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This paper considers a relevant issue related to the influence 
exerted by the fuzziness in linear dynamic system parameters on its 
stability. It is known that the properties of automated control sys-
tems can change under the influence of parametric disturbances.  
To describe the change in such properties of the system, the concept 
of roughness is used.

It should be noted that taking into consideration the fuzziness 
in the parameters of mathematical models could make it possible 
at the design stage to assess all the risks that may arise as a result 
of an uncontrolled change in the parameters of dynamic systems 
during their operation. To prevent negative consequences due to 
variance in the parameters of mathematical models, automated 
control systems are designed on the basis of the requirement for 
ensuring a certain margin of stability of the system in terms of its 
amplitude and phase. At the same time, it remains an open question 
whether such a system would satisfy the conditions of roughness.

Parameters of the mathematical model of a system are consi-
dered as fuzzy quantities that have a triangular membership func-
tion. This function is inconvenient for practical use, so it is appro-
ximated by the Gaussian function. That has made it possible to 
obtain formulas for calculating the characteristic polynomial and 
the transfer function of the open system, taking into consideration 
the fuzziness of their parameters.

When investigating the system according to Mikhailov’s cri-
terion, it was established that the dynamic system retains stabil-
ity in the case when the parameters of the characteristic equation 
are considered as fuzzy quantities. It has been determined that 
the quality of the system significantly deteriorated in terms of its 
stability that could make it enter a non-steady state. When using 
the Nyquist criterion, it was established that taking into consi-
deration the fuzziness in the parameters of the transfer function did 
not affect the stability of the closed system but there was a notice-
able decrease in the system stability reserve both in terms of phase 
and amplitude. The relative decrease in the margin of stability for 
amplitude was 16 %, and for phase – 17.4 %
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1. Introduction

Due to a series of factors, the parameters of linearized 
mathematical models of real objects are determined with  
a certain inaccuracy, which can cause the loss of stability by 
the systems of automated control over such objects. To prevent 
negative consequences from a variance in the parameters of 
mathematical models, automated control systems are designed 
on the basis of the requirement for ensuring a certain margin 
of stability in the system in terms of its amplitude and phase.

When designing automated control systems (ACSs), we 
take into consideration that information about the para-
meters of a linear (linearized) model is inaccurate. Let аі be 
some parameter of the model, and ai

0( )  – its nominal value. 
Then a a ai i i= +( )0 Δ ,  where Δаі is the parametric disturbance.

The nature of a parametric disturbance may be different. 
It may relate to the assumptions when building a mathema-
tical model of the system, or errors that arise as a result of 
model linearization. As well as changing the modes of opera-
tion of the control object, aging of system elements, errors in 

measuring technological parameters, their variations within 
technological tolerances, etc.

Parametric disturbances can cause significant changes in 
ACS properties. To characterize the change of such proper-
ties, the concept of roughness is used. An automated control 
system is termed rough [1] relative to the parameters of аі 
if the system maintains asymptotic stability when changing  
the ai

0( ) parameters by a value of Δаі.
It is important at the system’s design stage to assess all 

the risks that may arise as a result of uncontrolled changes 
in the parameters of dynamic systems during their operation. 
This task can be solved by taking into consideration the 
fuzzi ness in the parameters of mathematical models.

2. Literature review and problem statement

Modern scientific literature [2–9] considers many issues 
related to linear dynamic systems. These are features of their 
mathematical notation, behavior, stability issues, analysis of  
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special modes of such systems in the presence of persistent 
fluctuations and self-oscillations.

Work [2] reports the systematization of mathematical 
models of control systems in the form of transfer functions. It 
follows from that work that the transfer function in a stan-
dard-factorized form combines the convenience of analysis 
and synthesis of automated control systems. The author 
of [3] illustrates the use of transfer functions to describe 
linear dynamic systems. It should be noted that despite the 
convenience of models in the form of transfer functions, there 
is an issue related to taking into consideration the subtle fea-
tures of control processes. Study [4] applied a series of provi-
sions from the theory of fuzzy sets to describe the nonlinear 
characteristics of backlash connections, which show the 
effectiveness of using a fuzzy set theory to study the stability 
of dynamic systems. Work [5] suggests an improved method 
for investigating the stability of a nonlinear fuzzy logic con-
trol system that employs the Lyapunov function. However, it 
remains an open question to investigate the fuzziness in the 
parameters of the transfer function.

A detailed numerical study into the system stability 
using the Lyapunov criterion is carried out in [6]; however, 
insufficient attention is paid to the analysis of the stability 
margin of the dynamic system. Work [7] reports a study into 
the models of linear parametric systems of ordinary diffe-
rential equations with variable measurability of phase space. 
As a result, it was established that, based on the methods  
of practical stability and conditions, parameters can be 
evaluated to analyze the sensitivity of systems with variable 
dimensionality of phase space. The authors of [8] proposed  
a method for analyzing the stability of automated systems 
with logic control devices when exposed to parametric distur-
bances, which makes it possible to determine the boundaries 
of the stability areas of systems in the space of increase in their 
parameters. However, insufficient attention is paid to the ef-
fect exerted on the system stability by uncontrolled changes 
in the parameters of dynamic systems during their operation.

Our analysis of literary sources has revealed that the issue 
related to studying the influence of fuzzy parameters of the 
transfer function on the stability indicators of the dynamic 
system remains open.

3. The aim and objectives of the study

The purpose of this work is to determine the effect of 
fuzziness in the parameters of the transfer function of the 
dynamic system on its stability.

To accomplish the aim, the following tasks have been set:
– to carry out the process of approximation of the tri-

angular membership function by the Gaussian function and 
calculate the error; 

– to derive a formula for calculating the characteristic 
polynomial and the transfer function of the dynamic system 
taking into consideration the fuzziness of its parameters.

4. Materials and methods to study a dynamic system 
taking into consideration the fuzziness of its parameters

During the study, we have applied methods from the 
mathematical theory of fuzzy sets and fuzzy logic to derive 
a transfer function of the open system taking into consider-
ation the fuzziness in its parameters.

Numerical methods to approximate a triangle member-
ship function with the Gaussian function to simplify further 
mathematical operations. A golden-section method was used 
to find a minimum of the function. The dependence coeffi-
cients were determined by a least-square method.

We applied methods from automated control theory, 
specifically the Nyquist and Mikhailov criteria, to study the 
stability of the system taking into consideration the fuzziness 
in the parameters of the transfer function.

5. Results of studying a fuzziness factor  
in the mathematical description of an object 

5. 1. Approximating a triangular function by the Gaus
sian membership function

When designing automated control systems, the issue of 
inaccuracies in the parameters of the mathematical model is 
conventionally resolved by selecting certain values of a re-
serve for amplitude and phase. Another way to take into con-
sideration inaccuracies in the parameters of the mathematical 
models of linearized systems is to set an M-indicator [9], which 
characterizes the shortest distance from the point (–1, j0)  
on the complex plane to the point of contact with the ampli-
tude-phase characteristic of the open system of the 1/M radius  
circle with the center at the point (–1, j0) (Fig. 1).

 

1/М 
0 

(-1;j0) 

v(ω) 

u(ω) 

 
Fig.	1.	Geometric	interpretation	of	M -indicator

Assume the amplitude-phase characteristic W(jω) = 
= u(ω)+jv(ω) of an open system is known. Then the M-indi-
cator is calculated from the following formula given in [1]:

M
W j W j

=
+ ( ) =

+ ( )max
minω

ω
ω ω

1
1

1
1

.

In order for the system to be stable when its parameters 
vary, the M-indicator is chosen from the condition: 1.4 ≤ M ≤ 2. 
The choice of this value for the M-indicator has no theore-
tical justification and is based on the empirical experience of 
many researchers. 

Let the characteristic polynomial of the system (closed or 
open) be as follows:

Q p a pi
n i

i

n

( ) = −

=
∑

0

.  (1)
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We shall consider the parameters of the characteristic 
equation to be fuzzy quantities with a triangular membership 
function [10].

To take into consideration the fuzziness factor when 
mathematically describing objects, it is necessary to perform 
certain arithmetic operations on fuzzy quantities. The process 
of performing arithmetic operations (addition, subtraction, 
multiplication, and division) becomes possible if fuzzy num-
bers are defined as numbers of the (L-R) type.

Let x be a fuzzy quantity of the (L-R)-type. Then its 
membership function can be represented as a composition of 
L and R functions [10]:

μ
α

α

L R

x

L
x

x

R
x

z

L
a x

x a

R
x a

x a
− ( ) =

−





≤

−





>













, ,

, ,

where αL > 0, αR > 0 is the left-hand and right-hand fuzzy 
coefficients; z0 is the modal value of a fuzzy number. 

Thus, a fuzzy number of the (L-R)-type is uniquely deter-
mined by the three parameters ax L R, , .α α

Note that the triangular membership function, which is 
symmetrical relative to ax, is a function of the (L-R)-type. 
This function is inconvenient for practical use because it is 
not differentiated at some points in the definition area. 

Therefore, the following triangular membership function:

μ x
x a x a a

x a x a a

x x x

x x x

( ) =
−( ) + ∈ −[ ]

− −( ) + ∈ +[ ]








2
1 2

2
1 2

Δ
Δ

Δ
Δ

, ; ,

, ;


 (2)

is to be approximated by the following Gaussian function:

μ
αG

xx
x a( ) = −

−( )









exp ,
2

22
 (3)

where Δ is the uncertainty interval of a fuzzy quantity x; 
µ(ax) = µG(ax) = 1; α is the concentration coefficient of a fuzzy 
quantity x.

Since functions (2), (3) are monotonic at each interval 
that determines x a ax x∈ −[ ]Δ 2;  and x a ax x∈ +[ ]; ,Δ 2  then, 
when they are approximated, such functions would have no 
more than two common points. The first one is determined 
by the value ax, and the second is when x = xa. At this value  
of x, the following ratio holds:

μ μ θx xa G a( ) = ( ) = .  (4)

It is obvious that the value of ax does not affect the shape 
of membership functions (2) and (3), but only determines 
their position on the abscissa axis. Therefore, the ax value 
does not affect the accuracy of the approximation of func-
tion (2) by function (3). Assume ax = 0. Then formulas (2), 
(3) take the following form:

μ x
x x

x x
( ) =

+ ∈ −[ ]

− + ∈[ ]










2
1 2 0

2
1 0 2

Δ
Δ

Δ
Δ

, ; ,

, ;
 (5)

and

μ
αG x
x( ) = −







exp .
2

22
 (6)

Given that functions (5), (6) are symmetric relative to 
the coordinate origin, the approximation is to be carried out 
in the interval of values x ∈[ ]0 2; .Δ  

Find µ(xa) from equation (5) at the interval of values 
x ∈[ ]0 2; .Δ  We obtain:

μ x xa a( ) = − +
2

1
Δ

.

Once condition (4) is considered, we obtain:

θ = − +
2

1
Δ

xa .

Find from the last equation:

xa =
−( )1

2

θ Δ
.  (7)

Taking into consideration the value of xa, which is de-
termined from formula (7), the membership function (6) is 
as follows:

μ
θ
αG ax( ) = −

−( )







exp .

1

8

2 2

2

Δ

Since µG(xa) = Θ, then:

exp .−
−( )







 =

1

8

2 2

2

θ
α

θ
Δ

Hence, we find:

α
θ

θ
2

2 21

8
= −

−( ) Δ
ln

,  (8)

where 0 < Θ < 1.
The analysis of formula (8) reveals that the concentra-

tion coefficient α to membership function (3) depends on 
the basis Δ of the triangular membership function and on 
the value of the ordinate, which is determined by the inter-
section point between membership functions (2) and (3) 
when x a ax x∈ −[ ]Δ 2; .

Since Δ is an a priori known quantity, the accuracy of the 
approximation of function (2) by function (3) would depend 
on the value of the ordinate Θ. 

The accuracy of the approximation is determined as the 
sum of the squares of the deviation of the ordinates of func-
tion (6) from the corresponding ordinates of function (5):

E x xi G i
i

N

= ( ) − ( )( )
=
∑ μ μ

2

1

.  (9)

where x iTi ∈ ( ) 0 2; ;Δ  T is a sample step; n is the number of 
ordinates of the function µ(x) on segment x ∈[ ]0 2; .Δ

The parameter Θ is selected from the condition of a mini-
mum for expression (9). To this end, we substitute in ratio (9)  
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the value of µG(xi), which is determined from formula (6).  
In this case, we take into consideration the value of the quan-
tity α2 according to formula (8). As a result, we obtain:

E
x

i
i

i

n

θ μ
θ

θ
( ) = −

−( )


















=

∑ exp
ln4

1

2

2 2

2

1 Δ
,  (10)

where µi = µ(xi).
The E(Θ) function is nonlinear; the Θ value, which min-

imizes (10), can only be found by a numerical method. Since 
known numerical methods yield only a local minimum [11] 
at a certain Θ change interval, we build a chart of the E(Θ) 
function (Fig. 2).

 
Fig.	2.	Dependence	of	approximation	error		

on	the	Θ	value

The chart built for Δ = 0.5 shows that function (10) rea-
ches its smallest value on the segment. To find a minimum of 
function (10), we use a golden-section method [12]. 

The following program settings were selected:
– a starting point for finding the local minimum interval, 0.4; 
– an error of searching for a minimum of function (10), 10–6; 
– the uncertainty interval of a fuzzy quantity, 0.5. 
The result is the following solution to the problem:

Θ* = 0.5152; E(α*) = 0.703.

Fig. 3 illustrates the process of approximating func-
tion (5) by function (6).

 
Fig.	3.	Approximation	of	a	triangular	function		

by	the	Gaussian	membership	function

The analysis of Fig. 3 reveals that the value of Θ* almost 
does not depend on the value of the uncertainty interval Δ, 
and the Е*(Δ) quantity is a monotonically ascending function 
that has a linear character. 

A least-square method was applied to derive the follow-
ing dependence coefficients:

E * .Δ Δ( ) = +α α0 1  (11)

As a result, we obtained: α0 = 0.0026 and α0 = 0.1355. 
In Fig. 4, «o» symbols mark the values derived from  

solving the problem to minimize function (10) («experi-
mental» data); a solid line is constructed according to equa-
tion (11). In fact, we observe complete convergence between 
the «experimental» and estimation data, as evidenced by 
the value of the approximation error, calculated as the sum 
of squares of deviations of estimated values from the corre-
sponding «experimental» data. The error of approximation 
was calculated according to the following formula:

δ = − ( )( )
=
∑ E Ei i
i

N
* * Δ

2

1

at N = 5, it is Δ = 5.9·10–8.

 

Fig.	4.	Dependence	of	Θ* = (Δ)	and	E *(Δ)	on	a	change		
in	the	value	of	Δ

It should be noted that the authors of work [13] selected, 
without justification, based on intuitive considerations, the 
value Θ = 0.5. As it follows from Table 1, the value Θ = 0.5 does 
not differ much from the values of Θ*, which were obtained 
from solving the minimization problem (9).

5. 2. Calculating the characteristic polynomial and trans
fer function of an open system taking into consideration the 
fuzziness of its parameters

In formula (1), the complex variable p is an explicit 
quantity. Since the parameters of the characteristic equa-
tion a i ni , ,= 0  are the fuzzy quantities, the polynomial Q(p) 
is also a fuzzy quantity.

When performing the operations of adding Gaussian 
fuzzy numbers, as well as multiplying a Gaussian fuzzy num-
ber by an explicit quantity, the result is a Gaussian fuzzy 
number [7]. 

Thus, there is every reason to believe that 


Q p( )  is a fuzzy 
quantity with the following membership function:

μ
α

Q
Q aq

q

( ) = −
−( )











exp

 2

22
,  (12)

where aq, αq is the modal value and the concentration coeffi-
cient of a fuzzy quantity Q .

To find the aq and αq parameters, and a membership func-
tion (12), the following operations should be performed over 
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fuzzy numbers: adding fuzzy numbers and multiplying a fuzzy 
number by an explicit quantity.

Based on the rules for performing arithmetic operations 
involving fuzzy numbers [10], we adapt them for the case of 
Gaussian membership functions (3). Then any fuzzy number 
would be characterized by two parameters – a modal value 
and a fuzzy coefficient.

Work [14] proves that the operation of calculating the 
sum of fuzzy numbers and multiplying a fuzzy number by an 
explicit number is carried out using the following formula:

a aq i i
i

n

=
=
∑j 

0

,  α j αq i i
i

n

=
=
∑

0

.  (13)

For the case under consideration: ji
n ip= − , i n= 0, .

Additionally, we assume that the necessary conditions for 
the stability of a linear (linearized) dynamic system are met, 
that is, ai > 0, i n= 0, .

Let γ be a slice for membership function (12). Then:

exp −
−( )











=



Q aq

q
q

2

22α
γ ,

where 0 < γq ≤ 1.
Find from the last equation:



Q aq q
q

= + α
γ

ln
1

2 .

The value of the γ slice determines the degree of «blur» 
of a fuzzy quantity 



Q. With an increase in the value of γq , 
the fuzziness of the function 



Q  decreases, and, at γq = 1, the 
function becomes an explicit quantity and, conversely, with  
a decrease in γq, the uncertainty increases in the estimation of 
the parameters of characteristic polynomial (1).

If we take into consideration aq and αq, which are deter-
mined by ratios (13), we obtain a characteristic polynomial of 
the system, provided that the parameters of dependence (1) 
are treated as fuzzy quantities. Thus:





Q p a p pi
n i

i

n

q
i

n i

i

n

( ) = +−

=

−

=
∑ ∑

0
2

0

1
ln

γ
α ,

or 




Q p a a pi i
n i

i

n

( ) = +( ) −

=
∑ γα

0

,  (14)

where 

a
q

γ γ
= ln

1
2 .

Since all parameters ai of characteristic polynomial (1) are 
interpreted as fuzzy quantities with a triangular membership 
function (2), which are approximated by exponential func-
tion (3), then αi, i n= 0,  is to be calculated from formula (7):

α ηi q i= Δ , ,  i n= 0, ,  (15)

where 

η θ
θ

= −( )





−

1 8
1

1 2

ln .

Taking into consideration formula (15), characteristic 
equation (14) takes the following form:





Q p a A pi q i
n i

i

n

( ) = +( ) −

=
∑ γ Δ , ,

0

 (16)

where Aγ = aγ ⋅η.
If we take into consideration the values of aγ and η, then

A q
γ θ

γ
θ

= −( )1
2

1
ln

ln
.

Let the transfer function of the dynamic system be assigned:

W p
R p

Q p
( ) =

( )
( ) ,  (17)

where R(p), Q(p) are the polynomials of powers m and n, 
respectively (m ≤ n). 

Assume that the bj coefficients of the polynomial

R p b pj
m j

j

m

( ) = −

=
∑

0

are the fuzzy numbers with a triangular membership function, 
which is approximated by the Gaussian function (3). Then, ba-
sed on the results obtained for the polynomial Q(p), we obtain:

b b pr j
m j

j

m

= −

=
∑


0

,  α αr r j
m j

j

m

p= −

=
∑ , ,

0

 (18)

where αr,j = ηΔr, j.
By analogy to formula (17), record:




R p b A pj r j
m j

j

m

( ) = +( ) −

=
∑ γ Δ , .

0

 (19)

Since (16) and (19) are the fuzzy quantities, transfer func-
tion (18) is also a fuzzy quantity with the following member-
ship function:

μ
α

W
W aw

w

( ) = −
−( )











exp

 2

22
.  (20)

Find the modal value aw and the amount of blur aw. If we 
have a ratio between two fuzzy quantities [10], then:

a
b
aw

r

q

= ;  α
α α

w
q r r q

q

a b

a
=

+
2 ,  (21)

where aq, br, αq and αr are calculated from formulas (15), (18). 
If one sets a γw slice that characterizes the degree of fuzzi-

ness of the parameters of the transfer function of the dynamic 
system, then we find from equation (20):



W aw w
w

= + α
γ

ln
1

2 .

Considering formulas (22), we obtain:



W
b
a

a
a b

a
r

q
w

q r r q

q

= +
+

, ,γ

α α
2

where aw
w

, .γ γ
= ln

1
2
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Taking into consideration the values of aq, br, αq, and αr, 
which are calculated from formulas (15) and (18), we obtain:
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b p

a p
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a p p
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+

−

=
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=
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2

Δ ,

,  (22)

where

Aw
w

, .γ θ
γ
θ

= −( )1
2

1
ln

ln

For the case when γw = 1, the value Aw,γ = 0, and then we 
come to the deterministic (classical) problem of determining 
the stability of the dynamic system. 

The second term in formula (22) is a kind of «penalty», in-
curred as a result of taking into consideration the fuzziness in 
the parameters of the transfer function of the dynamic system. 

The characteristic equation of the dynamic system is as 
follows:

Q p a p a p a p a( ) = + + +0
3

1
2

2 3,  (23)

where a0 = 2.4, a1 = 4.0, a2 = 2.5, a3 = 3.0.
For each a ii , ,= 0 3  parameter, the following uncertainty 

intervals have been defined: Δq,0 = 0.45, Δq,1 = 0.11, Δq,2 = 0.10, 
Δq,3 = 0.31.

For the γ-slices, γq = 1 (parameters of the characteristic 
equation of an explicit quantity) and γq = 0.15, we built the 
charts of Mikhailov hodograph (Fig. 5).

Our analysis of Fig. 5 shows that the dynamic system 
maintains stability even when the parameters of characteristic 
equation (23) are considered as fuzzy quantities. However, the 
quality of the system, in terms of its stability, has significantly 
deteriorated; with further degradation of its parameters, the 
system can enter a non-steady state.

Next, assume an open system is represented by the fol-
lowing transfer function:

W p
b p b

p a p a p a
( ) =

+
+ +( )

0 1

0
2

1 2

,  (24)

where a0 = 4.0, a1 = 2.5, a2 = 3.0, b0 = 2,0, b1 = 1.4.

 
Fig.	5.	Mikhailov	hodographs

The parameters of transfer function (25) were treated as 
fuzzy quantities with the following intervals of uncertainty: 
Δq,0 = 0.21, Δq,1 = 0.4, Δq,2 = 0.31, Δr,0 = 0.26, Δr,1 = 0.19.

Employing the software written in the MATLAB pro-
gramming environment, the Nyquist hodographs were con-
structed (Fig. 6) for two cases: γw = 1 (the parameters of 
transfer function (24) are the explicit numbers); γw = 0.25.

 

Fig.	6.	Nyquist	hodographs

Fig. 6 shows that a closed system would be stable at γw = 1 
and while the fuzzy parameters of transfer function (24) are 
accounted for. To assess the effect of fuzziness on the system’s 
roughness, the system’s stability reserves for amplitude and 
phase were determined. As a result, the following values were 
obtained:

– amplitude stability margin, Gm = 21.9 dB; phase stabi-
lity margin, Pm = 38.4 degrees; 

– γw = 0.25: amplitude stability margin, Gm = 18.4 dB; phase  
stability margin, Pm = 31.7 degrees.

Taking into consideration the fuzziness in the parameters 
of transfer function (24) did not affect the stability of the 
closed system; however, there was a noticeable decrease in 
the system stability reserve both in phase and amplitude. The 
relative decrease in the margin of stability for amplitude was 
16 %, and for phase – 17.4 %. 

Thus, taking into consideration the fuzziness in the pa-
rameters of mathematical models would make it possible at 
the design stage to assess all the risks that may arise as a re-
sult of an uncontrolled change in the parameters of dynamic 
systems during their operation.

6. Discussion of results of studying the system stability 
when considering the fuzziness in the parameters of the 

transfer function

Our analysis of literary sources allows us to conclude 
that the parameters of the mathematical models of systems 
that are represented in the form of transfer functions can 
be determined with a certain accuracy only. There is always  
a danger of loss of stability by the system due to system deg-
radation, which is manifested in the change of its parameters. 
To prevent such an event, systems are designed with a certain 
margin of stability for amplitude and phase. However, at the 
design stage, it is important to assess the risks that may arise 
in the case of inadequate knowledge of the parameters of the 
transfer function. To solve this problem, the parameters of 
the transfer function are proposed to be considered as fuzzy 
quantities with a triangular membership function (2), which 
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is inconvenient for practical use. Therefore, it is proposed 
to approximate the triangular membership function by the 
Gaussian function (3). As a result, formula (8) has been de-
rived, which makes it possible to express the concentration 
coefficient through the uncertainty interval of the fuzzy 
quantity. Formula (8) is key in further research because it al-
lows the application of fuzzy mathematics of the (L-R)-type.

That has made it possible to obtain meaningful results 
from studying systems for stability using the criteria by 
Mikhailov and Nyquist when considering the fuzziness in the 
parameters of the transfer function. An important result of 
our research is to identify the fact that the fuzziness in the 
parameters of the system’s transfer function significantly af-
fects its stability. A numerical experiment has shown that the 
phase and amplitude stability margin decreased by 17.4 % 
and 16 %, respectively.

In contrast to methods based on the stochastic theory 
of system stability, the reported method does not require 
knowledge of those laws that govern the distribution of 
parameters of dynamic systems’ models that are is quite 
problematic to obtain in practice. It would suffice for each 

parameter to specify the interval of fuzziness only, which is 
not difficult to determine based on the practical experience 
of the researcher.

7. Conclusions 

1. We have approximated a triangular function by the Gaus-
sian membership function. A least-square method was used to 
determine the coefficients of dependence that equal α0 = 0.0026  
and α0 = 0.1355. The error of approximation is Δ = 5.9·10–8.

2. The formulas were built for calculating the character-
istic polynomial and the transfer function of an open system, 
taking into consideration the fuzziness of their parameters. 
That has made it possible to establish that taking into con-
sideration the fuzziness in the parameters of the transfer 
function did not affect the stability of the closed system. 
However, there was a noticeable decrease in the system 
stability reserve both in terms of phase and amplitude. The 
relative decrease in the margin of stability for amplitude was 
16 %, and for phase – 17.4 %.
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