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1. Introduction

Beams with various cross-sections are widely used as 
components of machines and structures. For example, beam 
structures are used in the construction of bridges [1, 2] where 
metal span structures consist of two cut bearing beams. The 
adjacent application area of beam structures could be consid-
ered their application in the design of railroad tracks when 
taped beams are tested for strength as railroad sleepers at 
bending oscillations [3]. Of interest is the use of over-the-
spring beam structures as supporting elements in the rolling 
stock on railroads [4].

Beams are the main bearing elements in the design of 
airplane turbine engine blades [5‒7]. In aerospace technolo-
gy [8, 9], the beam elements are used to create the aeroelastic 
vibrations of a cruise missile since the wing of such a missile 
could be considered as an elastic beam operated at bending. 
Of particular interest is also the application of beams in the 
structure of an ultrasonic sawmill frame [10]. In this case, 
the intensification of the cutting process and ensuring the ef-
fectiveness of the sawing process involve a curved waveguide 
in the scheme of creating longitudinal-bending-longitudinal 

oscillations. Beams could also be used as basic structural 
elements to ensure the process of ultrasonic welding [11]. 
In this case, to create the required transverse oscillations of 
the working element, the beam is welded to the concentra-
tor of longitudinal oscillations at the right angle, so that it 
generates bending oscillations. Other innovative industries 
involving the widespread use of beam structures are robot-
ics [6], aeronautics [8], and wind power [12, 13].

Typically, beam structures whose operation implies 
bending are exposed, under a resonance mode, to destructive 
stresses. Oscillations arising during the operation of beam 
structures pose a serious danger to them, especially when the 
oscillation frequencies approach their natural oscillations. In 
order to prevent possible resonance, it is necessary to have 
clear information about the critical values of the natural 
frequencies and the related shapes of oscillation in the most 
responsible structural elements. The natural frequencies 
and shapes of bending oscillations in the beams of variable 
rigidity have been studied in detail only for individual cases. 
Analysis of natural bending oscillations is necessary so that 
by knowing the natural frequencies and the distribution 
of normal stresses due to bending one could improve the 
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The synthesis of factorization and symmetry methods pro-
duced a general analytical solution to the fourth-order differen-
tial equation with variable coefficients. The form and structure of 
the variable coefficients correspond, in this case, to the problem 
of the oscillations of a concave beam of variable thickness. The 
solution to this equation makes it possible to study in detail the 
oscillations of such and similar,  for example convex, beams at the 
different fixation of their ends’ sections. A practical confirmation 
has been obtained that the beam whose thickness changes in line 
with the concave parabola law H=a2x2+1, where a is the concave 
factor, demonstrates an increase in the natural frequencies of its 
free oscillations with an increase in its rigidity. As an example, 
the object’s maximum deflection dependence on the beam rigidity 
factor has been established. The nature of this dependence con-
firmed the obvious conclusion that the deflections had decreased 
while the rigidity had increased. The evidence from the calculation 
results can be a testament to the correctness of the reported proce-
dure of problem-solving.

The considered problem and the analytical solution to it could 
serve as a practical guide to the optimal design of beam structures. 
In this case, it is very important to take into consideration the 
place and nature of the distribution of cyclical extreme operating 
stresses. The resulting ratios to solve the problem make it possible 
to simulate the required normal stresses in both the fixation and 
central zones when the rigidity parameter is changed. Designers 
could predict such a parabolic profile of the beam, which would 
ensure the required reduction of maximum stresses in the place of 
fixing the beam. The considered example of solving the problem of 
the natural oscillations of the beam with rigid fixation of the ends 
illustrates the effectiveness of the factoring and symmetry methods 
used. The developed solution algorithm could be extended to study 
the natural bending oscillations of the beam at other fixing tech-
niques, not excluding a variant of a completely free beam
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technical resource of the beam structure, especially when 
different types of fixation are used in the beam scheme. In 
this regard, the task to derive a closed analytical solution 
to the problem of free oscillations of the beam with variable 
cross-section is still relevant.

The literature reports and describes the exact solutions 
to this problem only for limited geometric configurations of 
beams in the form of a wedge, a cone, and a pyramid [14]. Of 
practical interest are the beams of the rectangular cross-sec-
tion whose rigidity is determined by the width b(x) and the 
thickness H(x). The most technological cases are b=const; 
H=H(x), or b=b(x); H=const. Paper [15] considers the cases 
of rigidity change, in which the problem of oscillations has 
a precise solution. For the case of b=const, reported in the 
cited paper, the earlier results of the precise solution to the 
problem are known only for H=x (Kirchhoff, Mononobe) and 
H=emx [15]. Often, researchers use approximate numerical 
methods to find a solution to a problem, which tend to be 
cumbersome and impossible to generalize for direct, broad 
practical applications. The relevance of this scientific issue, 
in addition to the extremely diverse technical application of 
beam structures, is that it is necessary to have an accurate 
analytical solution to the relevant boundary problem in or-
der to analyze the natural bending oscillations of the beam 
of the variable cross-section. This requirement is explained 
by the fact that in order to ensure the desired operational 
resource of structures with such beams, at a different form 
of their fixation, it is necessary to have information on the 
distribution of deflections and stresses lengthwise a beam 
element. Such a requirement could only be met on the basis 
of theoretical analysis of the free oscillations of beams with 
variable cross-sections.

2. Literature review and problem statement

The results of detailed studies into variable cross-section 
beams under a free oscillation mode are very limited due 
to known mathematical difficulties arising when trying to 
analytically solve the problem of oscillations. This is directly 
emphasized by the authors of article [5] who state that ob-
taining an accurate analytical solution is a complex proce-
dure due to the presence of variable coefficients in the main 
resolving equation. As a possible solution to the problem of 
free oscillations of the beam, they propose using an approx-
imate method of perturbations. Only variants with linear 
changes in the height and width of the beam are considered; 
in addition, the numerical method of Poincare-Lindsted is 
proposed for finding natural frequencies. The considered 
cases could hardly be extended to the variant of the beam 
whose thickness varies according to the parabolic law.

Another example of trying to overcome the above math-
ematical issues in the search for an analytical solution to a 
given problem is given in article [16]. It is emphasized that 
the analytical solution for beams is very difficult to obtain, 
and precise solutions were obtained only for some special 
profiles of beams under certain boundary conditions. Bessel 
functions, hypergeometric series, “energy” series, and Beri-
stale polynomials are offered as special functions as the main 
tool for the analytical solution. The approximate solutions 
to the problem, reported in the cited paper, were derived 
from the Rayleigh-Ritz methods, a finite-element method, 
the method of dynamic rigidity, a differential quadrature 
method, the differential method of transformation. The 

approaches considered concern however only a prism beam 
and a beam whose thickness changes exponentially. The 
extension of the above procedure to other types of beams is 
very difficult because differential transformations are used 
to solve the resolving equations based on a series of recur-
rent algebraic expressions. When recording a function of the 
oscillation shape, the length of the expression for a recurrent 
ratio could be way too long and technically difficult to find 
a frequency equation.

The problem of free oscillations of a prism beam was con-
sidered in work [17]. For a rigidly fixed permanent-section 
beam, the free oscillation analysis is based on six different 
sets of characteristic functions to describe the cross-section 
movements of the beam. In addition, in the case of a rect-
angular beam, in order to search for natural frequencies, it 
is proposed to use an approximate energy approach based 
on the Ritz method. It should be noted that the suggested 
procedure cannot be extended to the concave beams of the 
variable cross-section.

Article [6] reports a study into the free oscillations of 
beam structures with variable width. Based on the asymp-
totic method of perturbations, the authors obviously con-
firmed that the beam’s natural frequencies decrease with an 
increase in its width at the free end at the same length. Only 
a clamped console beam was considered as an example; the 
reliability criterion of the reported results is a finite-element 
method and the experiment conducted.

Papers [8, 18] proposed using a Fourier harmonic series 
to construct the frequency equation for considering the os-
cillations of a free-supported beam with an arbitrary thick-
ness [18], or with the thickness that changes in line with 
an exponential law [8]. However, in order to find unknown 
coefficients that are included in the frequency equation, the 
authors of [18] give an algebraic expression in a matrix form 
of 50×50. Only a beam of constant height and a beam with a 
linear change of height were considered as an example. It is 
obvious that those expressions could hardly be applied for a 
beam with a parabolic profile and rigidly clamped ends.

Work [19] outlines a variant of designing the optimal 
structure of a tank car support device where the structure 
itself is represented in the form of a beam of variable thick-
ness. Numerical and graphic methods are used as a calcula-
tion tool for the optimal design of the support model. Based 
on the schemes of the support device, one can judge the 
achievement of reducing rigidity along the middle surface 
of the structure’s sheet, reducing the maximum stress in the 
support zone, reducing the mass of the structure. Analytical 
approaches were not considered in addressing the specified 
issues. 

Elements of variation calculus are used in articles [1, 20] 
where a numerical method of integrated-differential ratios 
was used to state the boundary problem based on the Eu-
ler-Bernoulli hypothesis. As a result, a polynomial with 
variable coefficients was applied to find the displacement 
function; the approximation of this function was performed 
under the condition for a minimum of the quadric functional. 
The proposed solution is based on the so-called energy and 
movement integral, as the distribution of energy along the 
beam structure could be analyzed only if one takes this inte-
gral on a rectangular area.

The review of the scientific literature reveals that the 
above cases of analytical solutions do not concern beams in 
the form of a symmetrical structure of the parabolic profile 
in the form of H=a2x2+1. Therefore, there is a need for a 
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substantive study into the oscillations of such particular 
beam, especially since such structures (bridge spans, arches, 
ceilings, above-the-spring elements) are often for isolated 
purposes.

The above suggests that it is appropriate to conduct a 
study to solve a problem about the transverse oscillations 
of a variable thickness beam with varying degrees of con-
caveness. The scientific publications reviewed employ math-
ematical tools based only on approximate calculations. The 
accuracy and reliability of the results may be questionable. 
Analytical solutions, unlike approximate or numerical ones, 
make it possible to expand the existing estimation base for 
beams with variable thickness, supplementing it with new 
results obtained in the final form.

3.  The aim and objectives of the study

The aim of this study is to derive a closed analytical 
solution to the problem of the natural oscillations of a beam 
whose thickness changes according to the parabolic law. The 
base structure is a concave beam with a profile that changes 
in line with the law H=a2x2+1. 

  To accomplish the aim, the following tasks have been set:
– by using the factorization method, transform the origi-

nal differential equation of the fourth order to the form that 
would allow it to be decomposed into a system of two self-ad-
joint resolving equations of the second order;

– by using the symmetry method and the scheme of its 
application, find an approximating function, which could 
find precise solutions to the derived equations of the second 
order, and, therefore, a solution to the original equation of 
the fourth order;

– to explore the oscillations of a symmetrical concave 
beam, rigidly fixed at both ends. Calculate the frequency 
numbers ki (i=1÷3); build, as an example, graphic illustra-
tions for ki and a series of the shapes of oscillations depend-
ing on the degree of beam concaveness.

4. Materials and methods to explore the problem about 
the oscillations of a concave beam

A mathematical model of this study is a differential 
equation of small oscillations for a beam with a rectilinear 
axis and a variable cross-section. The equation is based on 
the positions of the technical theory of rods (Euler-Bernoulli 
beam theory) under the following assumptions:

– oscillations occur in one of the main planes of the beam 
bending and the size of the cross-section is small compared 
to the length of the beam; the thickness of the beam is no 
more than 1/5 of its length; 

– the cross-sections remain flat at deformation (the 
hypothesis of flat sections) and are perpendicular to the 
deformed axis of the beam; 

–the normal stresses on the sites parallel to the axis are 
negligible; stretching the axis is also neglected.

To facilitate the search for an analytical solution, the 
method of factoring is used to decompose the original equa-
tion of the fourth order into two self-adjoint equations of the 
second order with variable coefficients. 

To find a solution, the method of approximation of vari-
able coefficients in the resolving equations of the second 
order is employed.

A symmetry method is applied to construct the required 
approximation function at which the resolving equations 
have precise solutions. 

A method of sequential trial calculations is used to solve 
frequency equations. 

The materials to which the results of our study are appli-
cable must follow the Hook law.

5. Results of exploring a problem about the oscillations of 
a concave beam 

5. 1. The original differential equation and its trans-
formation

Consider the beam in the form of a symmetrical structure 
(Fig. 1) of the parabolic profile, the type of H=a2x2+1.

The initial differential equation for the problem about the 
natural (free) oscillations of a variable thickness beam H(x) 
is the equation of oscillation shapes in the form given in [21]:

2 2
3 4

2 2 0,
d d W

H k HW
dx dx

 
− =  

    (1)

where

 
4 2 412 / ,k l E= w ρ   (2) 

W=W(x) – beam deflections when it oscillates; x=X/l; 
l – half the length of the beam (Fig. 1); H(x) – the vari-
able thickness (height) of the beam; w=2πf – circular 
frequency; f – frequency of oscillations; E, ρ=γ/g – Young 
modulus and material density; γ – specific weight; g – ac-
celeration of gravity.

The equations of the fourth order, including (1), are gen-
erally difficult to solve in an analytical form. Solving a prob-
lem is much easier if such an equation could be represented 
in a symbolic form

22
4

2 0,
d d

A B C W D W
dx dx

 
+ + − =  

   (3)

where A, B, C are some functions; D4=k4+χ2; χ2 is a constant. 
If the representation (3) is feasible in accordance with the 
factoring method, then, instead of the fourth-order equation, 
it would suffice to consider two equations of the second order

2 0.i i i iAW BW CW D W″ ′+ + ± =  ( 1,2)i = .  (4)

In this case, a solution to the original equation is to be 
found in the form of the sum of the solutions to two equa-

Fig.	1.	Sketch	of	the	beam	element



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/7 ( 111 ) 2021

18

tions (4), that is, W=W1+W2, where W1 is the solution to equa-
tion (4) at the “plus” sign before D2, and W2 ‒ at the “minus” 
sign. A direct substitution could be used to make sure that 
equation (1) is identical to equation (3) at H=a2x2+1, if and 
only A=H; B=2H’; C=–H’’. Once the functions A, B, C are 
introduced in (4), we obtain χ2=4а4; and D4=k4+χ2=k4+4a4; 
H’’=2a2, as well as

( ) ( )2 2 2 2 21 4 2 0.i i ia x W a xW D a W″ ′+ + + ± − =  	 (5)

It is difficult to obtain closed solutions to equations (5); 
and it seems impossible at all, which is why we shall use the 
symmetry method for the equations of the second order [22] 
to build the required solutions.

5. 2. The scheme of a symmetry method for resolving 
equations

Replacing the variable x=x(φ) converts (5) to the fol-
lowing form

2 0,i i i i

F
W W W

F
φ

φφ φ+ + λ =  		  (6)

where

2

2 ;i
i

d W
W

dφφ =
φ

 ;i
i

dW
W

dφ =
φ

( )
2 2 2 4 4 2
12

2 2 2 4 4 2
2

2 4 2 ;

2 4 2 .
i

D a k a a

D a k a a

 +λ = − = + −λ = 
−λ = − + = − + −

Equation (5), expressed through the new vari-
able φ(x), is convenient to write in the following 
form

( )2

2 2
2 0.

x

x i i i i
x

H
H W W W

H
φ

φφ φ

 φ
 φ + + λ =
 φ
 

           (7)

In order for this equation to be represented in 
form (6), one needs to adopt 2 1,xHφ = by denoting 
φxH2=F. Based on this, one can write 

1
;x

H
φ =  

2 2
;

1

dx

a x
φ =

+∫  
2

3/2.
H

F H
H

= =

By completing the integration and appropri-
ate transformations, we obtain

( )2 2

2 2 2

3

ln ln 1 ;

1 1
sinh ;

2

1 cosh ;

cosh .

a
a

t a a ax a x

ax ae t
ae

H a x t

F t

φ
φ

= φ + = + + 
  = − =   


= + = 
= 

 		  (8)

A solution to equation (6) at F=cosh3t is not known but 
this issue is eliminated by replacing F(t) with the approxi-
mating function F1(t), at which this equation has a precise 
solution. Choosing the F1(t) function is feasible once using 
the symmetry method, the essence and purpose of which is 
to develop ways to obtain accurate solutions to differential 

equations with variable coefficients. These coefficients are 
selected by a special algorithm. Thus, relative to equa-
tion (6), expressed through the t=aφ+lna variable and tak-
ing the following form

2 0t
i tt i t i

F
W W b W

F
+ + =  ( )2 2 2/ ,ib a= λ 		   (9)

the symmetry method produces the following results. If, 
for example, one assumes F=e2t, the solution is a closed 
one because the equation itself does not contain variable 
coefficients. By using, according to the proposed method, 
the algorithm of transition from the equation of form (6) at 
the parameters W and F, to its symmetry ‒ an equation with 
parameters W1 and F1, one can write [22]:

2
1

1

cosh ;

/ cosh ,

F t

W W t

= 
= 

where W is the solution to an equation in form (9) at F=e2t. 
Thus, to solve the set problem, we choose the following ex-
pression as an approximating function

2
1 cosh ,F mt= 		   (10)

where m=1.26 is the constant found during approxima-
tion. Fig. 2 shows the charts of functions F=cosh3t and 
F1=cosh2mt at t=0÷1.1.

One can see from Fig. 2 and Table 1, which gives the val-
ues of F and F1 in the marked interval, that the match of the 
compared functions is quite satisfactory. The average value 
of parameter δ=(1–F/F1)×100 % is about 0.5 %.

After introducing (10) in (9), we obtain the following 
equation

2sinh
2 0

coshi tt i t i

mt
W m W b W

mt
+ + =  ( )2 2 2/ .ib a= λ

For this equation, after the next replacement of the vari-
able mt=z, we move to the following equation

Fig. 2. Graphic interpretation of functions F and F1
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2

2 2

sinh
2 0,

cosh
i

i zz i z i

z
W W W

z m a
λ

+ + = 		   (11)

which has a precise solution built on the symmetry method. 
According to (11), the problem’s resolving equations are 
written in the following form

2 2

1 1 12 2

2 2

2 2 22 2

2
2tanh 0;

2
2tanh 0,

zz z

zz z

D a
W zW W

m a
D a

W zW W
m a

−
+ + = 


+ + − = 

hence

2 2

1 2 2

1
2 2

1 2 2

2
sin 1

1
;

cosh 2
cos 1

D a
A z

m a
W

z D a
B z

m a

   −
− +       

=  
   −

+ −        

2 2

2 2 2

2
2 2

2 2 2

2
sinh 1

1
.

cosh 2
cosh 1

D a
A z

m a
W

z D a
B z

m a

   +
− +       

=  
   +

+ −        

The overall solution to equation (1) at the predefined 
beam thickness of H=a2x2+1 is to be recorded as the sum 
W=W1+W2 and, after the transition to the variable t=z/m, 
takes the following form

1 1

2 2

sin cos1
,

sinh coshcosh

A pt B pt
W

A qt B qtmt

+ + 
=  + + 

	  (12)

where

( )
2

2
2 2 ;

D
p m

a
= − +  ( )

2
2

2 2 ;
D

q m
a

= + −

Ai, Bi (i=1,2) are the constants that are dependent on bound-
ary conditions.

We have considered a solution to the problem of the os-
cillations of a beam with rigidly fixed ends.

5. 3. Solving a problem about the oscillations of a 
beam with rigidly fixed ends

For the case of the rigid fixing of the ends’ sections of the 
beam, the deflections and rotation angles at x=±1 are zero. 
The boundary conditions of the problem are written in the 
following form

( ) 1
0;

x
W

=±
=  ( ) 1

0.x x
W

=±
=  	 (13)

By meeting these conditions after introducing a general 
solution (12) to them, we obtain the required expressions to 
determine the natural oscillation frequencies and amplitude 
coefficients related through A1, A2, B1, B2. Since the solu-
tion to (12) is recorded through a variable t, the conditions 
for (13) are also appropriate to represent through t=ln(ax+ 
+(a2x2+1)1/2)=arcsinh(ax) (8). The second of the condi-
tions (13) should be written through the Wt derivative ac-
cording to the ratio Wx=txWt=a/cosh(t)Wt. Hence, instead of 
(13), the boundary conditions take the form

( )
1

0;
t t

W
=±

=  ( )
1

0.t t t
W

=±
=  		  (14)

The limit values of t1=ln(a+(a2+1)1/2)=arcsinha can be ex-
pressed through the ratio of beam thicknesses at x=1 and x=0, 
which is equal to η=H(1)/H(0)=a2+1=(sinht1)2+1=(cosht1)2. 
Table 2 gives the values for the parameters η; a; t1, valid for 
the interval of t=0÷1.1.

Because the initial function F 
approximation was taken in the in-
terval t=0÷1.1 (Table 1), then the 
limit values for t1 in Table 2 were 
selected from this interval. This 
means that a satisfactory solution 
to the problem, in our case, could 
only be obtained if η≤3. For prac-
tical purposes, the results of calcu-
lating the oscillations at η=1÷3 are 
likely to be sufficient, especially as 
a demonstration of the effective-
ness of the method used.

Before substituting a general solution (12) in boundary 
conditions (14), for convenience, we shall rewrite this solu-
tion in the following form

( ) ( )
( ) ( )

* *
1 1 1 1

* *
2 1 2 1

sin cos1
.

cosh sinh cosh

A p t t B p t t
W

mt A q t t B q t t

 + + + +
=  

+ + + + 
	 (15)

After introducing (15) to boundary conditions (14), we 
obtain a system of the following ratios

* *
1 2 0;B B+ =  * *

1 2 0;pA qA+ =

( )

*
1 1 1

*
1 1 1

sin 2 sinh 2

cos2 cosh 2 0;

p
A pt qt

q

B pt qt

 
− +  

+ − =

( )*
1 1 1

*
1 1 1

cos2 cosh 2

sin 2 sinh 2 0.

A pt qt

p
B pt qt

q

− −

 
− + =  

Hence,

Table 1

Values of functions F and F1 in the interval t=0÷1.2

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.05 1.1 1.2

F 1 0.015 0.0061 1.142 1.263 1.431 1.666 1.977 2.392 2.943 3.67 4.125 4.645 5.936

F1 1 0.016 0.0065 1.15 1.276 1.452 1.689 2.002 2.41 2.941 3.62 4.042 4.513 5.656

δ, % 0 0.086 0.323 0.656 1.003 1.27 1.368 1.215 0.749 –0.078 –1.295 –2.056 –2.9 –4.96

Table 2

Estimation parameters η; a; t1

t1 0 0.481143 0.65841 0.78339 0.88136 0.96242 1.0316 1.077 1.14

a 0 0.5 0.7071 0.866 1 1.118 1.2247 1.322 1.4142

η 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
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The following frequency equation follows from (16):

1 1
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Because p=((D/a)2–m2–2)1/2; q=((D/a)2–m2+2)1/2, then 
q2–p2=4, and then equation (17) could be reduced to an 
expression containing only one desired value, for example, p. 
Thus, upon substituting q=(p2+4)1/2 in (17), we obtain 

( ) ( )( )
( ) ( )

2 2
1 1

2
1 1

4 1 cos 2 cosh 2 4

2sin 2 sinh 2 4 0.

p p t p t p

t p t p

+ − + +

+ + =   (18)

By setting the values for t1, based, for example, on the 
chosen concaveness of the beam, defined by the parameter 
η=H(1)/H(0)=(cosht1)2, one can determine, from (18), the 
values of pj and qj ( j=1,2,3,…), which meet the natural num-
bers of problem kj, which are to be found from the following 
ratios:

4 44 4 ;j jk D a= −  2 2 2.j jD a p m= + +

Table 3 gives the values of the specified values at j=1,2,3 
for the interval η=1÷3. For the case η=1 that corresponds to 
the beam of a permanent cross-section, the natural numbers 
kj can be found from a known equation cos(2k)cosh(2k)–1=0. 

Fig. 3 shows the graphical dependences of values for the 
first three natural frequencies (kj number) on the values of 
η=H(x=1)/H(x=0), corresponding to the data in Table 3.

Table	3

Frequency	parameters	of	beam	natural	oscillations

η j pj qj Dj x t kj

1

1

– – – – –

2.365

2 3.9295

3 5.498

1.01

1 23.678647069 23.76296 2.37543 0.25 0.025 2.37542

2 39.33828025045 39.38909 3.93839 0.5 0.04998 3.93838

3 55.084914487228 55.12121 5.51175
0.75 0.07493

5.51175
– –

1.25

1 4.828453144 5.22628 2.59334 0.25 0.12468 2.58974

2 8.1306165549 8.37299 4.17416 0.5 0.24747 4.1733

3 11.410822471068 11.58477 5.78348
0.75 0.36672

5.78315
1 0.48121

1.5

1 3.47814848 4.01217 2.78063 0.25 0.17464 2.76926

2 5.922972923 6.25153 4.36598 0.5 0.34421 4.36306

3 8.328832090661 8.5656 5.99698
0.75 0.50485

5.99585
1 0.65439

1.75

1 2.888601327 3.51341 2.99135 0.25 0.21484 2.97012

2 4.9645775903 5.35229 4.6016 0.5 0.4205 4.59582

3 6.9928733619383 7.27326 6.27404
0.75 0.61081

6.27176
1 0.78338

2

1 2.54165389 3.23419 3.1698 0.25 0.24747 3.13792

2 4.4022317052 4.83525 4.79242 0.5 0.48121 4.7833

3 6.209873337915 6.524 6.49231
0.75 0.69315

6.48866
1 0.88137

2.25

1 2.30729921 3.05346 3.33742 0.25 0.27598 3.29457

2 4.022890609 4.49262 4.97117 0.5 0.53335 4.95841

3 5.6821493 6.02385 6.69629
0.75 0.76245

6.69108
1 0.9624

2.5

1 2.13613824 2.92628 3.49645 0.25 0.30158 3.44258

2 3.74592575264 4.24641 5.14076 0.5 0.57939 5.12412

3 5.2971148 5.6621 6.88963
0.75 0.82257

6.88274
1 1.03169

2.75

1 2.035690765 2.85378 3.67593 0.25 0.32476 3.61283

2 3.5833404016 4.1037 5.35825 0.5 0.62042 5.33828

3 5.07120215 5.45134 7.15649
0.75 0.87535

7.14814
1 1.09179

3

1 1.898243362 2.75741 3.79231 0.25 0.34657 3.71674

2 3.3606956996 3.91079 5.45556 0.5 0.65847 5.43076

3 4.768615348 5.17104 7.25628
0.75 0.92362

7.24579
1 1.14621

Note that the trend of curves kj(η) in Fig. 3 confirms the 
known provision that as the system’s rigidity increases, its 
natural oscillation frequencies should increase.

The shapes of natural oscillations are built using expres-
sion (15) after it is supplemented with the values of pj, qj and 
expressions for *,iA  *,iB  according to (16). As a result, (15) can 
be rewritten as 
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  (19)

Fig.	3.	Dependence	of	kj on	the	width	parameter	η
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 
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  (20)

After replacing t with x using a ratio in (8) t=arcsinhax, 
expression (19) takes the form that is convenient for the 
graphic representation of oscillation shapes Wj (kj) in the in-
terval –1≤x≤1. The approximate trendline of charts Wj ( j=1, 
2, 3) for η=1.01; 2; 3 using data in Table 3 is shown in Fig. 4.

The η=1.01 parameter is little different from η=1 so 
that when one proceeds from η=1 1 to η=1.01, the natural 
frequencies (Table 3) also differ little. Given this, in order to 
construct and compare the shapes of oscillations built using 
a single expression (19), the initial variant η=1.01 was cho-
sen instead of natural η=1. 

It is common knowledge that for η=1 (a beam of constant 
cross-section) the shapes of oscillations can be built in the 
interval –1≤x≤1 using the following expression

( )( ) ( )( )
( )( )

( )( )
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 (21)

Table 4 gives data for the quantitative analysis of the 
shapes of oscillations shown in Fig. 4.

Table	4

Coefficients	for	building	oscillation	shapes

η j pj/qj ( )* *
1 1/

j
B A

1.01

1 0.99645 1.01397

2 0.99871 0.99794

3 0.99934 0.99937

2

1 0.78587 0.79114

2 0.91045 0.91008

3 0.95185 0.95187

3

1 0.68841 0.6909

2 0.85934 0.85912

3 0.92218 0.92219

Note that in Table 4 the pj/qj values are calculated ac-
cording to the data in Table 3, and the ( )* *

1 1/
j

B A values ‒ 
from formula (20).

As an example related to the quantitative analysis, we 
give the results from calculating the deflections Wj=1 at x=0 
(t=0) for η given in Table 4. The following expression

( )

1
1 1 1 1 1

1 1

1
1 1 1 1

1

sin cos

cosh sinh ,

B
W p t p t
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p
q t q t

q

∗

∗

 
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+ −

which follows from (19) at x=0; j=1; *
1 1A =  produces, for 

η=1,01;2;3, W1=1.517; 1.32;1.244, respectively. By attaching 
W1=1.616 to this sequence as a result of the calculation, 
according to (21), of a deflection in the center of the beam 

(x=0), we shall obtain the dependence of maximum deflec-
tions W1 on the η parameter, which characterizes the rigidity 
of the beam. This dependence leads to the obvious conclu-
sion that the deflections decrease with an increase in the 
rigidity η (an increase a).

The problem considered could form a basis for the ratio-
nal design of highly loaded beam elements of the structure, 
for which the nature of the distribution of cyclical operation-
al stresses is very important. It is obvious that, by changing 
the η parameter, one could achieve the desired change in the 
stressed state of the beam ‒ for example, to reduce normal 
stresses in the fixation and increase them in the conditioned 
cross-section, far from the place of anchoring.

6. Discussion of results of exploring the problem about 
the oscillations of a beam

Based on the concept of a factorization method (FM), it 
can be concluded that the representation of the fourth-order 
equation in form (3) requires the presence of a constant co-
efficient in the form ±k4 in the function Wi. If we follow this 

Fig.	4.	The	first	three	shapes	of	the	beam’s	natural	
oscillations	for	three	values	of	the	thickness	parameter	η:	

a	‒	first	shape;	b	‒	second	shape;	c	‒	third	shape

a

b

c
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rule, we shall obtain the FM implementation criterion in 
the form of condition H´́ =0. This leads to the simplest and 
only case H=bx+c, which was used by Kirchhoff in a known 
problem about wedge oscillations. Our modernization of 
FM implies the introduction of an arbitrary constant in the 
coefficient in Wi, which is denoted in (3) as ±(D4)1/2=±D2= 
=±(k4+χ2)1/2=±(k4+(2a2)2)1/2. As a result, the FM imple-
mentation criterion rank is increased and takes the form of 
H´́ ´=0. Hence the configuration of the beam, defined by the 
law H=a2x2+1, considered in this paper. It is also obvious 
that it follows from this criterion that there is a more general 
expression H=a2x2+bx+c, which implements FM. In the 
latter case, the choice of constants a, b, c would significantly 
diversify the types of beams for which the problem about 
oscillations could be solved analytically. The limitation of 
a factoring method is due to its constraints dictated by the 
aforementioned criterion H´́ ´=0.

The method of symmetry, as shown in the current work, 
makes it possible to solve problems about elastic body oscil-
lations correctly enough, even when the solutions to equa-
tions obtained on the basis of FM are not known.

The caveats of our study relate to the restriction of the 
parameter η≤3, as the approximation function F1 is set within 
a limited interval of t=0÷(±1.1). Increasing the approximation 
interval with the selected F1 leads to a margin of error that 
could be reduced by selecting a different function as F1, using 
the symmetry method scheme outlined in this work.

The example of solving the problem about natural oscil-
lations of the parabolic beam fixed on the end sections illus-
trates the effectiveness of the methods used in their combi-
nation. In a very similar way, the oscillations of the beams 
of this group could be studied, for example, the case of a 
convex beam whose thickness is H=1–a2x2 at different ways 
of fixing it, not excluding the case of a completely free beam.

7. Conclusions

1. The original fourth-order equation with variable co-
efficients has been decomposed by using the factorization 
method into two self-adjoint second-order equations. This 
decomposition has made it possible to replace the immediate 
search for a solution to the more complex fourth-order equa-
tion with the search for a solution to the simpler self-adjoint 
equation of the second order. It has been shown that when 
the beam thickness is H=a2x2+1, where а is the coefficient 
that determines the degree of concavity, such a decomposi-
tion is easy enough.

2. In order to find a solution to the resulting second-or-
der equations, the symmetry method and the scheme of its 
application were used to find an approximating function, 
with which we derived a precise solution to these equations. 
In this case, the function F=e2t is approximated by the 
function F1=cosh2mt, where t=ln(ax+(a2x2+1)0,5); m is the 
constant, established during approximation.

3. The problem about the oscillations of a symmetrical 
concave beam, rigidly fixed at both ends, has been solved. 
The frequency equation has been derived; the frequency 
numbers kj ( j=1÷3) have been found; graphic illustrations 
have been constructed for kj and a series of oscillation shapes 
for n=1÷3 depending on the beam’s degree of concavity de-
termined by the thickness parameter η=H(1)/H(0). It has 
been shown that as η increases, the natural frequencies  
(kj numbers) increase regardless of the frequency num-
ber j. For example, for η=1;2;3, we received, respectively, 
k1=2.365; 3.137; 3.716; k2=3.929; 4.783; 5.4307; k3=5.498; 
6.488; 7.245. There is a real possibility to directly apply the 
proposed approaches and the algorithm in general to study 
the oscillations of other beams of the parabolic group, includ-
ing different ways of fixing them, or free.
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