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1. Introduction

In resonant vibratory machines, low-mass inertial vibra-
tion exciters induce the intense vibrations of platforms [1]. 
This makes vibratory machines energy-efficient, increases 
the reliability and durability of their operation.

The simplest, purely mechanical way to excite resonance 
oscillations is based on the Sommerfeld effect [2]. In those 
vibration exciters that operate on the Sommerfeld effect, the 
unbalanced mass:

‒ gets stuck at one of the resonant frequencies of the os-
cillations of a vibratory machine, thereby exciting intensive 
resonant oscillations; 

‒ reacts to a change in the resonant frequencies of a vi-
bratory machine caused by a change in the platform loading.

Due to these features, resonant vibration exciters that 
operate on the Sommerfeld effect do not need an automatic 
control system and, therefore, have the simplest design. That 
additionally increases the operational reliability and durabili-
ty of a vibration exciter and the vibratory machine in general.

To build resonant vibratory machines with the transla-
tional movement of platforms, it is important to design and 
investigate the performance of an inertial vibration exciter 
of targeted action, which operates on the Sommerfeld effect. 
Such a vibration exciter could induce perturbing forces 
only in the direction of platform movement, and would not 
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This paper reports a study into the dynamics of a 
vibratory machine composed of a viscoelastically-fixed 
platform that can move vertically and two identical 
inertial vibration exciters. The vibration exciters’ bod-
ies rotate at the same angular velocities in opposite 
directions. The bodies host a single load in the form of a 
ball, roller, or pendulum. The loads’ centers of mass can 
move relative to the bodies in a circle with a center on 
the axis of rotation. The loads’ relative movements are 
hindered by the forces of viscous resistance.

It was established that a vibratory machine theoret-
ically possesses the following:

– one to three oscillatory modes of movement under
which loads get stuck at almost constant angular veloc-
ity and generate total unbalanced mass in the vertical 
direction only;

– a no-oscillation mode under which loads rotate
synchronously with the bodies and generate total 
unbalanced mass in the horizontal direction only.

At the same time, only one oscillatory mode is res-
onant and exists at the above-the-resonance speeds of 
body rotation, lower than some characteristic speed.

At the bodies’ rotation speeds:
– pre-resonant; there is a globally asymptotically

stable (the only existing) mode of load jams;
– above-the-resonance, lower than the character-

istic velocity; there are locally asymptotically stable 
regimes – both the resonance mode of movement of a 
vibratory machine and a no-oscillations mode;

– exceeding the characteristic velocity: there is a
globally asymptotically stable no-oscillations mode.

Computational experiments have confirmed the 
results of theoretical research. At the same time, it was 
additionally established that it would suffice, to enter 
a resonant mode of movement, to slowly accelerate the 
bodies of vibration exciters to the above-the-resonance 
speed, less than the characteristic speed.

The results reported here could be interesting both 
for the theory and practice of designing new vibrato-
ry machines
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additionally load the vibratory machine (its frame, guides, 
supports, etc.).

2. Literature review and problem statement

Analytically, the application of the Sommerfeld effect 
to build resonant vibratory machines was studied in the 
following works:

– [3] – for a pendulum rigidly mounted on the shaft of 
a low-power DC electric motor installed on one of the plat-
forms in a two-mass system;

– [4] – for a wind wheel with an unbalanced mass in-
stalled on one of the platforms in a three-mass system;

– [5] – for a pendulum rigidly mounted on the shaft of an 
induction electric motor installed on a platform that fluctu-
ates horizontally.

The studies reported in [3–5] found that unbalanced 
masses (pendulums, wind wheels, etc.) get stuck at one of 
the resonant frequencies of platform oscillations. Using an 
electric motor under a jammed mode overloads the electrical 
circuit. The use of an air wheel does not provide for a high 
efficiency due to the peculiarities of converting air energy 
into mechanical movement. 

The Sommerfeld effect was discovered and investigated 
in rotor machines with passive auto-balancers in the follow-
ing works:

– [6] – for a two-ball auto-balancer with the static bal-
ancing of the rotor, which executes spatial movement;

– [7] – for two two-pendulum auto-balancers with the 
dynamic balancing of the rotor, which executes spatial 
movement;

– [8] – for a two-ball auto-balancer within a flat rotor 
model on isotropic supports

The studies reported in [6‒8] found that balls, pendu-
lums, etc. get stuck at one of the resonance frequencies of 
rotor oscillations but the body of the auto-balancer is war-
ranted to accelerate.

Works [6–8] considered the effect of load getting stuck 
to be undesirable. However, [9] proposed to use passive 
auto-balancers as exciters of two-frequency vibrations. At 
the same time, slow resonance oscillations excite loads in an 
auto-balancer when they get stuck at resonance speed. Rapid 
oscillations are induced by the unbalanced masses attached 
to the body of the auto-balancer.

It has been proven that a vibration exciter in the form of 
a passive auto-balancer is applicable to one- [10], two- [11], 
three-mass [12] vibratory machines with the translational 
movement of platforms when it is rigidly installed on one 
of the platforms. Paper [13] proved the feasibility of a two-
ball auto-balancer elastically installed on the platform as a 
vibration exciter. 

The inertial vibration exciters considered in [3–5, 9–13] 
are not vibration exciters of targeted action. This additional-
ly loads vibratory machines with the translational movement 
of the platforms, induces undesirable vibrations of a vibrato-
ry machine’s frame, foundation, etc.

Two electric motors are used as vibration exciters of 
targeted action, whose shafts host rigidly mounted pendu-
lums while rotating in opposite directions. Of interest are 
the simplest structures whose shafts are not connected at 
all [14–17]. In this case, over time, the pendulums, due to 
the phenomenon of self-synchronization [14], begin to rotate 
synchronously in opposite directions. Self-synchronization 

occurs at the rectilinear [15] and flat-parallel [16] platform 
movements. Rotors can be accelerated to the rated rotational 
speed [15, 16], and rotors may also get stuck at the resonance 
oscillation frequency of the platform [17]. The rotor jam-
ming mode is caused by the Sommerfeld effect. In this case, 
intense resonance oscillations of the platform are excited 
but, at the same time, the electric circuit of electric motors 
is overloaded.

There is an issue whether two auto-balancers rotating in 
opposite directions would work as a vibration exciter of tar-
geted action. Once feasible, such a structure would not over-
load electric motors. To address this issue, the performance 
of a vibration exciter for the case of a single-mass vibratory 
machine is investigated below.

3. The aim and objectives of the study

The purpose of this work is to study the dynamics of a 
resonant single-mass vibratory machine with a vibration 
exciter of targeted action that operates on the Sommerfeld 
effect. This is necessary both for the construction of a gener-
al theory and the design of such vibratory machines.

To accomplish the aim, the following tasks have been set:
– to build a mechanical-mathematical model of a vibrato-

ry machine and find the steady modes of its movement; 
– to investigate the stability of steady motion modes; 
– to test the results of the theoretical study using a com-

putational experiment.

4. The study materials and methods

To build a mechanical-mathematical model of the vi-
bratory machine, we used the results reported in [10]. To 
search for the steady modes of movement of the vibratory 
machine, a small parameter is introduced, and elements of 
perturbation theory, the theory of nonlinear oscillations [18] 
were applied. 

The stability of steady motion modes was investigated by 
the first Lyapunov method using elements of perturbation 
theory and the theory of nonlinear oscillations [18].

The results of the theoretical research were tested using 
a computational experiment. To this end, the differential 
equations of vibratory machine movement were integrated 
over a long period of time, sufficient to set a certain mode 
of movement.

5. Results of studying the dynamics of a resonant single-
mass vibratory machine with a vibration exciter of 

targeted action 

5. 1. Constructing a mechanical-mathematical model 
of the vibratory machine and searching for the steady 
modes of its movement 

5. 1. 1. Description of the mechanical-mathematical 
model of the vibratory machine, differential equations of 
its movement

A vibratory machine (Fig. 1) is composed of a platform, 
mass M, and two inertial vibration exciters whose unbalanced 
mass is a ball, a roller (Fig. 1, b), or a pendulum (Fig. 1, c). The 
platform can only move vertically along the guides. The plat-
form rests on a viscoelastic support with a stiffness coefficient 
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k and a viscosity coefficient b. The position of the platform is 
determined by the coordinate y, equal to zero in the position 
of the static equilibrium of the platform.

The body of vibration exciter number j revolves around 
the point Kj at a constant angular velocity wj. The position of 
the j-th body is determined by angle wjt, where t is the time.

The mass of one load is m. The center of load mass can 
move in a circle of radius R with the center at point Kj 
(Fig. 1, b, c). The position of load number j with respect to 
the KjXjYj coordinate system is determined by the angle jj,  
/j=1,2/. The movement of the load relative to the body of the 
vibration exciter is prevented by the force of viscous resis-
tance whose module is | |,j W j jF b R= j − w′  / 1,2/,j =  where bW 
is the coefficient of the viscous resistance force, and the bar 
in magnitude denotes the time derivative t.

The differential equations of vibratory machine move-
ment take the following form

S ′′ ′ ′′+ + + = 0,yM y by ky S

( )2 2

cos cos 0,

j W j j

j j

mR b R

mgR mRy

k j + j − w +′′ ′

+ j + j =′′  / 1,2 / .j =  	 (1)

In (1), MS=M+2m is the mass of the entire system (the 
massed of vibration exciters are attributed to the mass of the 
platform),

( )1 2cos cos ,xS mR= j + j  ( )1 2sin sin ,yS mR= j + j  	 (2)

g is the free-fall acceleration module; for a ball, a roller, and a 
pendulum, respectively, k={7/5, 3/2, 1+JC/(mR2)}.

 Note that the form of the differential equations of move-
ment of system (1) does not depend on the type of load. 

In further analytical studies, the effect of gravity on a 
load is neglected.

5. 1. 2. Reducing motion equations to a dimension-
less form

Introduce the dimensionless variables and time

/ ,v y y=   / ,x xs S s=   / ,y ys S s=   ,tt = w 		  (3)

where ,y  ,s  w  is the characteristic scale to be selected later. 
Then the differential equations of motion (1) are reduced 

to the following form

S S S

+ + + =
w w


  

  2
0,y

b k s
v v v s

M M M y

cos 0,jW
j j j

b y
v

m R

w 
j + j − + j = k w w k 


  

 
 		  (4)

where a dot above a value denotes a derivative for t.
Introduce the characteristic scale and dimensionless 

parameters:

,k MSw =  2 ,s mR=  2 ;y mR MS=

2
,

m
MS

e =
k

 2 ,
2

Wb M
m

Sβ =
w

 ,
2

b
h

MS

=
w

 .j
jn

w
=

w
 	 (5)

Then equations (4) take the following form:

+ + + =  2 0,yv hv v s

( ) cos 0,j j j jn vj + eβ j − + e j =    / 1,2 / .j = 	  (6)

To excite the vibrations of targeted action, the bodies of 
vibration exciters must rotate at the same speeds n in oppo-
site directions:

= = −1 2, .n n n n 	  (7)

Move to the new coordinates that determine the move-
ment of loads

1 1,j = y  2 2.j = p − y 		   (8)

Then, taking into consideration (7), (8), the dimen-
sionless differential equations of vibratory machine move-
ment (5) take the following form

+ + + =  2 0,yv hv v s

( ) cos 0,j j jn vy + eβ y − + e y =    / 1,2 / .j = 	  (9)

In (9)

( )1 2cos cos / 2,xs = y − y ( )1 2sin sin / 2.ys = y + y 	 (10)

The derived differential equations (9), with accuracy to 
designations, coincided with the differential equations of 
motion of a single-mass vibratory machine [10] for the case 
of two loads in a (single) vibration exciter.

5. 1. 3. Steady motion modes under which loads rotate 
in opposite directions, at zero approximation (e=0)

At e=0, the system of differential equations (9) takes the 
following form

+ + + =  2 0,yv hv v s  y =1 0,  y = 2 0. 	  (11)

Note that the system of differential equations (11) does 
not include implicit dimensionless time t. Therefore, the last 
two equations allow such a solution in which loads rotate at 
the same angular speeds Ω in opposite directions

Fig. 1. A vibratory machine model; the motion kinematics of: 
a – a platform; b – a ball or a roller; c – a pendulum

a 

b c
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1 0,y = Wt + y  2 0.y = Wt − y  		   (12)

In (12), the y0 parameter determines the angle of rota-
tion at which one load is ahead and the other lags behind the 
average angle of rotation Ωt of two loads. 

Then

( )0sin sin ,xs = − y Wt  ( )0cos sin .ys = y Wt  	  (13)

Taking into consideration (13), the first equation in (11) 
takes the following form

( )2
02 cos sin .v hv v+ + = W y Wt  	  (14)

A partial solution to differential equation (14) takes the 
following form

( )
( ) ( )

( )

22
0

22 2 2

1 sincos
.

2 cos1 4
v

hh

 − W Wt −W y  =
 − W Wt− W + W  

  		  (15)

Note that one cannot find parameters Ω and y0 at zero 
approximation.

5. 1. 4. Refining the steady motion modes applying the 
first approximation

By substituting (12), (15) in the second and third equa-
tions in (9), we obtain the following two equations

( ) ( )
( )

( ) ( ) ( )

4
0 0

22 2 2

2

cos cos

1 4

1 sin 2 cos 0,

n
h

h

W y Wt ± y
eβ W − − e ×

− W + W

 × − W Wt − W Wt =   		  (16)

where the upper character in «±» corresponds to the first 
equation and the lower character ‒ to the second. 

Leave in (16) the non-periodic components (interfer-
ing with the frequency of movement of loads), and we ob- 
tain

( )
( )

( )

4
0

22 2 2

2
0 0

cos
2 1 4

1 sin 2 cos 0.

n
h

h

W ye
eβ W − + ×

− W + W

 × ± − W y + W y =   	 (17)

Subtract the second equation from the first equation 
in (17), we obtain

( )
( )

4 2
0 0

22 2 2

1 sin cos
0.

1 4h

W − W y y
e =

− W + W
 	 (18)

Condition (18) is met if ( )0 0 0sin cos sin 2 / 2 0.y y = y =  
Hence, we find

y = ±p02 0, ,...  	 (19)

Add the second equation to the first equation in (17), 
and we obtain

( )
( )

5 2
0

22 2 2

cos
0.

1 4

h
n

h

W y
eβ W − + e =

− W + W
 	 (20)

Consider the following possibilities.

1. At y0=±p/2, ±3p/2,… equation (20) takes the form 
ed(W–n)=0. Hence, we find the angular velocity of load 
rotation

W = .n  		  (21)

At this movement, the loads rotate synchronously with 
the bodies of vibration exciters. At the same time

( )sin ,xs = ± Wt  0,ys =  		  (22)

and there are no platform oscillations.
2. At y0=0, ±p,… equation (20) takes the following form

( )
( )

5

22 2 2
0.

1 4

h
n

h

W
eβ W − + e =

− W + W
	  (23)

From (23), we find the angular velocity at which the 
loads get stuck. 

Note that equation (23) was studied in work [10]. The 
main results are as follows.

In the cases where the forces of external and internal 
resistance are small, the weight of loads is much less than 
the weight of the platform, etc. there are three character-
istic speeds of rotor rotation 1,n  2,n  3.n  At the same time, 

< << < <<  
1 2 31 n n n n and if:
–  < < 

10 n n  then there is a single frequency at which loads 
get stuck W1, and 0<W1<1;

–  < < 
1 2n n n  then there are three frequencies at which 

loads get stuck W1,2,3, such that 0<W1<1<W2<W3<n;
–  < < 

2 3n n n  then there are three frequencies at which 
loads get stuck W1,2,3, such that 1<W1<W2<<W3<n;

–  > 
3n n  then there is a single frequency at which loads get 

stuck W1, such that 1<<W1<n.

5. 2. Investigating the stability of steady movement 
modes 

5. 2. 1. A mode of the synchronous rotation of loads 
with the bodies of vibration exciters

Introduce the unperturbed motion under a synchronous 
rotation mode

1 / 2,ny = t − p  2 / 2,ny = t + p  0.v =  		  (24)

Introduce perturbed motion

1 1/ 2 ,n xy = t − p +  2 2/ 2 ,n xy = t + p +  0.v x= 	 (25)

Linearize differential equations of motion (9) to obtain 

( )
2

1 2
0 0 0 22 sin 0,

2
x xd

x hx x n
d

− + + + t = t  
 

( )1 1 0 sin 0,x x x n+ eβ + e t =   ( )2 2 0 sin 0.x x x n+ eβ − e t =   (26)

Introduce new variables

( )1 2 / 2,w x x= +  ( )1 2 / 2.z x x= −  	 (27)

Then the system of differential equations (26) is trans-
formed to the following form

( )
2

0 0 0 22 sin 0,
d

x hx x z n
d

 + + + t = t
 
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( )0 sin 0,z z x n+ eβ + e t =    + eβ =  0.w w 		  (28)

(28) demonstrates that z is a slow-changing function. 
Then the first equation in (28), with an accuracy to the 
values of the zero order of smallness (for e), takes the fol-
lowing form

( )2
0 0 02 sin .x hx x zn n+ + = t  	  (29)

A partial solution to equation (29) takes the following form

( ) ( ) ( ) ( )
2

2
0 22 2 2

1 sin 2 cos .
1 4

zn
x n n hn n

n h n
 = − t − t − +

  	(30)

Then the second equation in (28) takes the following 
form

( )
( ) ( ) ( ) ( )

4

22 2 2

2

1 4

1 sin 2 cos sin 0.

zn
z z

n h n

n n hn n n

+ eβ − e ×
− +

 × − t − t t = 

 

	 (31)

Its time-averaging in the interval [0, 2p/n] produces

( )
( )

4 2

22 2 2

1
0.

2 1 4

n n
z z z

n h n

e −
+ eβ + =

 − +  

   	 (32)

Consequently, the mode of the synchronous rotation of 
loads is stable at the above-the-resonance speeds of rotation 
of the bodies of vibration exciters (n>1).

5. 2. 2. Modes of load jamming
Introduce the unperturbed motion under the mode when 

loads get stuck

( )
( ) ( )

2

22 2 2

2

1 4

(1 )sin 2 cos ,

v
h

h

W
= ×

− W + W

 × − W Wt − W Wt 



y = y = Wt 1 2 . 	 (33)

Introduce the perturbed motion

( )
( ) ( ) ( )

2

22 2 2

2
0

1 4

1 sin 2 cos ,

v
h

h x

W
= ×

− W + W

 × − W Wt − W Wt + 

y = Wt + y = Wt +1 1 2 2, .x x 	 (34)

Then

( ) ( )1 2sin cos .
2y

x x
s

+
» Wt + Wt  	 (35)

After linearization, the system of differential equa-
tions (9) takes the following form

( )
2

1 2
0 0 0 22 cos 0,

2
x xd

x hx x
dt

+ + + + Wt =  
 

( )
( )0

sin
0,

cos

j

j j

vx
x x

x

 − Wt +
+ eβ + e = 

+ Wt  


 


 / 1,2 / .j =  	 (36)

In the new variables (27), system (36) takes the follow-
ing form

( )
2

0 0 0 22 cos 0,
d

x hx x w
dt

 + + + Wt =  

( ) ( )0sin cos 0,w w vw x + eβ + e − Wt + Wt = 
   

( )sin 0.z z vz + eβ + e − Wt = 
    	 (37)

Averaging the third equation in (37) for time in the in-
terval [0, 2p/W] produces

( )
( )

4 2

22 2 2

1
0.

2 1 4
z z z

h

eW − W
+ eβ + =

 − W + W  

   	 (38)

(38) demonstrates that only such an oscillatory mode 
could be stable under which loads get stuck at the pre-reso-
nant speed (W<1). 

The second equation in (37) demonstrates that w is a 
slow-changing function. Then the first equation in (37), 
with an accuracy to the values of the zero order of smallness 
(for e), takes the following form

( )2
0 0 02 sin .x hx x w+ + = W Wt  	  (39)

A partial solution to equation (39) takes the following form

( )
( )

( )
22

0 22 2 2

(1 )sin
.

2 cos1 4

w
x

hh

 − W Wt −W
=  

− W Wt − W + W  
  	 (40)

Then the second equation in (37) takes the form

( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

4

22 2 2

2

4

22 2 2

2

1 4

(1 )sin 2 cos sin

1 4

1 sin 2 cos cos 0.

w
w w

h

h

w

h

h

W
+ eβ + e ×

− W + W

 × − W Wt − W Wt Wt − 
W

−e ×
− W + W

 × − W Wt − W Wt Wt = 

 

Averaging it for time in the interval [0, 2p/W] produces

( )
( )

4 2

22 2 2

1 2
0.

2 1 4

h
w w w

h

eW W − + W
+ eβ + =

 − W + W  

   		  (41)

(39), (41) demonstrate that at the pre-resonant speeds 
of load jamming (W<1) the perturbation is t→+∞→0, 0,w x  
which corresponds to the asymptotic stability of movement. 

Thus, among all possible modes under which loads get 
stuck, the steady one is the mode under which loads get stuck 
at pre-resonance speed (0<Ω<1). 

Based on the results reported in [10], the second charac-
teristic speed of rotor rotation is

w= + = +
β


2 2

0
2

1
1 1 .

4 W

m
n

h b b
		   (42)

Moreover, there is only one pre-resonance frequency of 
load jamming ‒ W1 (0<W1<1), and only at speeds lower than 


2n  but at any values of other parameters.
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5. 3. Verifying the results of theoretical research us-
ing a computational experiment

Below are the results of integrating the system of differ-
ential equations (6) under the initial conditions

0;y y= =  / 2,jj = −p  

0,jj =  / 1,2 / .j =  (43)

Estimated data:

0.1,h =  1,β =  0.05.e =   (44)

The speed of rotation of the shafts var-
ies by the following law

( ) ( )1 2

2 / , if / 2;

, otherwise.

n T T
n n

n

t t <
t = − t = 


 (45)

where T=2,000 and [0, T] is the dimension-
less time interval in which the differential 
equations of motion are integrated. 

Taking into consideration (44), formu-
la (42) produces =

2 3.5.n  The results of the 
computational experiment are as follows.

At the pre-resonance speeds of body rota-
tion, the only stable mode of movement is the 
mode when loads get stuck. This movement is 
globally asymptomatically stable and occurs 
under any initial conditions. Fig. 2 shows the 
result of the integration of the system of dif-
ferential equations (6) at n=0.9. On the left 
are the charts of magnitude changes through-
out the integration interval. On the right are 
the charts of magnitude changes after setting 
the movement – in the interval [T–∆t, T], 
where ∆t=0.98T.

The jamming mode begins to appear 
even during the acceleration of the vibration 
exciter bodies. 

Fig. 3 shows the results of integrat-
ing differential motion equations at the 
above-the-resonance speeds of rotation 
of vibration exciter bodies not exceeding 

2 3.5n =  (n=3.5).
Under the slow accel eration of the bod-

ies of vibration exciters, the mode under 
which loads get stuck appears first. Next, 
the jamming mode maintains stability with 
an increase in the speed of rotation of bodies 
to a maximum value not exceeding =

2 3.5.n  
However, for any 2(1, ],n n∈   a stable mode 
can be a mode of the synchronous rotation 
of loads with bodies. Typically, this mode 
occurs at the rapid acceleration of the bod-
ies. Thus, at 2(1, ],n n∈   the locally stable are 
the two modes of movement of a vibratory 
machine. Of course, each mode has its own 
pull zone.

Fig. 4 shows the results of integrat-
ing differential motion equations at the 
above-the-resonance speeds of rotation of 
the bodies of vibration exciters exceeding 

2 3.5n =  (n=3.6).

The only stable steady mode of movement is the mode of 
the synchronous rotation of loads together with the bodies 
of vibration exciters. Moreover, with slow acceleration, the 
mode at which loads get stuck appears first. However, when 
the speed of rotation n exceeds the characteristic speed 

2 3.5,n =  the jam mode loses stability.

Fig.	2.	Results	o	f	the	integration	of	differential	equations	of	movement	at	the	
pre-resonance	speeds	of	rotation	of	vibration	exciter	bodies	(n=0.9,	∆t=0.98T)

Fig.	3.	Results	of	integrating	differential	motion	equations	at	the	above-
the-resonance	speeds	of	rotation	of	vibration	exciter	bodies	not	exceeding	

=
2 3.5n 	(n=3.5,	∆t=0.99T)
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6. Discussion of results of studying the dynamics of a 
resonant single-mass vibratory machine with a vibration 

exciter of targeted action

Our study has shown that a vibratory machine possesses 
the following:

– one to three oscillatory modes of movement under 
which loads get stuck at an almost constant angular velocity 
whose value is determined from equation (23);

– a no-oscillations mode under which loads rotate syn-
chronously with the bodies, and their total unbalanced mass 
in the vertical direction is zero.

Only under a single oscillation mode do the loads get 
stuck at an almost constant angular rotational velocity Ω, 
less than the resonance oscillation frequency of the platform 
n=1. With an increase in the speed of rotation of the bodies 
of vibration exciters, the load rotation frequency approaches 
a resonance frequency, which excites intense resonance os-
cillations. At the same time, the platform oscillation ampli-
tude increases monotonously.

At the pre-resonance speeds of the rotation of vibration 
exciter bodies, there is a globally asymptotically stable mode 
of load jamming at the pre-resonance rotation speeds. At 
the above-the-resonance speeds of rotation of the bodies of 
vibration exciters, smaller than the second characteristic 
speed, the locally asymptotically stable are both the mode of 
load jamming at the pre-resonant speeds of rotation and the 
mode of the synchronous rotation of loads. At the speeds of 
rotation of the bodies of vibration exciters greater than the 
second characteristic speed, the globally asymptotically sta-
ble is the mode of the synchronous rotation of loads.

Computational experiments confirm the results of our 
theoretical studies on the existence and stability of steady 
motion modes. In addition, the computational experiments 
establish that when rotating the bodies of vibration exciters 

at above-the-resonance speeds less than 2,n  
the proper choice of initial conditions or the 
acceleration rate of the vibration exciter bodies 
could ensure the onset of any mode out of two 
possible stable modes.

To drive a vibratory machine to the reso-
nance mode of movement, it would suffice to 
slowly accelerate the bodies of vibration excit-
ers to a speed less than 2.n

It should be noted that the same unbal-
anced masses can be attached to the bodies of 
vibration exciters. Then the combined vibra-
tion exciter would work as two inertial vibra-
tion exciters of targeted action. The first would 
be formed by loads and would excite slow fluc-
tuations at a resonance frequency. The second 
would be formed by the unbalanced masses on 
the bodies of vibration exciters and would ex-
cite rapid vibrations at the rotation frequency 
of bodies. Since the differential equations of 
platform movement are linear in relation to 
the coordinates of the platform and the total 
unbalanced mass, we can assume that the con-
ditions of performance of a vibration exciter 
would not change [10].

This work does not investigate the effect 
exerted on the performance of the vibration 
exciter by gravity forces. Also unaddressed 
are the regions of attraction of the locally sta-

ble steady modes of movement of vibratory machines. How-
ever, this does not significantly affect the results obtained.

In the future, it is planned to investigate the steady 
modes of movement of two-mass and three-mass resonant 
vibratory machines with the translational movement of plat-
forms and a vibration exciter of targeted action.

7. Conclusions

1. Vibratory machines theoretically possess the fol-
lowing:

– one to three oscillatory modes of movement under 
which loads get stuck at almost constant angular veloc-
ity and form total unbalanced mass only in the vertical 
direction;

– a no-oscillations mode under which loads rotate 
synchronously with the bodies and from total unbalanced 
mass only in the horizontal direction (there is no vertical 
component).

It has been established that only one oscillatory mode 
is resonant. Under it, loads get stuck at an almost constant 
angular rotational speed, close to the resonance frequency, 
thereby exciting the intense resonance oscillations of the 
platform. The mode exists when rotating the bodies at the 
above-the-resonance speeds less than some characteristic 
speed.

2. At the pre-resonance speeds of the rotation of vibration 
exciter bodies, a globally asymptotically stable is the only 
existing mode of load jamming (at pre-resonance speeds). At 
the above-the-resonance speeds of the rotation of the bodies 
of vibration exciters, smaller than the characteristic speed, 
locally asymptotically stable are both the resonant mode 
of movement of a vibratory machine and a no-oscillations 
mode. At the speeds of rotation of the bodies of vibration 

Fig.	4.	Results	of	integrating	differential	motion	equations	at	the	speeds	of	
rotation	of	vibration	exciter	bodies	greater	than	 =

2 3.5.n 	(n=3.6,	∆t=0.99T)
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exciters greater than the characteristic speed, the globally 
asymptotically stable is the no-oscillations mode.

3. Computational experiments confirm the results of 
theoretical research and allow us to establish the following:

– when rotating the bodies of vibration exciters at 
above-the-resonance speeds lower than the characteristic 
speed, the proper choice of initial conditions, or the speed 
of the acceleration of the bodies of vibration exciters could 
ensure the onset of both a resonant oscillation mode and a 
no-oscillations mode;

– to set a vibratory machine to a resonance mode of 
movement, it would suffice to slowly accelerate the bodies 

of vibration exciters to a speed less than the characteristic 
speed.
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