

, , , ,

p p
p

n
j n j l l

j n l

H d

C B g d

ξ
=

∞

ξ ξ
= =−∞ =

l µ l µ =

= l µ − l l µ l µ

∑

∑ ∑ ∑   (40)

where ξ=1, 2, 3. The system’s (40) determinant is different 
from zero and satisfies the inequality D2(λ, µ)=γ(3‒4σ)
e3γh/λ2>γe3γh/λ2 at σ∈[0, 1/2), similar to the problem of the 
theory of elasticity in displacements [16]. Express Hp(λ, µ) 
from system (40)

( )

( ) ( )
( )

( ) ( )

1
2

3 3

3

1 1

1

,

, , ,ˆ, ,

p

j n

p n
j n j l l

l

H D

B

C
g d

−

∞

ξ ξ
ξ= = =−∞ ξ

=

l µ = ×

 l ×
 × ν l µ l µ − × l µ l µ  

∑ ∑ ∑ ∑

where νξp(λ,µ) (ξ, p=1,2,3) are the algebraic complements 
to elements of the system's matrix. By substituting Hp(λ, µ) 

into (38), we obtain three infinite systems of linear algebraic 
equations relative to Bkm(λ):

( ) ( ) ( ) ( )
3

1

.m n m
k m k j j n k

j n

B G B Q
∞

= =−∞

l = l l + l∑ ∑   (41)

The coefficients and the right-hand sides of the system 
( ),m n

k jG l  ( )m
kQ l  take the following form:

( ) ( )
( ) ( )

1

1

3

1

, d ,

m n m
k j

m m n
r k r j

r

G D a

w a F

−

∞

= −∞

l = l ×

× l l µ µ∑ ∫

( ) ( )

( ) ( ) ( )

1

1

3

1

, .

m m
k

m m m
r k r r

r

Q D a

w a A L d

−

∞

= −∞

l = l ×

 
× l l − l µ µ  ∑ ∫

The system of equations (41) can be recorded as 
( ) ,I G b q+ =

   where G  is the system’s operator. Provided 
that the boundary surfaces a<h are not intersected, the 
operator G  is quite continuous within space l2, and the 
right-hand side 2.q l∈


 This follows from the convergence 

of the series ( ) 2
,m n

k j
m n

G
∞ ∞

=−∞ =−∞

l∑ ∑  ( ) 2m
k

m

Q
∞

=−∞

l∑  (k, j=1,2,3) at  
 
a<h for all λ∈(‒∞, ∞). It follows from Hilbert’s alternative 
that system (41) of the mixed problem in elasticity theory in 
the region Ω is solvable, and has the only solution belonging 
to l2. The system can be solved approximately by the reduc-
tion method given in [25].

We have investigated the stress-strain state of the elastic 
half-space with an infinite circular cylindrical cavity par-
allel to its boundary, for the case where displacements are 
set on the surface of the half-space while the surface of the 
cylinder is free from stresses.

A numerical analysis of the problem was carried out 
for the functions ( ) ( ) ( )( )2

01 , cos 1 ,yu x z q z x d e= − l +
 

 
( ) ( )02 , 2 0,Fu z Gϕ =

 
 σ=0.25, q=1, λ=1, d=1, assigned at the 

borders of region Ω, and for different values of the quantity 
ε=a/h.

To estimate the convergence rate of the reduction meth-
od, the functions u


 and Fu


 were calculated at surfaces S1 

and S2 at different values of the quantity ε and the order n 
of system (41). Table 1 gives the values of σρ/E on the cy-
lindrical surface S2 at z=0. For the rest of the Fu


 vector 

components, we derive values of the same or lesser order. For 
the boundary condition (30) in the half-space, the accuracy 
of 10-7 is achieved at lower n values.

Table	1

Values	of	σρ/E	on	cylindrical	surface	S2	at	different	ε and	n

n ε=0.3 ε=0.5 ε=0.7 ε=0.9

n=3 10-1 10-1 10-2 10-1

n=7 10-5 10-4 10-4 10-4

n=12 10-7 10-7 10-6 10-4

n=15 10-8 10-8 10-7 10-5

Fig. 1 shows the displacements of uρ at the surface of the 
cylinder for ε=0.7. They correspond to the displacements set 
at the border of the half-space.
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Fig. 2, a shows the distribution of stresses σρ and τρφ 
within the region Ω on the concentric circles set by the equa-
tion ρ=a+k(h–a)/3, k=1..3. At the same time, the k value 
corresponds to the curve number. The stresses σρ and τρφ at 
the surface of the cylinder are zero under the set condition. 
Fig. 3, a, b shows the distribution of stresses σφ and σz within 
the region Ω on the same circles and the surface of the cyl-
inder (k=0).

The largest modulo values are accepted by the compo-
nent σφ near a cavity at φ≈π/6, the stresses τρφ are concen-
trated near the boundary of the half-space at φ≈π/3. The 
component σρ is significantly smaller than σφ and τρφ.

Fig. 4, a, b, and Fig. 5 show the charts of the normal 
σx, σy, and tangent τxy stresses on parallel straight lines set 
by equations y=a+j(h–a)/3, j=1..3. The number j=3 corre-
sponds to the surface of the half-space.

The highest values are accepted by the σy component at 
x=0, its change along the Ox axis corresponds to the dis-
placements assigned on the half-space. The dependence of 
the σx and σy components on x and y is due to the influence 
of boundary conditions on the cylinder and half-space. The 
τxy component contributes less to the distribution of stresses 
than σx and σy.

Fig.	1.	The	displacements	of	uρ	at	the	surface	of	the	cylinder
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Fig.	2.	The	distribution	of	stresses	on	the	circles:		
a	‒ σρ/E;	b	‒ τρφ/E
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Fig.	3.	The	distribution	of	stresses	on	the	circles:			
a	‒ σφ/E;	b	‒ σz/E
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Fig.	4.	The	distribution	of	stresses	on	straight	lines:		
a	‒ σx/E;	b	‒ σy/E
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6. Discussion of results of studying a mixed problem in 
elasticity theory for half-space with a cylindrical cavity

The results from solving a mixed problem in elasticity 
theory for half-space with a cylindrical cavity are explained 
within the framework of the linear theory of elasticity. 
Fig. 2, a, and Fig. 4, b show that the highest values are ac-
cepted by the normal stresses in the area between the bound-
aries of the half-space and the cylinder. This is due, first, 
to the presence of a cavity, and, second, to the form of the 
function assigned on the surface of the half-space.

Various analytical and numerical methods are used to 
solve the problems of the theory of elasticity in half-space 
with cavities of different shapes. All of them are particular in 
nature as they can be used to solve problems with a specific 
cavity geometry. Compared to them, the generalized Fourier 
method is a a theoretically based method, as well as an effec-
tive numerical-analytical technique to solve spatial problems 
in multiply connected bodies. First, it employs exact solu-
tions to a Lamé equation associated with each boundary sur-
face of a multiply connected body. Strictly proven addition 
theorems make it possible to satisfy boundary conditions 
at these surfaces. As a result, the problem is reduced to an 
infinite system of equations, the coefficients and right-hand 
sides of which decrease on infinity. That makes it possible to 
apply a reduction method to solve the system. Given this, the 
problem can be solved with any predetermined accuracy by 
increasing the number of equations of the system. To test the 
accuracy of the solution, the displacements and stresses com-
ponents were calculated on boundary surfaces and compared 
with the specified values.

A finite-element method is often used to solve the practical 
problems that arise when designing underground structures. 
However, its scope is limited to the bodies of finite size. It is also 
ineffective for multiply connected bodies with closely spaced 
borders. When solving the problems by the generalized Fourier 
method, the latter problem is solved by increasing the order of 
the system. One can see it from Table 1, which gives the order 
of the system for different values of the geometric parameter ε, 
at which the accuracy of the problem solution is 10-6.

The generalized Fourier method is used to solve bound-
ary problems in multiply connected bodies, the boundaries 
of which consist of two or more coordinate surfaces of the 
curvilinear orthogonal coordinate systems. This method 
cannot be applied to regions whose boundary surfaces inter-
sect or touch each other. 

In the future, this method could be applied to investigate 
the main and mixed problems in elasticity theory for half-space 
with one or more inclusions. In this case, the conjugation condi-
tions must be additionally set on the cylindrical surface.

7. Conclusions

1. We have proven the addition theorems of basis solu-
tions to a Lamé equation for the half-space and cylinder, re-
corded in the Cartesian and cylindrical coordinate systems. 

This proof is necessary to strictly substantiate the applica-
tion of the generalized Fourier method for solving boundary 
problems in the elastic half-space with an infinite circular 
cylindrical cavity. When proving the addition theorems, we 
used formulae linking harmonic functions in the Cartesian 
and cylindrical coordinate systems, as well as the ratios for 
the modified Bessel functions of the 1st and 2nd kind.

2. The mixed problem in elasticity theory for the half-
space with an infinite circular cylindrical cavity parallel 
to its boundary has been solved by the generalized Fourier 
method. Specifically:

‒ the addition theorems of a half-space and a cylinder 
have made it possible to write down the solution to the prob-
lem in a coordinate system associated with each boundary 
surface of a doubly connected body. As a result, the specified 
boundary conditions were satisfied on the boundary be-
tween the half-space and the cylindrical surface;

‒ the problem has been reduced to an infinite system 
of linear algebraic equations relative to the integral densi-
ties Bkm(λ). The operator of the system is quite continuous 
within space l2 under the condition a<h that the boundary 
surfaces do not intersect. This has allowed us to solve the 
system by the reduction method. The stress-strain state of 
the elastic half-space containing an infinite cylindrical cavi-
ty parallel to its boundary has been investigated, for the case 
when displacements are set at the boundary of the half-space 
while the surface of the cylinder is free from stresses. The σρ, 
σφ, σz and τρφ components were calculated on the concentric 
circles set by the equation ρ=a+k(h–a)/3, k=1..3, and the 
σφ and σz components on the surface of the cylinder (k=0) 
as well. The normal σx, σy, and tangent τxy stresses were 
determined on the parallel straight lines set by the equation 
y=a+j(h–a)/3, j=1..3. Numerical analysis reveals:

‒ the largest modulo values are accepted by the σφ compo-
nent near the cavity at φ≈π/6; the τρφ stresses are concentrated 
near the boundary of the half-space at φ≈π/3. The σρ compo-
nent values are significantly less than the values of σφ and τρφ;

‒ the highest values are accepted by the σy component 
at x=0; and its change along the Ox axis corresponds to the 
displacements set on the half-space. The dependence of the 
σx component on x and y is due to the influence of boundary 
conditions on the cylinder and half-space. The τxy component 
contributes less to the distribution of stresses than σx and 
σy. The reliability of our calculations has been confirmed by 
the analytical justification for the application of a reduction 
method to solve the system of equations and the accuracy of 
meeting boundary conditions on the surface of the half-space 
and cylindrical cavity.
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