
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (111) 2021

24

1. Introduction

Ensuring the security of computer systems, in the face
of increased cyber-attacks, is associated with the need
to conduct prompt and accurate control over the level of
safety of their software (SW). The relevance of this issue
is predetermined by the shift of the vector of interests of
cybercriminals in the direction of the information and
software component of computer systems (CSs), as well
as a significant increase in possible losses in the case of
cyber threat implementation involving the software and
information support of CSs.

Studies have shown that one of the immediate mech-
anisms for controlling software safety is the methods and
tools to identify vulnerabilities. At the same time, one should
note that the process of identifying software threats has a
series of drawbacks. This is limited application scope, low
speed, and incomplete control over the actual state of soft-
ware, low reliability of the results of vulnerability detection,
etc. In many ways, these negative factors are caused by the
lack of attention of developers to the issues related to the

reasoned selection of testing procedures, as well as the mod-
els and methods of identifying vulnerabilities.

Various models, methods, and procedures of security
testing and certification are used to identify software vul-
nerabilities. Most of them are based on software safety re-
quirements set by international industry standards, as well
as software testing models (including penetration testing).

At the same time, most of the software safety testing
models in the IT-service market have drawbacks. Most of
them are related to the lack of attention to the fuzzy factor
of input, neglect of the capabilities of attackers in the process
of cryptographic change of code, etc.

Therefore, it is a relevant task to improve software safety
testing models.

2. Literature review and problem statement

Paper [1] provides an overview and a generalized com-
parative assessment of software safety testing methods. The
cited paper could be used to identify the most significant

DEVELOPMENT A
MATHEMATICAL MODEL

FOR THE SOFTWARE
SECURITY TESTING

FIRST STAGE

S e r h i i S e m e n o v
Doctor of Technical Sciences, Professor*

Z h a n g L i q i a n g
Postgraduate Student

College of Computer Science**
C a o W e i l i n g

Postgraduate Student
Department of IT Information Centre**

V i a c h e s l a v D a v y d o v
Corresponding author

PhD*
E-mail: vyacheslav.v.davydov@gmail.com

*Department of Computing and Programming
National Technical University "Kharkiv Polytechnic Institute"

Kyrpychova str., 2, Kharkiv, Ukraine, 61002
**Neijiang Normal University

705 Dongtong Rd, Dongxing District, 	
Neijiang, Sichuan, China

This paper reports an analysis of the
software (SW) safety testing techniques, as
well as the models and methods for identifying
vulnerabilities. An issue has been revealed related
to the reasoned selection of modeling approaches
at different stages of the software safety testing
process and the identification of its vulnerabilities,
which reduces the accuracy of the modeling results
obtained. Two steps in the process of identifying
software vulnerabilities have been identified. A
mathematical model has been built for the process
of preparing security testing, which differs from
the known ones by a theoretically sound choice of
the moment-generating functions when describing
transitions from state to state. In addition, the
mathematical model takes into consideration the
capabilities and risks of the source code verification
phase for cryptographic and other ways to protect
data. These features generally improve the accuracy
of modeling results and reduce input uncertainty
in the second phase of software safety testing.
An advanced security compliance algorithm has
been developed, with a distinctive feature of the
selection of laws and distribution parameters that
describe individual state-to-state transitions for
individual branches of Graphical Evaluation and
Review Technique networks (GERT-networks). A
GERT-network has been developed to prepare for
security testing. A GERT-network for the process
of checking the source code for cryptographic and
other data protection methods has been developed.
A graphic-analytical GERT model for the first phase
of software safety testing has been developed. The
expressions reported in this paper could be used to
devise preliminary recommendations and possible
ways to improve the effectiveness of software safety
testing algorithms

Keywords: software, security testing, graphic-
analytical model, cyber threats, software safety,
data protection

UDC 004.415.53:519.711
DOI: 10.15587/1729-4061.2021.233417

How to Cite: Semenov, S., Liqiang, Z., Weiling, C., Davydov, V. (2021). Development a mathematical model for the

software security testing first stage. Eastern-European Journal of Enterprise Technologies, 3 (2 (111)), 24–34.

doi: https://doi.org/10.15587/1729-4061.2021.233417

Received date: 14.04.2021

Accepted date: 20.05.2021

Published date: 29.06.2021

Copyright © 2021, Authors. This is an open access article under the Creative Commons CC BY license

Information technology

25

Choosing a modern implementation technology in the
form of a multi-cloud system with a virtual data center
combined with the capabilities of intelligent data process-
ing has made it possible, according to the authors, to im-
prove the level of security. However, a lack of attention to
input formation in the early preparatory stages of testing,
neglect of the problems of possible hiding or obfuscation
of software at this stage, significantly reduce the practical
value of the results.

The authors of [8] justify the effectiveness of the devel-
oped model with a reasoned choice of input characteristics
and the results of comparative experiments conducted with a
wide range of methods of intelligent mathematical modeling.
At the same time, the authors could not eliminate the short-
comings associated with the low speed of neural network
learning processes at this stage of the development of intelli-
gent methods of mathematical formalization.

Work [9] attempts to theoretically justify the choice
of the mathematical apparatus of network modeling. It re-
ports GERT-network research using a unified description
approach based on Erlang’s distribution. At the same time,
those models were built without taking into consideration
the specificity of the full software safety testing cycle, the
possibilities of pre-training software safety testing, in gen-
eral, are neglected, and the existing risks of cryptographic
obfuscation of code, in particular, are neglected.

The authors of [10] tried to solve the problem of increas-
ing the adaptability of the resulting mathematical model.
The cited paper reports a model for identifying software
vulnerabilities using network methods of mathematical
formalization. However, the lack of a practical application
and adaptation of the proposed model to specific types of
cyberattacks reduces the value of development and calls into
question the accuracy of the simulation results.

The authors of [11] tried to eliminate this flaw. Howev-
er, the lack of theoretically sound proposals for the use of
methods of selecting the basic mathematical characteristics
of the description of probabilistic processes (mathematical
expectation, variance, etc.) of individual transitions from
state to state in the system reduce the accuracy of modeling.

Work [12] reports a study into and taxonomy of auto-
matic software safety testing tools. The cited work pro-
vides up-to-date practical recommendations on the use of
these means and tools. However, the clear practical aspect
of the work did not allow the authors to raise the issues of
theoretical justification and mathematical description of
the methods and means of automatic testing of software
safety. Thus, it appears appropriate to conduct a study
to improve the accuracy of the results of mathematical
formalization of the vulnerability detection process, by
taking into consideration the possibility of different stag-
es of software testing for penetration in the mathematical
model built.

3. The aim and objectives of the study

The aim of this study is to build an alternative mathe-
matical model of the first stage of software safety testing
that meets the adequacy requirements and provides a
solution to the task of evaluating the effectiveness of the
algorithm.

To accomplish the aim, the following tasks have been set:
‒ to develop an improved security compliance algorithm;

steps in modeling and task setting. At the same time, a
generalized view of the testing process, without taking into
consideration the specificity of software testing, does not
allow for the full consideration of most of the security factors
required in the models.

Work [2] gives a classification of model-oriented soft-
ware safety testing methods. A series of recommendations
for the use of automated tests and risk-oriented testing
approaches are illustrated. That could give researchers a
conceptual apparatus of the expediency of model-oriented
software testing methods. However, the cited work does not
consider studying the mathematical formalization methods
for the implementation of the proposed models.

The drawback mentioned in work [2] could be eliminated
using paper [3]. In it, the authors, along with the generalized
classification of model-oriented software testing methods, con-
sider a series of approaches of mathematical modeling. Those
include finite state machines, state diagrams, unified modeling
language (UML), as well as Markov chains. In addition, the cit-
ed paper provides an example of the implementation of a securi-
ty testing model based on the method of finite state machines.
However, the emergence of new testing factors (the fuzzy input,
the possibility of cryptographic change, the increased tech-
nological capabilities of software development participants)
requires that other approaches of mathematical formalization
and improvement of existing models should be considered.

Paper [4] reports a generalized classification of software
safety testing models. A criterion for assessing the effective-
ness of testing has been proposed. However, the authors take
more into consideration the human factor of cyber threats,
while neglecting the technical components of the assess-
ment. That reduces the adequacy of the models.

Work [5] proposes a generalized model of security test-
ing in the form of a systematic process map. The possibilities
to categorize software safety risks have been described, as
well as building the tables to prioritize the tasks on minimiz-
ing these risks. Despite the wide range of potential coverage
of software safety threats and systemic nature in meeting
the targets, the cited work does not take into consideration
individual factors. For example, the fuzziness of software
data, ambiguity in the initial knowledge about the methods
and ways of its development.

Paper [6] proposes a vulnerability detection model based
on firmware logic machines. In this case, the authors reduced
the task of mathematical modeling to the synthesis of a con-
trol firmware machine as part of an adaptive-control module
of the system of identifying vulnerabilities in an unstable
network environment.

The model given in [6], along with the merits described
by its authors (operationality, completeness, accuracy), has
obvious flaws caused by the choice of the basic technology
of problem-solving:

– low adaptability of models to actual changes in the
behavior of the system;

‒ significant complications of implementation algorithms
in the event of a possible slight change in the behavior of at
least one site (agent);

‒ neglecting the issues of possible cryptographic soft-
ware protection.

It should be noted that the elimination of these short-
comings is associated with the use of intelligent modeling
methods.

For example, the results of studying a model of the neu-
ral network of CS safety testing are reported in work [7].

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (111) 2021

26

‒ to design the GERT-networks for the security testing
process;

‒ to design the GERT-networks for the process of source
code verification for cryptographic and other ways to pro-
tect data;

‒ to develop the GERT-models for the first phase of soft-
ware safety testing.

4. The study materials and methods

Graphic-analytical methods of mathematical formal-
ization based on the postulates of GERT-network modeling
were used to solve the set tasks. At the same time, taking
into consideration the features of individual stages of the
software safety testing process was based on the provisions
and methods of probability theory and mathematical sta-
tistics.

5. The results of building a mathematical model

5. 1. Software vulnerability identification process
model

The process of identifying software vulnerabilities can
be conditionally broken down into two phases: preparation
for research; conducting the research.

Fig. 1 shows a scheme of the preparation for testing re-
search. The goal of the first phase is to analyze, prepare test
documentation, conduct a preliminary analysis, and assess
the level of software safety.

A distinctive feature of this phase of research is the intro-
duction of additional source code verification procedures for
cryptographic and other ways to protect the code. That would
make it possible to highlight the data format, make changes
to the relevant test documentation, and prepare additional
means of analyzing the encryption (obfuscation) of the data.

Fig. 1 demonstrates that, unlike many processes related
to computer system status control, it is not possible to set
many controlled parametric data and reference values in
detecting software vulnerabilities. The inputs for the exam-
ination in the presented model are elements of the software
itself, the software environment, as well as technical docu-
mentation and standards.

These data are subjected to preliminary analysis; the
result of such analysis is a research plan, test documentation
sets, and non-parametric data for the implementation of the
test control bench. An exception to this rule, in the first
stage of threat detection, is an analysis of the structure of
the assessed object, which results not only in non-parametric
data for the emulation of components but also data of the
preliminary control of the assessed object.

The result of this assessment may be the object-oriented
properties of a software product. At the same time, experts
could use a variety of controlled data (control results) set
by th following indicators as a characteristic of structural
security:

‒ size;
‒ the hierarchical structure;
‒ the connectivity of the relevant parts;
‒ polymerization;
‒ the complexity of sharing information.

Fig. 1. Security testing study preparation flow chart

Information technology

27

Combined with confirmation of encryption (obfusca-
tion) of the software, this set forms a separate class of input
parametric data for the second stage ‒ conducting research
on software safety testing.

This class of input data when assessing software safety is
a fuzzy set. This fact imposes some limitations in the second
phase of software safety testing (direct research).

In order to improve the effectiveness of software vulnera-
bility detection processes, as well as to improve the accuracy
of decision-making, there is a need for theoretically reasoned
justification and mathematical formalization of most of the
components of the above stage.

5. 2. Improved security compliance algorithm
Consider a problem on identifying software vulnerabili-

ties in terms of matching security probabilities to regulatory
requirements. In this case, we introduce the assumption that
some generalized safety indicator X0 must meet the require-
ment:

0 ,addХ X≤ 	 (1)

where Xadd is a regulatory measure of safety.
It is not difficult to notice that (1) formalizes a determin-

istic example of a study where a safety indicator is described
by a clear value. However, we can assume that there is uncer-
tainty in the value of X0. Therefore, X0 can be considered a
mathematical expectation X0=M[X] of the random value X,
distributed under one of the known distribution laws with
probability density f(X) and distribution function F(X).

Paper [13] illustrates a generalized case of uncertainty
about the value of the safety indicator in the form shown in
Fig. 2. At the same time, as the figure demonstrates, the gen-
eral mathematical expression describing the situation when
the random value does not exceed the maximum allowable
value of Xadd:

() ()≤ .add addP X X = F X 	 (2)

At the same time, the probability of exceeding the allow-
able value of the Xadd is defined as:

() () ()= > = − ≤ = −1 1 .add add add addP P X X P X X F X 	 (3)

In addition, work [12] gives the algorithms to check com-
pliance with the security criteria for different distribution laws.

However, one of the main drawbacks of this formaliza-
tion approach is the need to initially define mathematical
expectation and the variance of random X:

[] = 0,M X X [] = 2
0 .D X S 	 (4)

This can only be used for small examples of mathematical
formalization and not for the entire spectrum of technical
systems, taking into consideration the accuracy of the result.

Therefore, there is a need to improve this algorithm, tak-
ing into consideration the processes shown in Fig. 1.

It is known from work [14] that this type of modeling has
a number of advantages:

‒ it is an effective way to determine previously unknown
laws and functions of random distribution under a known
algorithm of functioning (process);

‒ it is easy to implement;
‒ the results of mathematical modeling are adequate, etc.
The formalization model can be represented as follows:
Stage 1. Select laws and distribution parameters that de-

scribe individual state-to-state transitions for the individual
branches of GERT-networks. At this stage:

1. Calculate the X0 safety score.
2. Register the Xadd value.
3. Check condition (1). If condition (1) is met, proceed

to p. 4.
4. Register uncertainty parameters; considered X0 as an

estimate of the average random X value, distributed by some
law with a probability density of f(X).

5. Calculate Padd using formula (3).
6. Decide whether the received Padd value is acceptable or

unacceptable for the probability of exceeding an Xadd value.
Stage 2. Develop a GERT-network scheme to prepare for

security testing research based on the data shown in Fig. 1
and their actualization by a reasoned choice of the moment
functions of each branch of transitions from state to state.

Stage 3. Find the equivalent functions of the distribution
of the processes described and study them.

We shall develop and investigate a GERT-model of the
process of preparing for safety testing research.

5. 3. GERT-model of the first phase of identifying
software vulnerabilities

5. 3. 1. Studying the probability density function
for different distribution laws

Using the “R Project for Statistical Computing” math-
ematical software package, we constructed a dependence
to investigate both probability density functions and
distribution functions (of the five considered) for which
Padd=f(x0, s0, xadd). As an example, the probability density
functions at x0=3, s0=1, xadd=4 are shown in Fig. 3.

In accordance with (1) to (3), Padd values for differ-
ent distribution laws (Table 1) have been obtained.

As Table 1 demonstrates, under experimental con-
ditions, the lowest Padd value was obtained when using,
for the mathematical formalization, the gamma-distri-
bution, log-normal, and normal distribution laws.

We shall use these test results in the mathematical
formalization of the software safety testing process.
We adopt a normal distribution law as the basic law
of distribution when describing individual steps and
transitions.

f(
x)

x

F(
x)

x=0

xaddx0

F(xadd)
Padd

1

Fig. 2. A generalized case of uncertainty about the security score

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (111) 2021

28

Table 1

Padd dependence on the accepted distribution law

No. Distribution law name Padd value

1 Normal 0.1586553

2 Log-normal 0.1471852

3 Steady 0.2113249

4 Exponential 0.2635971

5 Gamma-distribution 0.1550278

5. 3. 2. Developing a GERT-network scheme of the
process to prepare for security testing

The process of identifying software vulnerabilities can be
considered as a network GERT-structure, the input of which
is the flow of tasks that need to be solved, and the ultimate
goal is the flow of tasks accomplished. In this case, one
should consider that any initial task can be decomposed into
smaller sub-tasks, which generally speeds up the process of
simplifying GERT-network transformations. In the end, this
decomposition would describe a set of several single tasks,
such as implementing individual methods (the single task
is considered to be the one that a specialist could perform
in one working day). Next, a queue of single tasks is formed.
This line, according to different software development
methodologies, is broken down into either several itera-
tions (according to Agile procedures) or more complicated
complex iterative structures (in accordance with the “spiral”
methodology).

The task software team identified typical service charac-
teristics based on the properties of the input flow of data, the
parameters and structure of the system, and the disciplines
of query service. The main characteristic of the system is
the probability that the development team will successfully
complete all the tasks set in the iteration.

We present a generalized mathematical model of iden-
tifying vulnerabilities in the form of GERT-networks. The
first phase is formalized as a GERT-network in the security
testing process (Fig. 4).

This model can be interpreted as follows. Node 1 corre-
sponds to the initial state of “the required documentation
package, source and executable codes have been collected”.

Node 2 interprets the state of “the source code
check for cryptographic and other ways to pro-
tect data completed”. Node 3 is a state of “the
readiness of test documentation and test con-
trol bench”. Node 4 corresponds to the “ready
for pre-assessment of a tested object” status.
Node 5 is the state of “the preliminary results
of object structure analysis are ready”.

The corresponding branches of the model
are interpreted by the mathematical formaliza-
tion of transitions from state to state. In partic-
ular, the transition (1‒2) formalizes the process
of checking source code for cryptographic and
other ways to protect data. Transitions (1‒3)
and (2‒3) correspond to the process of pre-
paring test documentation and test control
bench. Transition (3‒4) formalizes the process
of pre-evaluation of the tested object (architec-
ture, completeness of information, etc.), as well
as planning of the study. Transition (4‒5) char-
acterizes the process of analyzing the structure
of the object. Transition (4‒2) describes proce-
dures for returning to the state of assessment of
possible cryptographic or other ways of encod-
ing software. Transition (4‒1) formalizes the
necessary process of additional input collection
if necessary (insufficient).

The equivalent W-function of the security testing prepara

() =
+

=
− − − −

12 23 34 45 13 34 45

12 23 34 42 13 34 42 13 34 41 12 23 34 41

.
1

EW s

W W W W W W W

W W W W W W W W W W W W W W
	 (5)

A distinctive feature of the model being built is to take
into consideration the source code verification for cryp-
tographic and other ways to protect the data. This procedure
in Fig. 4 is represented by transition (1‒2). We shall describe
the procedure in more detail.

5. 3. 3. GERT-network of source code verification
process for cryptographic and other ways to protect data

Our study has shown that the process of cryptographic
conversion or obfuscation of the source code of software can
be represented as a combination of algebraic operations of
weighted addition and multiplication, performed in accor-
dance with the following expressions:

Fig. 3. An example of probability density function for different distribution
laws at: x0=3, s0=1, xadd=4

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

f(
x)

x

Normal Log-normal
Steady Exponential
Gamma-distribution

1

2

3

4 5

W23

W12

W42

W45

W34

W41

W13

Fig. 4. GERT-network scheme of 	
the security preparation process

Information technology

29

1 1 ,n nS p R p R= +…+
 1

1.
n

i
i

p
=

=∑

1

,
n

i
i

C R
=

= ∏

where S is the result of a weighted addition operation; R is
the set of reversible transformations; pi is the probability
of selecting such Ri systems in which Ki ‒ the set of initial
messages and Li ‒ the set of converted messages are equal;
C is the result of a multiplication operation, for which the
equality of the Ri system values and the set of determining
the Ri+1 system is a prerequisite.

These algebraic ratios can be formalized as equivalent
transformations and GERT-network transitions.

In practice, in the SW encryption or obfuscation processes,
the selection of successive operations is done using a random
number sensor. The GERT-model of these processes makes it
possible to analyze the probabilistic behavior of the software
hiding (transformation) system and could be used to estimate
the number of options that need to be sorted out when testing
software safety for cryptographic transformation.

It should be noted that the most important characteris-
tics of software safety include the average and variance in
the number of conversions performed, as well as the average
time and variance of operations. We shall consider methods
to find these characteristics using an example of the software
encryption scheme shown in Fig. 5.

Let us find an average of the number of conversions that
are being performed. As a basis, we shall take the exponen-
tial law of distribution of the random value of the time of
the transformation and, accordingly, the moment-generating
functions of branches are equal to es.

Then the equivalent W-function of the GERT-encryption
network of software is equal to

() ()
4

1 2 3
2 3

1 2 1 2 1 2 3

,
1 e e e

s

E s s s

q q q e
Wk s

p p p p q q p
=

− + + −
	 (6)

where q1=1–p1, q2=1–p2, q3=1–p3 are the probabilities of
branch selection (1, 2), (2, 3), (3, 4) in the scheme shown in
Fig. 5, respectively.

Expression (6) can determine the average number
of N conversions performed and its variance DN. If one
indicates the probability of passing loops of the first
kind (1, 2, 3, 4, 1);(1, 2, 3, 1) via g1=q1q2q3 and g2=q1q2q3,
respectively, and the product of probabilities of the loop
of the second kind (1, 1), (2, 2) ‒ via g3=p1p2, one can
determine

γ + γ − γ +
=

γ
1 2 3

1

3 2 1
,N 	 (7)

() ()γ − γ + − γ − γ + γ
=

γ

2

2 3 1 2 3
2
1

2 1 1 4
.ND 	 (8)

Using the Mathcad specialized mathematical package,
we shall calculate some combinations of q1–q3 probabilities
and the corresponding N and DN values. The results are
given in Table 2.

Table 2 demonstrates that even for any encryption
system when one changes key information and encryption
algorithms (obfuscation), a set of attractors passing from the
source to the GERT-network sink is formed. Each of the key
information job options corresponds to the average number
of N conversions and its variance DN.

It has been proven in [14] that the time of encryption and
decryption depends on the time each functional conversion
is performed. In addition, the cited work gives an example of
modeling the cryptographic system R1, the basis of the for-
malization of which is the Chinese theorem about the rem-
nants. In this case, the following expression was obtained to
analyze the time of the R1 system:

() ()2
11

0,5() ,
s k DsR

EWk s e
β += 	 (9)

where () () ()2
1 1 2 31 1 1 ;idiv mul sumk k t k t k t β = + + + + + − 

ki is the number of integer division, multiplication, and
addition operations, respectively, normalized for t (t=10 for
example);

tidiv is the time it takes for integer division operations;
tmul is the time it takes for multiplication operations;
tsum is the time it takes for addition operations.

Table 2

Results from calculations of the average number of N
conversions and its variance DN at different probability

values q1, q2, q3

No. of entry q1 q2 q3 N DN

1 0.1 0.1 0.1 211 41.49

2 0.2 0.2 0.2 56 20.96

3 0.3 0.3 0.3 26.556 13.743

4 0.4 0.4 0.4 16 9.84

5 0.5 0.5 0.5 11 7.25

6 0.6 0.6 0.6 8.222 5.307

7 0.7 0.7 0.7 6.51 3.724

8 0.8 0.8 0.8 5.375 2.36

9 0.9 0.9 0.9 4.58 1.134

10 0.999 0.999 0.999 4.005 0.011

11 0.1 0.1 0.5 43 6.21

12 0.3 0.1 0.5 29.667 9.097

13 0.5 0.1 0.5 27 13.05

14 0.7 0.1 0.5 25.857 17.156

15 0.9 0.1 0.5 25.222 21.312

16 0.1 0.9 0.5 25.222 21.312

17 0.3 0.9 0.5 11.889 10.137

18 0.5 0.9 0.5 9.222 8.561

19 0.7 0.9 0.5 8.079 8.357

20 0.9 0.9 0.5 7.444 8.61

We shall use (9) to find the equivalent W-function of the
source code verification process for cryptographic and other
ways to protect the data.

1 2 3 4

p1

1-p1

p2

1-p2

1-p3

p3

Fig. 5. Software encryption scheme for a generalized 	
GERT-network

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (111) 2021

30

For the cases set in Table 2 (case 1‒q1=0.1, q2=0.4,
q3=0.4, case 2‒q1=0.3, q2=0.1, q3=0.5. For both cases,
DN=9, k1=k2=k3=2), we shall obtain the W-function of R1

conversion time:

() ()2
1

1.376 16.9() .
s sR

EWk s e
+= 	 (10)

Then the equivalent W-function of the time of the process
of testing a cryptographically converted software product

()

()
+

+ + +

=

=
− + + −

2

2 2 2

5.04 67.6
1 2 3

1.38 16.9 2.76 33.8 4.14 50.7
1 2 1 2 1 2 3

.
1

E

s s

s s s s s s

Wk s

q q q e

p p e p p e q q p e
(11)

The density of the probability distribution of the time of
the process of testing the cryptographically converted soft-
ware product at different values of q1, q2, q3, and at values
tidiv=0.6 s, tmul=3 s, tsum=5 s, obtained using the software
platform Mathcad is shown in Fig. 6.

Important indicators that
characterize the complexity of
software testing for cryptograph-
ic and other similar transforma-
tions are the average time and
variance of cryptographic or ob-
fuscation operations.

Fig. 6 demonstrates that the
maximum distribution density of
the random time of the test time
for cryptographic transformations (obfuscation) is reached
within 0.13‒0.15 s. The estimated variance values showed
the following results for case 1‒0.009, for case 2‒0.002.

It should be noted that the analytical expressions derived
from the simulation, as well as the values obtained experi-
mentally, could be used in the examined GERT-network of
the security testing process preparation. This is an import-
ant component step in modeling.

5. 4. GERT-model of the security testing process
preparation

Taking into consideration the results obtained in sub-
chapter 5. 1–5. 3, as well as expression (5), we shall find an
analytical ratio for calculating and researching the equiva-
lent W-function of the software safety testing process.

In accordance with expression (5), as well as the study
results (Table 2), we shall represent the characteristics
of the branches and distribution parameters in the form
of Table 3.

Table 3

Characteristics of the branches of the security test
preparation process model

No. of
entry

Branch W-function Probability
Moment-generat-

ing function

1 (1, 2) W12 (expression (6))

2 (1, 3) W13 р1 l1/(l1–s)

3 (2, 3) W23 р1 l1/(l1–s)

4 (3, 4) W34 р2 l2/(l2–s)

5 (4, 5) W45 р3 l3/(l3–s)

6 (4, 2) W42 р4 l4/(l4–s)

7 (4, 1) W41 р5 l5/(l5–s)

Then

The following expression was obtained to calculate the
equivalent W-function of the software safety testing process:

() ()()()
()()

+ − +
=

λ − + + + + − +

2

6 5 4 3 2
3

1
,E

E

Wk s gs ks v
W s

s rs ys ds hs xs cs b
	 (13)

where

= λ λ λ1 2 3 1 2 3;g p p p

()= λ λ λ λ + λ1 2 3 1 2 3 5 4 ;k p p p

= λ λ λ λ λ1 2 3 1 2 3 5 4;v p p p

()()()= + λ λ λ + λ λ λ1 2 4 1 2 4 1 2 5 1 2 51 2 ;Er Wk s p p p p p p

()()() ()

() ()()

1 2 4 1 2 4
2 4

1 2 5 1 2 5

1 2 4 1 2 4 1 5 1 2 5 1 2 5 1 4

1

2

2 ;

EWk s p p p
y

p p p

p p p p p p

 + λ λ λ +
= −λ − λ − 

+ λ λ λ 

− λ λ λ λ + λ + λ λ λ λ + λ

()()()

()
()()()()

()
() ()()()

()

1 2 4 1 2 4

1 2 5 1 2 5

4 5 2 5 2 4 1 4 1 2 2 4

1 2 4 1 2 4 1 5

1 2 5 1 2 5 1 4

2 4 1 5 1 2 4 1 2 4

1 2 5 1 2 5 1 4

1

2

2

1

2

1

2 ;

E

E

E

Wk s p p p
d

p p p

Wk s p p p

p p p

Wk s p p p

p p p

 + λ λ λ +
= × 

+ λ λ λ 

× λ λ + λ λ + λ λ + λ λ + λ λ − λ − λ −

 + λ λ λ λ + λ +
− × 

+ λ λ λ λ + λ 

× −λ − λ + λ λ + λ λ λ +

+ λ λ λ λ λ

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

1

2

D
is

tri
bu

tio
n

de
sti

ny

Time to execute stage I in the testing
preparation process

()
()()

()()()
()() ()()() ()()()()

()()()()

1 1 2 2 3 3

1 2 3

1 1 2 2 4 4 1 5 1 1 2 2 5 5 1 4

1 2 4 5

1

.
2 1 2

1

E

E

E

W s

p p p Wk s

s s s

p p p s s Wk s p p p s s

s s s s

=

λ λ λ +
λ − λ − λ −

=
λ λ λ λ − λ − + + λ λ λ λ − λ −

−
λ − λ − λ − λ −

(12)

Fig. 6. The density of probability distribution of the time to
execute a process of testing a cryptographically converted

software product

Information technology

31

()()()()
()

()()()()
()

()
()()()

()()

1 2 4 1 2 4 1 2 5 1 2 5

2 4 5 1 4 5 1 2 5 1 2 4

1 2 4 1 2 4 1 5

1 2 5 1 2 5 1 4

4 5 2 5 2 4 1 4 1 2 2 4

1 5 1 2 4 1 2 4

1 2 5 1 2 5 1 4 2 4

1 2

1

2

2

1

2 ;

E

E

E

h Wk s p p p p p p

Wk s p p p

p p p

Wk s p p p

p p p

= + λ λ λ + λ λ λ ×

× −λ λ λ − λ λ λ − λ λ λ − λ λ λ −

 + λ λ λ λ + λ +
− × 

+ λ λ λ λ + λ 

× λ λ + λ λ + λ λ + λ λ + λ λ − λ − λ +

+λ λ + λ λ λ +

+ λ λ λ λ λ −λ − λ

()()()()

()
()()

()
()

()
() ()()()

()

1 2 4 1 2 4 1 2 5 1 2 5

1 5

1 2 4 5 1 2 4 1 2 4

1 2 5 1 2 5 1 4

4 5 2 5 2 4 1 4 1 2 2 4

1 5 1 2 4 1 2 4

2 4 5 1 4 5
1 2 5 1 2 5 1 4

1 2 5

1 2

1

2

2

1

2

E

E

E

x Wk s p p p p p p

Wk s

p p p

p p p

Wk s p p p

p p p

= + λ λ λ + λ λ λ ×

 λ λ + ×
 

× λ λ λ λ + × λ λ λ + × 
 + λ λ λ λ λ 

× λ λ + λ λ + λ λ + λ λ + λ λ − λ − λ −

− λ + λ + λ λ λ +

−λ λ λ − λ λ λ −
+ λ λ λ λ + λ

−λ λ λ − λ1 2 4

;
 
 λ λ 

() ()()()
()

()
()()

()

()

1 5 1 2 4 1 2 4

1 2 5 1 2 5 1 4

1 5

1 2 4 5 1 2 4 1 2 4

2
1 2 5 1 2 4 5

2 4 5 1 4 5 1 2 5 1 2 4

1

2

1

2

;

E

E

Wk s p p p
c

p p p

Wk s

p p p

p p p

 λ + λ + λ λ λ +
= × 

+ λ λ λ λ + λ 

 λ λ + ×
 

× λ λ λ λ − × λ λ λ + × 
 + λ λ λ λ 

× −λ λ λ − λ λ λ − λ λ λ − λ λ λ

()()
() ()
1 5

1 2 4 1 2 4 1 2 4 5

2
1 2 5 1 2 4 5

1

.

2

EWk s

b p p p

p p p

 λ λ + ×
 

= × λ λ λ + λ λ λ λ 
 + λ λ λ λ 

The densities of the probability distribution of the time
of preparation for software safety testing at different values
q1=0.1; q2=0.4; q3=0.3; q4=0.4; q5=0.1, and the values of
l1=0.8, l2=0.2, l3=0.3, l4=l5=0.2, are shown in Fig. 7.

Fig. 7 demonstrates that the maximum distribution den-
sity of the random value of time in preparation for software
safety testing is reached within 0.14‒0.16 s. Thus, one can
note that the main time spent in preparation for security
testing is the process of testing a cryptographically convert-
ed software product.

Our study has shown that GERT-networks that are
similar to those in Fig. 4, have no simple methods of finding
specific points in the function ФE(z) of replacing the actual
variables (z=–iz), where z is the actual variable. This is due
to the fact that in order to find special points, it is necessary
to solve non-linear equations, and the more complex the
structure of a GERT-network, the more complex the original
equation. Therefore, while modeling, one can obtain the fol-
lowing via a comprehensive transformation:

() ()
()()

2

6 5 4 3 2
3

.
gz kz v

z
z rz yz dz hz xz cz b

− +
Φ =

λ + − − − − + +
	 (14)

The density of the distribution of software safety testing
probability time takes the following form

()
()

()
2

6 5 4 3 2

1
d ,

2

i
zx

i

x

gz kz v
e z

i rz yz dz hz xz cz b

∞

− ∞

φ =

− +
=

π − − − − + +∫ (15)

where integration is performed along the Bromwich con-
tour [15].

Fig. 7. Chart showing the density of the probability of
preparation time for software safety testing

The choice of integration technique can be made de-
pending on whether the function Ф(z) has only simple poles
or poles of some order. In the example above, the ezxФ(z)
expression can be represented as:

()
()

()
()

2

7 6 5 4 3 2
6 5 4 3 2 1 0

,

zx

zx

e z

e gz kz v

z z z z z z z

z

z

Φ =

− +
= =

− γ − γ − γ − γ − γ + γ + γ

µ
=

ψ 	 (16)

where g6=r, g5=r–y, g4=y–d, g3=d–h, g2=h–x, g1=x+c, g0=c.
Then the density of the time of security testing of all

types of software (including cryptographically protected) is:

() () ()
()

()

7 7

1 1

27

6 5 4 3 2
1 6 5 4 3 2 1

.
7 6 5 4 3 2k

kzx

k k k

zx

k k k k k k

z
x Res e z

z

e gz kz v

z z z z z z

= =

=

µ
 φ = Φ = =  ψ

− +
=

− γ − γ − γ − γ + γ + γ

∑ ∑

∑ (17)

The function Ф(z)) can have a pole of the second or third
order. Then the density of the distribution of the transfer
time j(x) is calculated from the formula of finding r-1 deduc-
tions from the zk poles of order n:

()
() ()()1

1 1

1
lim .

1 ! k

nn zx
k

nz z

d z z e z
r

n dz

−

− −→

− Φ
=

−
	 (18)

Expression (18) is a fractional-rational function relative
to z with a denominator power greater than the numerator’s
one. That is why the conditions of Jordan’s lemma [15] are
met for it.

0.1 0.15 0.2

0.02

0.04

0.06

0.08

0.1

D
is

tri
bu

tio
n

de
sti

ny

Time to execute the testing preparation
process

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (111) 2021

32

The polynomial rz6–yz5–dz4–hz3–xz2+cz+b generates
seven poles. The solution to the following equation

6 5 4 3 2 0.rz yz dz hz xz cz b− − − − + + = 	 (19)

can be found by any method, for example, by Viet’s formu-
las [14]. As a result, special points z1, z2, z3, z4, z5, z6 are
calculated.

A number of experiments have been conducted to sub-
stantiate the validity of the modeling results, in accordance
with the following conditions:

‒ a team of software developers consists of 8 people; one
is an automated tester and one ‒ a Person Non Grata tester;

‒ the basic methodology for managing software develop-
ment is SCRUM;

‒ the number of experiments is N*=100.
The test results were used to build a histogram of the

time of preparation for the software safety testing, shown
in Fig. 8.

Our hypothesis of the normal distribution of this
random value has been tested by the Pearson agreement
criterion c2 [15].

()22 * *

1

/ ,
k

i i i
i

N P P P
=

χ = −∑

where k is the number of bits (intervals) of the statistical se-
ries; *

iP and Pi is the “statistical” and theoretical probability
of “matching” the preset indicator with the i-th bit.

Our test proved the plausibility of the hypothesis that
the amount of software safety testing time is distributed
according to normal law.

The following estimates of the mathematical expectation
()
test

ˆ it and variance ()
test

ˆ
ˆ

it
D (()

test
ˆ

ˆ it
σ is the rms deviation) of the ran-

dom value ()
test

it for a software safety testing time have been
obtained:

(,)
test

1()
test *

ˆ

ˆ ;

k
i j

ji

t

t
N

==
∑

()

()
test

2
() (,)
test test

1
ˆ *

ˆ ˆ
ˆ ;

1
i

k
i i j

i
t

t t
D

N
=

−
=

−

∑
 () ()

test test
ˆ ˆ

ˆˆ .i it t
Dσ =

Using the known expression to calculate the confidence
probability of relative frequency deviation from the constant
probability in independent trials, we shall determine the
confidence probability that the resulting test value of soft-
ware safety “does not deviate” from the mathematical expec-
tation ()

test
ˆ it by more than 0.05:

()() ()
()test test
test

0,05ˆ 1 2 ,ˆ
i i

iP t t
t

 
− < = Κ   

where Ф is the Laplace function in the form

()
2

2

0

1
d

2

х
t

х е t
−

Φ =
π ∫

[15].

The results of our experiments showed that for all the
data studied, the confidence probability that the statistical
value ()

test
it “does not deviate” from the mathematical expecta-

tion ()
test

ˆ it by more than 0.05 is: P≈0.94.
The experimental data have made it possible to conduct

a comparative study of the results from mathematical model-
ing. The results of the comparison are shown in Fig. 9 in the
form of a chart of the density of the distribution of the time
probabilities ttest of the software safety test and the corre-
sponding boundaries of the confidence interval:

ˆ ˆ, ,I J Jβ β β
 = − ε + ε  

in which the true value J falls with a confidence probability
of β=0.94 and estimates of its mathematical expectation ()

test
ˆ .it

Fig. 9. A chart showing the density of the distribution
of software safety testing time probabilities ()

test ,
it the

appropriate limits of the confidence interval, and the
estimates of its mathematical expectation ()

test
ˆ it

Fig. 9 demonstrates that in a key test situa-
tion (time ttest≈0.15 hour/person) the “calculated”
curve J (solid curve), obtained in accordance
with the constructed mathematical model, in most
practical cases fall into the “average” confidence
interval (shaded area).

This confirms the validity of the built mathe-
matical model of the first phase of software safety
testing and the analytical expression, resulting
from our mathematical modeling, which formaliz-
es the distribution of security testing time for all
types of software.

6. Discussion of results of studying the
mathematical model of the first stage of

software safety testing

Thus, based on the GERT-network formalizing
technology, a mathematical model of the security
preparation process has been constructed. The
mathematical model differs from those known by
the theoretically sound choice of moment-gener-
ating functions when describing transitions from
state to state, as well as taking into consideration

0

20

40

60

80

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21N
um

be
r o

f i
m

pl
em

en
ta

tio
ns

Software safety testing time (h/person)

Software safety testing time

Fig. 8. Software safety testing time histogram

0.1 0.15 0.2

0.02

0.04

0.06

Testing preparation time

Information technology

33

the stage of checking the source code for cryptographic
methods of protection.

A series of stages in the developed model of the security
preparation process relate to solving one of the current prob-
lems, improving the accuracy of the results of mathematical
modeling. Thus, the improved “security compliance check”
algorithm, described in chapter 5. 2, has reduced input un-
certainty by adding the second and third steps. This was
made possible by the reasoned choice of the distribution law
with a minimum probability value Padd for exceeding the
allowable value of the regulatory measure of security Xadd
at each transition of the developed GERT-network. Unlike
prototype models [6, 9, 10], that has made it possible not
to introduce unreasonable assumptions about the random
distribution law for the testing process in general. In addi-
tion, the security compliance algorithm avoids unreasonable
assumptions about mathematical expectation and variance.

The GERT-network scheme for security testing, proposed
in chapter 5. 3. 2, was designed to take into consideration
possible destabilizing factors in additional software coding.
It also improves the accuracy of the results of mathematical
formalization. It should be noted that neglecting the threat
of obfuscation cryptographic software coding reduces the
quality of software safety testing and, in practice, could lead
to irreversible consequences for computer systems.

The security compliance algorithm and the GERT-net-
work scheme of the security preparation process reported in
this paper are the components of the GERT-model described
in chapter 5. 4. Developing a GERT-model of the security
preparation process provided an analytical expression to
calculate the density of the probability of software safety
testing time. That, in turn, has made it possible to estimate
the time indicators of security testing for variations in the
intensity of the tester’s activities at:

‒ analyzing the documentation and other materials con-
taining information about the assessed object;

‒ checking a source code for cryptographic and other
ways to protect data;

‒ preparing test documentation and a test control bench;
‒ pre-assessing the tested object (for architecture, com-

pleteness of information, etc.) and planning research;
‒ analyzing the structure of the object.
Thus, the main advantage of our model is to improve

the accuracy of the results by reasonably choosing the
GERT-network approach of mathematical formalization, the
justified use of the distribution law at each stage of network
formalization, as well as taking into consideration the factor
of SW coding.

It should be noted that the mathematical model of the
security testing process obtained by GERT-network formal-

ization is informative and could provide a clear, accessible for
direct analysis dependence of the performance indicators of
the testing algorithm on the values of the algorithm’s statis-
tical characteristics. The expressions presented in this paper
could be used to make preliminary recommendations and
possible ways to improve the effectiveness of software safety
testing algorithms.

Restrictions on the use of the devised model are associat-
ed with the presence of input information in the form of soft-
ware code or its emulation. In addition, the mathematical
model presented is relevant when examining the initial stage
of software safety verification. This imposes a preliminary
restriction on their use to implement automated software
safety tests.

Possible areas of further research involve the need to de-
velop the second phase of software safety testing, taking into
consideration the uncertainty of the initial data that may be
described vaguely. The challenges that arise could be solved
on the basis of the methods proposed in [9].

7. Conclusions

1. A GERT model for the first phase of software safety test-
ing has been developed. The model differs from those known
by the theoretically sound choice of moment-generating func-
tions when describing the transitions from state to state, as
well as taking into consideration the initial code verification
phase for cryptographic protection methods. That could im-
prove the accuracy of the software safety test results, as well
as use the results in the overall software testing process.

2. An advanced security compliance algorithm has been
developed. This algorithm differs from those known by
considering the uncertainty parameters when selecting the
moment-generating functions of each branch of transition
from state to state of the GERT-network being developed.
This could reduce the uncertainty of inputs during the de-
velopment phase of the GERT-network preparation process
for software safety testing research.

3. A GERT-network has been developed to prepare for
the security testing process. Its distinctive feature is the
accounting of a source code verification for cryptographic
and other ways to protect the data. That could improve the
accuracy of the modeling results in the face of this type of
cyber abuse.

4. A GERT-network has been developed to check a source
code for cryptographic and other ways to protect data. Ana-
lytical expressions have been obtained and the data used in
the GERT-model of the software safety testing process have
been experimentally calculated.

References

1.	 Felderer, M., Büchler, M., Johns, M., Brucker, A. D., Breu, R., Pretschner, A. (2016). Security Testing: A Survey. Advances in

Computers. Elsevier Ltd., 1–51. doi: http://doi.org/10.1016/bs.adcom.2015.11.003

2.	 Felderer, M., Agreiter, B., Zech, P., Breu, R. (2011). A classification for model-based security testing. Advances in System Testing

and Validation Lifecycle (VALID 2011), 109–114.

3.	 El Far, I. K., Whittaker, J. A.; Marciniak, J. J. (Ed.) (2002). Model based software testing. Encyclopedia of Software Engineering.

Wiley. doi: http://doi.org/10.1002/0471028959.sof207

4.	 Atoum, I., Otoom, A. (2017). A Classification Scheme for Cybersecurity Models. International Journal of Security and Its

Applications, 11 (1), 109–120. doi: http://doi.org/10.14257/ijsia.2017.11.1.10

5.	 Dalalana Bertoglio, D., Zorzo, A. F. (2017). Overview and open issues on penetration test. Journal of the Brazilian Computer Society,

23 (1). doi: http://doi.org/10.1186/s13173-017-0051-1

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/2 (111) 2021

34

6.	 Minaev, V. A., Korolev, I. D., Mazin, A. V., Konovalenko, S. A. (2018). Model of vulnerability identification in unstable network

interactions with automated system. Radio Industry, 2, 48–57. doi: http://doi.org/10.21778/2413-9599-2018-2-48-57

7.	 Kostadinov, D. (2016). Introduction: Intelligence Gathering & Its Relationship to the Penetration Testing Process. Available at:

https://resources.infosecinstitute.com/penetration-testing-intelligence-gathering

8.	 Adebiyi, A., Arreymbi, J., Imafidon, C. (2013). A Neural Network Based Security Tool for Analyzing Software. Technological

Innovation for the Internet of Things. Portugal, 80–87. doi: http://doi.org/10.1007/978-3-642-37291-9_9

9.	 Semenov, S., Sira, O., Kuchuk, N. (2018). Development of graphicanalytical models for the software security testing algorithm.

Eastern-European Journal of Enterprise Technologies, 2(4 (92)), 39–46. doi: http://doi.org/10.15587/1729-4061.2018.127210

10.	 Semenov, S. G., Gavrylenko, S. Y., Chelak, V. V. (2016). Developing parametrical criterion for registering abnormal behavior in

computer and telecommunication systems on the basis of economic tests. Actual Problems of Economics, 4 (178), 451–459.

11.	 Yan, D., Liu, F., Jia, K. (2019). Modeling an information-based advanced persistent threat attack on the internal network. ICC 2019-

2019 IEEE International Conference on Communications (ICC). Shanghai: IEEE. doi: http://doi.org/10.1109/icc.2019.8761077

12.	 Tian-Yang, G., Yin-Sheng, S., You-Yuan, F. (2010). Research on software security testing. World Academy of science, engineering

and Technology. International Journal of Computer and Information Engineering, 4 (9), 1446–1450.

13.	 Semenov, S. H., Sur, O. O. (2012). Matematychna model systemy kryptohrafichnoho zakhystu elektronnykh povidomlen na osnovi

GERT-merezhi. Systemy upravlinnia, navihatsiyi ta zviazku, 1 (1 (21)), 131–137.

14.	 Dybach, A. M., Nosovskiy, A. V. (2015). Otsenka veroyatnosti prevysheniya kriteriev bezopasnosti. Yaderna ta radіatsіyna bezpeka,

4, 9–13. Available at: http://nbuv.gov.ua/UJRN/ydpb_2015_4_4

15.	 Ango, A. (1964). Matematika dlya elektro- i radioinzhenerov. Moscow: Nauka, 772.

