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‒ to acquire information from measurements not only 
about the parameters but also about the form (type) of the 
signal.

Theoretically, any signal with a finite frequency band is 
unlimited in time and, on the contrary, the signal of finite 
duration has a spectrum that is unlimitedly long along the 
frequency axis. In radio engineering, various techniques are 
used to mathematically describe finite signals in the spectral 
and temporal domains [1, 2]. Among the mathematical no-
tations of finite signals, their discrete representation in ac-
cordance with the Whittaker-Kotelnikov-Shannon (WKS) 
sampling theorem [3‒6] occupies an important place, widely 
used in radio communications, radar equipment [7, 8], as 
well as other fields of physics and engineering [9]. 

However, given the specified a priori uncertainty, using 
the expansion of signals into a WKS series requires knowl-
edge of either their spectrum width or duration in order to 
optimize processing. In addition, the WKS series does not 
explicitly provide information about the evolution of the 
frequency or phase during the signal needed to determine 
its form (type). To overcome the structural-parametric a 
priori uncertainty in terms of the types and parameters of 
different signals, it is tempting to apply their description 
in a frequency-time domain. The most appropriate for these 
conditions could be the frequency-time representation of 

1. Introduction

The current radio-electronic environment (REE) is 
characterized by significant a priori uncertainty, which is 
represented by the following:

‒ the wide range and bands of work frequencies of the 
radio-electronic means (REM) radiation; 

‒ a large unfixed ensemble of used signals and types of 
transmissions; 

‒ readjusting the REM operational modes and the sig-
nal-code structure (SCS) parameters in the process of 
operation; 

‒ the uncertainty of the time of radiation and the short-
term REM broadcasting.

The effectiveness of the radio monitoring of such a com-
plex REE and radio suppression of REM can be significantly 
improved by devising optimal methods for the detection and 
recovery of signals for the specified conditions of structur-
al-parametric a priori uncertainty. When constructing such 
methods, absolutely important is to use and implement a 
technique for the mathematical notation of signals, which 
could ensure the following:

‒ to adequately model real processes; 
‒ to overcome the specified a priori uncertainty; 
‒ to optimize the processing procedure;
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The radio monitoring of radiation and interference with elec-
tronic means is characterized by the issue related to the structur-
al-parametric a priori uncertainty about the type and parameters 
of the ensemble of signals by radio-emitting sources. Given this, it 
is a relevant task to devise a technique for the mathematical nota-
tion of signals in order to implement their processing, overcoming 
their a priori uncertainty in terms of form and parameters.

A given problem has been solved by the method of generaliza-
tion and proof for the finite signals of the Whittaker-Kotelnikov-
Shannon sampling theorem (WKS) in the frequency-time domain. 
The result of proving it is a new discrete frequency-temporal 
description of an arbitrary finite signal in the form of expansion 
into a double series on the orthogonal functions such as sinx/x, 
or rectangular Woodward strobe functions, with an explicit form 
of the phase-frequency-temporal modulation function. The prop-
erties of the sampling theorem in the frequency-time domain have 
been substantiated. These properties establish that the basis of 
the frequency-time representation is orthogonal, the accuracy 
of approximation by the basic functions sinx/x and rectangular 
Woodward strobe functions are the same, and correspond to the 
accuracy of the UCS theorem approximation, while the number of 
reference points of an arbitrary, limited in the width of the spec-
trum and duration, signal, now taken by frequency and time, is 
determined by the signal base.

The devised description of signals in the frequency-time 
domain has been experimentally investigated using the detec-
tion-recovery of continuous, simple pulse, and linear-frequen-
cy-modulated (LFM) radio signals. The constructive nature of 
the resulting description has been confirmed, which is important 
and useful when devising methods, procedures, and algorithms 
for processing signals under the conditions of structural-para-
metric a priori uncertainty
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authors analyzed and summarized the application of sample 
extension and compression for image processing. However, 
the frequency-temporal sampling under the conditions of 
a priori uncertainty was not considered. New representa-
tions of one-dimensional and two-dimensional generalized 
Kravchenko-Kotelnikov sampling theorems based on the 
atomic function up(t) were proposed and substantiated 
in [21]. The advantage of the new series is shown in com-
parison with the classic WKS series. However, the issues 
related to the frequency-time discreteness of signals under 
the conditions of a priori uncertainty remained unresolved. 
Apparently, the reason for this lies in the fact that the tran-
sition to frequency-time representation is not in demand in 
the proposed fields. Review [22] describes a mathematical 
apparatus and a method of generalized consideration of 
real band signals with the finite (imperfect) steep slope of 
the spectrum outside its work band in accordance with the 
WKS sampling theorem. The procedure under consider-
ation implies a clear knowledge of the amplitude-frequency 
spectrums of processed signals and limits the application 
of the proposed model under the conditions of structur-
al-parametric a priori uncertainty. Article [23] reports a 
sampling theorem for subspaces invariant relative to the 
shift in the mixed Lebesgue spaces Lp, q (ℝd+1). When the 
sampling density is large enough, this sampling theorem 
can reconstruct (reproduce) exactly the signals in subspac-
es that are not dependent on the shift. Despite this, the is-
sues of frequency-time sampling of signals within invariant 
and non-invariant subspaces with respect to the shift were 
not considered.

In a general case, the signal processing under the condi-
tions of a priori certainty in terms of their spectrum width or 
duration does not require two-dimensional frequency-tem-
poral sampling. Therefore, at present, most sampling studies 
mainly focus on the one-dimensional methods for improving 
the accuracy of the signal approximation, reducing sampling 
losses, and practical applications.

Thus, paper [24] proved a sampling theorem for the finite 
polyharmonic processes involving the derivation of analyti-
cal formulas for the boundaries of the discrete spectrum of 
harmonics frequencies depending on the frequency band in-
dex and the number of interpolated sampling. However, the 
issue of a priori uncertainty was not considered.

The results of studying the accuracy of the recovery of 
periodic discrete signals (DSs) of finite duration using the 
interpolation Kotelnikov basis are reported in [25]. The 
ratio of signal power to the power of recovery error was used 
to assess the accuracy of the signal recovery. The ratio be-
tween the frequency of the periodic signal, the frequency of 
sampling, and the number of DS samples were found, which 
provide for the lowest errors in the recovery of a given signal. 
However, the results reported are only applicable to DSs 
with known parameters.

It is shown in [26] that the moment of the first in-
formation sample is necessary to accurately recover an 
unknown function by its even samples with an interval 
determined by the upper frequency in the 2fv spectrum. 
However, it is impossible to establish the moment of the 
first informational sample under the conditions of a priori 
uncertainty.

Paper [27] reports a study into choosing the optimal fre-
quency difference between the channels of the cross-shaped 
interferometer receiving device with frequency scanning 
based on the generalized two-dimensional WKS theorem, 

Gabor’s signals using Gauss functions, Fourier-conjugated, 
and modulating cosine or sine waves [10, 11]. However, as 
shown in [12], this expansion has proved inconvenient to use 
because the Gauss functions are not orthogonal.

In this regard, it is a relevant task to devise, based on 
the theoretical generalization and by proving the WKS 
sampling theorem in the frequency-time domain, a new 
discrete description of signals, which would make it possible 
to overcome the existing a priori uncertainty during radio 
monitoring. The current study is a continuation of the re-
search whose results were reported at conferences [13, 14].

2. Literature review and problem statement

The WKS sampling theorem underlies the discrete 
transformation of signals from the analog form, when de-
tecting them, and from the digital form to analog, when 
recovering (representing) them.

Since the time of stating, proving, physically interpret-
ing, and justifying the cope of application by the founders of 
the WKS sampling theorem [3‒6], many scientists have ex-
plored its various historical, scientific, and practical aspects. 
The most significant analytical review of research into the 
sampling of finite signals is work [15]. It reports four groups 
of studies. First, the essence and detailed analysis of the 
WKS sampling theorem are presented. Second, its various 
generalizations are considered: in terms of the n-dimensional 
sampling, sampling for derivatives, sampling of random pro-
cesses, sampling at uneven counts, sampling of band signals, 
implicit sampling, and a number of other generalizations. 
Third, the errors of the discrete representation have been 
analyzed. Finally, the application of the sampling theorem in 
physics, optics, image recognition, etc. is described.

Several subsequent review publications tackled further 
research and the status of the WKS sampling theorem for 
its certain anniversaries [16‒21]. Thus, in work [16,] it is 
demonstrated how practitioners, theorists, and mathema-
ticians have discovered the value of the sampling theorem 
almost independently of each other. Article [17] gives a 
report on the current state of the sampling theorem. The 
cited article suggests a modern formulation of the sampling 
theorem in the Gilbert space, with an emphasis on regular 
sampling, and the interpretation of the sampling procedure 
as an orthogonal projection onto the subspace of functions 
limited by zones. It then expands the standard sampling 
paradigm to represent functions in a more general class of 
functional spaces, including splines and wavelets. Paper [18] 
reports some aspects of sampling with a particular emphasis 
on the band-unlimited signals, point stability of recovery 
(reproduction), and recovery from heterogeneous samples. 
Applications in multi-resolution computations and digital 
spline interpolation are also considered. Stating and proving 
the sampling theorem at the level of rigor of applied math-
ematics for the class of ergodic stationary random signals 
with limited power, widely used in radio electronics, are 
considered in [19].

Study [20] is a report on the current state of the sampling 
theorem, focusing on some of the new sampling trends in the 
first decade of the 21st century. First, the issue of expanding 
the vector sample is considered. Then the reconstruction 
of the signal from the local means is shown. And, further, 
the issue related to the sampling theorem in the wavelet 
subspaces is investigated with some results represented. The 
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processors with pulse compression, were used for the exper-
imental research.

5. The results of studying the sampling of signals in a 
frequency-time domain 

5. 1. Generalizing the sampling theorem for a frequen-
cy-time domain 

Theorem. An arbitrary narrow-band signal s(t) with a 
limited spectrum, confined to the frequency band ± Δfc/2, 
is fully defined by its values taken for frequency at intervals 
ΔFℓ=Δfc/ℓ and the time ΔТk=1/ΔFℓ at any integer value  
ℓ=1, 2, …, L and k=1, 2, …, ∞.

Proof. Given the narrow band of the s(t) signal, use its 
representation through a complex envelope ( )S t

( ) ( ){ }02Re .j f ts t S t e π=  				    (1)

In turn, the complex envelope is related through a Fou-
rier transform

( ) ( )
∞

π

−∞

= ∫ 

2 dj ftS t C f e f 				     (2)

to the complex spectrum 

( ) ( ) 2 d .j ftС f S t e t
∞

− π

−∞

= ∫ 

Given the limited nature of spectrum Ċ(f)=0 at |f |>Δfc/2 
of the narrowband signal (1), one can record

( ) ( )
2

2 2

2
d d .

c

c

f
j f j ft

f
S t S e e f

∞∆
− π τ π

−∆ −∞

= τ τ ⋅∫ ∫  	 (3)

In accordance with the WKS theorem [1], a spec-
trum-limited integrated envelope (2) is represented within a 
temporal domain by the following series

( ) ( ) ( )
( )

( ) ( )

sin

,

c

n c

n
n

f t n t
S t S n t

f t n t

S n t t

∞

=−∞

∞

=−∞

π∆ − ∆
= ∆ ⋅ =

π∆ − ∆

= ∆ ⋅φ

∑

∑

 

 		  (4)

where ( )S n t∆  is the sampling of a complex envelope at time 
t=nΔt; Δt=1/Δfc is the interval between samples. 

At the same time, the spectral density of functions φn(t) 
in the frequency band |f|=Δfc/2 

( )
− π ∆ ∆ ≤ ∆= 

> ∆


21 , at 2,

0, at 2.

j fn t
с с

n

c

f e f f
C f

f f
		  (5)

In this case, the signal-occupied frequency-time domain 
is broken down into temporal elements Δt=1/Δf (Fig. 1, a), 
and, when the signal is represented by the WKS series 
in the frequency domain, into the frequency elements  
Δf=1/τc (Fig. 1, b). With limited spectrum width and 
signal duration, the number of sampling elements in the 
frequency-time domain and the total number of complex 
samples in both cases is K0=L0=Δfc τc, which is equivalent to 
N=2K0=2L0=Δfc τc valid samples.

taking into consideration the direction of the scan. The 
dependence of the boundaries of frequency scattering on 
the clock angle and inclination has been obtained. The radio 
telescope’s focus chart is seen as a spatial frequency filter. It 
is emphasized that the transformation of a two-dimensional 
signal is implemented in a two-stage procedure: sampling 
and elemental quantization.

However, both with the two-dimensional [21, 27] and 
multidimensional [10] sampling, the independence of the 
samples for different coordinates was tacitly assumed. 
In the case of sampling the signals in the frequency-time 
domain, there is a dialectic relation between the frequency 
and time, and the two-dimensional sampling has advantag-
es under the conditions of structural-parametric a priori 
uncertainty.

All of this suggests that it was appropriate to conduct 
research into the frequency-time sampling of signals under 
the conditions of a priori uncertainty.

3. The aim and objectives of the study

The purpose of this study is to devise, based on the the-
oretical generalization and by proving a sampling theorem 
in the frequency-time domain, a new discrete description of 
signals, which would make it possible to overcome the exist-
ing structural-parametric a priori uncertainty in the radio 
monitoring of radiation.

To achieve the set aim, the following tasks have been 
solved:

‒ to theoretically generalize and prove the sampling the-
orem in the frequency-time domain; 

‒ to analyze the basic properties and merits of the result-
ing generalization of the discrete frequency-time representa-
tion of signals; 

‒ to experimentally confirm the practical significance of 
the resulting discrete frequency-time description of signals 
during the detection-recovery of signals of a priori uncertain 
kind and parameters.

4. The study materials and methods

To solve research problems, a frequency-time approach 
was used, involving the methods of signal sampling in the 
frequency and temporal domains, the methods of spectral 
and temporal signal analysis, and a Fourier transform. 
The source material for the theoretical generalization of 
the sampling theorem for the frequency-time domain was 
a WKS series in the temporal domain. The procedure for 
proving the sampling theorem in the frequency-time do-
main is based on the even grouping of time samples at fixed 
time intervals ΔТ, transferring them from time to frequency 
domain using a Fourier transform, and justifying the fact 
that the averages of the complex amplitude of grouped sam-
ples are the values of the function amplitude itself, taken 
at the k-th point of time at the ℓ-th frequency. The basic 
properties and advantages of the resulting generalization 
of the discrete frequency-time representation of signals are 
substantiated by the system-theoretical method. Standard 
measuring devices, as well as devices, designed under the 
guidance of this paper’s author, for signal detection and 
signal detection-recovery, based on the dispersion Fourier 
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Group the complex samples in (4) evenly for L= ′  in 
such a way that

( ) '

'

' '

1 2

( 1 2)

sin ( )
( ) ,

( )

L
c k

k
k cL k

f t n t
S t S n t
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=−∞ =− −′
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





  	 (6)

where ( )' 1
k

n k L= + −′ ′


  is the variable summing index.
Substituting (6) in (3), by changing the order of sum-

ming up and integrating operations, calculating the integral 
in infinite limits, taking into consideration the spectral den-
sity of functions φn(t) (5) in the frequency band |f|≤Δfc/2, 
the following is obtained

( ) ( )
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c
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∑ ∑
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



 

The integral in the last expression can be represented as 
the sum of L integrals so that

( ) ( )
'

'
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'
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L
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
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		  (7)

where ΔF=Δfc/L.
By introducing the designation ΔТ=L’×Δt and replacing 

the variable 

,f F F= + ⋅ ∆  				   (8)

transform (6) to the following form

( ) ( )

[ ]

' 1/2

( ' 1/2)

21/2
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( 1/2) 2

1

1
.

L
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F
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∆
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∑ ∫


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

 



	  (9)

Taking out from under the integral in (9) those terms 
that are not dependent on F, by conducting the integration 
considering (5), and summing up ℓ’, the following represen-
tation of the complex envelope is obtained

( ) ( ) ( )
1/2

( 1/2)

,
L

k
k L

S t S k T t
+∞

=−∞ =− −
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
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L
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



 



( ) ( )
( )

2 ( )sin
.j F t k T

k

F t k T
t e

F t k T
π ∆ − ∆π∆ − ∆

ψ =
π∆ − ∆





 		   (10)

The complex amplitude in (10) at the interval ΔТ is the 
average function value over L’ samples. Show that these 
averages represent the function values taken at the ℓ-th 
frequency at the k-th point in time. The Fourier transform’s 
limited-spectrum function (1) can be represented as the sum 
of Fourier’s partial transformations

( ) ( ) ( )
∆ +

π

=− −−∆

= = ∑∫ 



 

2 1/2
2

( 1/2)2
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c

c

f L
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Lf

S t C f e f S t 		   (11)

where, considering (8),

( ) ( )
∆

π + ∆

−∆
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





2
2 ( )

2

d .
F

j F F t

F

S t C F F e F 		  (12)

By following [1, 9], the complex function ( )С F F+ ∆

  at 
the interval (–ΔF/2, ΔF/2) is to be expanded 
into a Fourier series as follows

( ) ( ) 2 ( ) / ,j F F k F
k

k

С F F С F e
∞

− π + ∆ ∆

=−∞

+ ∆ = ∆∑ 

 
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where considering (8),
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F
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С F С F F e F
F

∆
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−∆
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∆ ∫ 

 

 

1/ΔF=ΔТ is the sampling period.
Substituting (13) and (12) in (11) produces the fol-

lowing
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Fig. 1. Sampling a frequency-time plane: a ‒ in the temporal domain; b ‒ in the frequency domain
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By introducing in (14) the integral under the sign of the 
sum for k and, integrating for F, the following is obtained

Comparing (13) to (11) determines the following

( ) ( )1
.kC F S k T

F
∆ = ∆

∆ 

 

 			   (16)

Substituting (16) in (15), considering the sampling peri-
od ΔТ, produces

It follows from the comparison of (9) to (17) that 
( ) ( )S k T S k T∆ = ∆
 

   and, therefore, (9) can be written in the 
following form

( )
( )

( )
( )

1 2

2 ( )
( 1 2)

.sin
L

j F t k T
k L

S k T

S t F t k T
e
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∆ ×
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×
π∆ − ∆

∑ ∑








 	 (18)

Expression (18) describes a complex envelope of the nar-
row-band signal in the form of a two-coordination (matrix) 
expansion for time and frequency. At the same time, the fre-
quency-time plane occupied by a signal is sampled into the 
frequency-time elements with the frequency band ΔF=Δfc/L 
and the duration ΔT=1/ΔF (Fig. 2). The basis functions of 
the expansion are functions such as sin x/x with frequency 
filling (except for ℓ=0), shifted by time at ΔT and, by fre-
quency, at ΔF.

At ΔF ΔT=1, the basis expansion functions are the su-
perposition of the sin x/x function and the harmonics of the 
Fourier series.

( ) ( )
( )

( )

( ) ( )
( )

2

2

sin

1 sin
.

j Ft k
k

k

j Ft

Ft k
t e

Ft k

Ft
e

Ft k

π ∆ −

π ∆

 π ∆ − Ψ = =
π ∆ −

− π∆
=

π ∆ −





 		  (19)

Given the equalities Δt=1/Δfc, ΔТ=L’×Δt, ΔT=ΔL’, 
ΔF=Δfc/L, the number of L-frequency samples at each 
time sampling interval kΔT is equal to the number of the 
grouped samples over time L’. When deriving (18), there 
were no restrictions on the number of grouped samples. 
Therefore, (18) holds for any integer value ℓ’=ℓ=1, 2,…, 
L. The magnitude of sampling intervals by the frequency 
ΔF=ΔFℓ and the time ΔT=ΔTk depends on the specific val-
ue of ℓ. Thus, the theorem is proven.

The collateral follows from it for the conditions of the 
structural-parametric a priori uncertainty. 

Collateral. An arbitrary narrow-band signal s(t) with a 
priori uncertain finite spectrum Δfc/2 is fully determined 
over the given frequency band Π≥Δfс max by its frequencies 
taken for frequency at intervals ΔFℓ=Π/ℓ and time ΔТk=1/ΔFℓ 
at any integer value ℓ=1, 2, …, L and k=1,2,…,∞.

5. 2. The basic properties of the sampling theorem in a 
frequency-time domain

Let us analyze the properties and merits of the resulting 
discrete frequency-time representation of signals (18), which 
should be utilized in their practical application.

1. Make sure that the basis functions of sinx/x expansion 
in (18) are orthogonal along the time axis. At fixed ℓ
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Introducing the substitution of variable F tτ = ∆ ⋅  in (20) 
produces the following

( )
( )( )

+ ∞

−∞

− πτ
= τ =

π∆ τ − τ −

∆ = ∆ ⋅ ∆ = =
=  ≠

∫


2

1

1 sin
d

, at , , 1, 2, ...

0, at .

k m

I
А k m

T k m F T i i

k m
 	 (21)

Therefore, for any ℓ, the basis functions of expan-
sion are orthogonal along the entire axis –∞<t<∞. 
The orthogonalization of sinx/x functions along the 
time axis is obtained with a minimal shift of the ar-
gument satisfying the condition ΔF ΔT=1. At the same 
time, the distance between the sinx/x functions along 
the frequency axis is ΔF=1/ΔT.

Let us prove the orthogonality of the basis func-
tions of expansion along the frequency axis. To this 
end, determine spectrum (18) using (2). Introducing 
to the right-hand part of the Fourier transform the 
integral for time under the sum signs, and using the 
F and t interchangeable property for even functions, 
after computing the integral, the following is obtained
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	 (22)

where ( ) ( ), , ,C F k T T S F k T∆ ∆ = ∆ ⋅ ∆ ∆ 

 
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Fig. 2. A two-coordinate sampling of the signal complex envelope for 
time (t) and frequency (f)
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‒ a rectangular strobe function with a frequency band ΔF 
and a center at the point F=ℓΔF, introduced by Woodward [2]. 

At ΔF·ΔТ=1, the expansion functions are

( ) 2 ,j fk T
kl k

f F
f e

F
− π ∆− ∆ Φ = Π   ∆





and the condition of orthogonality along the frequency axis 
at fixed k is
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By introducing a replacement for variables f=S·ΔF, the 
following is obtained
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	   (23)

Woodward’s basis functions do not overlap in frequency 
and, therefore, satisfy the condition of orthogonality, and, 
therefore, the functions sin x/x in (18) are orthogonal along 
the frequency axis. At the same time, due to the orthogonal-
ity of expansion functions, as opposed to the Gabor expan-
sion [10, 11], the samples taken for frequency at points ℓΔF 
and for time at points kΔT are not correlated.

2. Due to the fact that at k→∞ the norm of the basis ex-
pansion functions, in accordance with [1],

2 2

sin / ,k x x k TΠψ = Φ = ∆
 

			   (24)

the accuracy of the approximation of the signals by these 
functions is the same. This property of the derived discrete 
frequency-time representation of signals indicates the in-
variance of approximating functions and the order of receiv-
ing samples for the frequency and time coordinates.

3. In practice, the most commonly used are signal 
models, limited both in the width of the spectrum and in 
duration. Such models with sufficient precision describe 
the actually observed signals. Then the complex envelope 
and the spectrum of a signal of duration τс and the width 
of the spectrum Δfc can be represented, in accordance 
with (18) and (22), in the frequency-time plane in the 
following form
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	 (26)

Proving the theorem similarly to chapter 4. 1, based on 
the samples in the frequency domain, produces the following 
result
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Comparing (25) and (26) with (28) and (27), respec-
tively, one can see that the original function (1) or complex 
spectrum (2) can be approximated by discrete two-coor-
dination expansions. The approximation can be performed 
both by the sin x/x-type functions and by the rectangular 
strobe functions with Fourie-conjugated frequency filling. 
Such a representation can be interpreted as an approxima-
tion of signals in the form of a matrix of discrete elements 
in a frequency-time plane with appropriate envelopes, am-
plitudes, and phases at coordinate points (kΔT, ℓΔF). These 
expressions can be used in both a complex and material form 
to synthesize and analyze the processing and interpretation 
of the results.

4. For signals with limited spectrum width and duration 
in the form of (25) to (28), the total number of sample points 
(sampling elements) is

.C C
C C

f
N K L f

T F
τ ∆

= ⋅ = ⋅ = τ ⋅ ∆
∆ ∆

		   (29)

At the same time, two parameters should be defined for 
each element at the time points kΔT at the frequency points 
ℓΔF: amplitude and phase. Consequently, the total number 
of samples corresponds to the number of samples when the 
signals are represented by the WKS series and equals 2τсΔfc. 
However, in (25) to (28), the samples are taken both for time 
and frequency. For complex modulated signals, in order to 
obtain the same number of samples by time and frequency, 
the number of reference points for each coordinate is appro-
priate to choose equal to

.t F C CN N f= = τ ⋅ ∆ 			    (30)

5. Expressions (25) and (28) explicitly contain the 
known expansion of signals into a Kotelnikov series by the 
functions sin x/x in a temporal domain at the known width 
of the signal spectrum Δfc (ℓ=0). And, expressions (26) 
and (27) contain the expansion of signals into a Kotelnikov 
series in the frequency domain based on the rectangular 
Woodward strobe functions at a known duration of the 
signal τс (ķ=1). This fact indicates that the accuracy of the 
representation of signals in the form of (25), (26) matches 
the accuracy of their representation by a Kotelnikov series 
based on the criterion of a minimal rms error.

6. An important consequence of generalization of the 
sampling theorem for the frequency-time domain is the pres-
ence in the resulting description of the explicit form of the 
phase-frequency-temporal function ( ) 2 ( ).j F t k T

kV t e π∆ − ∆= 





 As 
a result, one can evaluate both the evolution and parameters 
of the functions of the phase-time or frequency-time modula-
tion of signals, which makes it possible to determine not only 
their parameters but also the type of signal.

And the main advantage of generalizing the sampling 
theorem is its constructive nature. The theorem not only 
substantiates the technique for sampling signals in a fre-
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quency-time plane but also determines the way to restore 
the signals set by their sample values for frequency and time, 
which is confirmed below by the experimental results.

5. 3. The results of the experimental research into de-
termining and reproducing signals under the conditions 
of a priori uncertainty

To confirm the practical significance of the results 
reported above, an experimental study was conducted to 
detect and reproduce signals using a laboratory setup whose 
structural scheme is shown in Fig. 3.

Digits in Fig. 3 designate the following: 
‒ 1‒ frequency meter;
‒ 2 ‒ a laboratory radio signal simulator; 
‒ 3, 11 ‒ direct dispersion Fourier processors;
‒ 4, 12 ‒ analog-digital converters of frequency-time 

samples; 
‒ 5, 13 ‒ REM units;
‒ 6, 14 ‒ TV-type raster indicators; 
‒7 ‒ a standard signal generator; 
‒ 8 ‒ reverse dispersion Fourier processor;
‒ 9 ‒ digital-analog converter of frequency-time samples;
‒ 10 ‒ spectrum analyzer.
A priori frequency-temporal domain of the detected and 

reproduced signals with possible carrier frequency, spec-
trum width, and duration values was П×Т=100 MHz×1,000 
µs at the central frequency of f0=750 MHz. The dispersion 
Fourier processors enabled the sampling of a frequency-time 
domain with a time resolution of ΔT=1 µs and the frequency 
of ΔF=1 MHz [28–30]. According to the proven generaliza-
tion of the sampling theorem, this corresponds to sampling 
the frequency-time domain into elements with the specified 
parameters. The tests were carried out to detect and recover the 
continuous, simple pulse, and LFM radio signals. Generator of 
standard signals 7 was used as a source of the continuous and 
simple pulsed radio signals; laboratory simulator 2 ‒ the LFM 
pulse radio signals. The parameters of the test signals from gen-
erator 7 were measured and controlled by spectrum analyzer 10 
and frequency meter 1, those of the LFM radio signals ‒ by the 
readings from the digital indicators of simulator 2.

Test signals with controlled parameters were sent to the 
input of the signal detection-recovery device. Direct disper-
sion Fourier-processor 3 [28, 29] formed a two-coordinate 
expansion of signals in the form of (26). After digitization 
and measurement of frequency-time samples in unit 4, they 
were recorded to unit 5’s REM with simultaneous multiple 
representations on the frequency-time panorama of raster 
indicator 6.

Upon filling the REM, unit 5 was automatically 
switched to a multiple-read frequency-time sample mode to 
convert them in unit 9 to an analog form (27). The analog 
samples were used by reverse dispersion Fourier-proces-
sor 8 [28, 30] to form the reproduced signals in the form 
of (28). To monitor the processing results, the replicated 
signals were sent through a brancher to spectrum-analyz-
er 10 and for re-identifying similarly to the first in units 
11‒13. In addition, the signals reproduced were displayed 
on the frequency-time panorama of the second raster indi-
cator 14.

The effectiveness of the devised frequency-time repre-
sentation of signals for their identification and reproduction 
under the conditions of structural-parametric a priori uncer-
tainty is illustrated by results from the experimental study 
shown in the photographs in Fig. 4–6.

a                                               b

c	
	

Fig. 4. The amplitude-frequency spectra of the continuous 
signal reproduced at the frequency of fv=fc=750 MHz, 

acquired from the screen of spectrum analyzer 10: 	
a ‒ frequency tags follow through 10 MHz; 	

b ‒ frequency tags follow through 1 MHz; c ‒ the distance 
between the spectral lines corresponds to 1 MHz

The photographs in Fig. 4 show the amplitude-fre-
quency spectra (AFS) of the reproduced continuous 
signal at the frequency fv=fc=750 MHz, acquired 
from the screen of spectrum analyzer 10. Large-scale 
frequency tags in the photograph in Fig. 4a follow in 
10 MHz, and the frequency scale in the photographs 
in Fig. 4b is 1 MHz. Since the recovered signal was 
approximated by a sequence of radio pulses non 
stitched for phase according to (28), the reproduced 
AFS on the display of spectrum analyzer 10 is dis-
crete. The distance between the spectral lines is 
determined by the time interval of sampling ΔT=1 µs 
and is equal to 1 MHz.

 In addition, the photographs in Fig. 4, a, b show 
the spectral line of the continuous signal, directly sent 
from the output of generator 7 to the input of spectrum 
analyzer 10, coinciding with the central spectral line of 
the recovered continuous AFS.
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Fig. 3. Structural scheme of the laboratory set-up
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The photographs in Fig. 5 show the combinations of 
signals reproduced by AFS, acquired from the screen of 
spectrum analyzer 10 in a linear scale. The frequency scale 
tags in all photographs follow in 10 MHz. The photographs 
in Fig. 5a illustrate the AFS of the replay of a continuous 
signal at the frequency fр=748 MHz and the sequence of 
pulse signals lasting τс=0.3 µs with a follow period of 1 ms at 
the frequency fv=fс=785 MHz. One can see that the AFS of 
the reproduced short pulse signals (Δfv≈3 MHz) are slightly 
wider than the AFS of the continuous signal reproduced. 
The AFS of the reproduced combination of simple pulse 
signals lasting τс=10 µs with a follow period of Т=1 ms and 
the LFM signals with the base Δfс×Δτс=32 MHz×32 µs, 
with a follow period of Т=2 ms, are given in the photograph 
in Fig. 5, b. And, finally, the photograph in Fig. 5c shows 
the AFS of two detected and reproduced in the predefined 
frequency-time domain П×T, LFM signals with the bases 
Δfс×Δτс.=32 MHz×32 µs and 10 MHz×10 µs, respectively.

The effectiveness of the devised representation (25)  
to (28), implemented at the laboratory set-up, to identify and 
reproduce signals under the conditions of structural-para-
metric a priori uncertainty is illustrated by photographs of 
the results of the experimental study, shown in Fig. 6.

The photographs show the frequency-time signal pan-
oramas [28] of the primary detection and re-detection after 
the reproduction of two LFM signals with parameters cor-
responding to Fig. 5, c, acquired from the screens of raster 
indicators, respectively, 6 and 14. The frequency scale on 
the panoramas in the form of horizontal light lines corre-
sponds to 10 MHz/del. A shift in the frequency-time signal 
panoramas of the primary detection of signals and their 
re-identification after the reproduction in Fig. 6 is due to the 
difference in the central frequency of the signal detection 
device relative to the central frequency of the device for their 
detection ‒ reproduction at 20 MHz. There are three digital 
displays at the bottom of the screens of raster indicators. 
The first group of numbers in the photographs shows the rel-
ative time of measurements with an accuracy to a television 

frame, the second group of numbers ‒ the frequency with an 
accuracy to the resolution interval of 1 MHz, the third group 
of numbers ‒ duration with an accuracy to the interval of 
sampling for time of 1 µs.

Fig. 6. Frequency-time signal panoramas of the results of the 
detection and reproduction of two LFM signals

The position of the frequency-time samples and, accord-
ingly, the parameters of signals within the frequency-time 
panoramas, were measured in an interactive mode at a stan-
dard signal/noise ratio of 13.2 dB by combining the vertical 
dash-dot measurement mark with the brightness marks of the 
samples. The results of the measurements were displayed on 
digital displays. The measured frequency-time signal parame-
ters at the input of the detection-recovery device, after initial 
detection and re-detection after reproduction, coincided with 
the accuracy of a single frequency-time sampling element.

6. Discussion of results of the signal detection and 
recovery based on the generalization of  

the sampling theorem

The practical value of signal processing based on the 
sampling theorem in a frequency-time domain is, during the 
detection (Fig. 6a), in the assessment of the frequency-time 
parameters, modulation functions, and the types of signals, 
and, when reproduced, in their recovery (Fig. 6, b). At the 
same time, the structural-parametric a priori uncertainty in 
terms of the frequency-time parameters and the type of pro-
cessed signals in the specified frequency-time domain П×Т 
is overcome. different signals and a visual representation of 
the results. This is confirmed by repeated tests and measure-
ments involving different types of signals and by the visual 
presentation of the results.

Another aspect of the practical value of the resulting 
representation is the ability to overcome a priori uncertainty 
in terms of energy parameters when processing an ensemble 
of signals. In the case of REE assessment, it is always pos-
sible (and necessary) to determine the range of changes in 
the width of the spectrum of signals Δfс min<Δfc≤Δfс max=П. 
This is the reason for the a priori knowledge on the frequency 
band of processing (of the device) but not on the spectra of 
signals. Ignorance of the ensemble of signals would imply 
the structural-parametric a priori uncertainty of carrying 
frequencies, spectrum width, the duration of pulse signals, 
and modulation functions. Even if these parameters are 
predetermined, the time of a signal arrival is unknown, or, 
under the mode of operation of the radiation source, may be 
changed to another SCS.

 

  

 

 

a                                             b

c	
	

Fig. 5. The amplitude-frequency spectra of signal 
combinations on the screen of spectrum analyzer 10: a ‒ the 
reproduction of a continuous and periodic pulse signal with 
the duration of τс=0.3 µs; b ‒ reproducing a combination of 

sequences of simple pulse signals and LFM; c ‒ reproducing a 
combination of sequences of two LFM signals
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Sampling on the basis of the sampling theorem in the 
frequency-time domain makes it possible to identify and 
reproduce any signal entering the processing bandwidth, in-
cluding a mixture of multiple signals. If one properly chooses 
the generalized parameters ΔТ and ΔF=1/ΔТ, the sampling of 
any signal would be close to optimal.

Consider the processing of an arbitrary signal with a 
spectrum width Δfс min<Δfc≤Δfс max=П and the duration 
τс min≤τс≤τс max=Т in the given a priori frequency-time do-
main П×Т. When sampling for time according to the WKS 
theorem (Fig. 1, a, 6, a), noises from the entire a priori 
frequency band П within the duration of the signal τс are 
included in the processing. Similarly, when sampling a signal 
with the specified parameters for frequency according to the 
WKS theorem, noises would be processed (accumulated) 
within the maximum a prior duration T of the ensemble of 
signals (Fig. 1, b). This circumstance is caused by a priori 
uncertainty in terms of the frequency-time parameters of the 
ensemble of signals and leads to redundancy in the number 
of samples and deterioration of the signal/noise ratio for the 
sampling element. As a result, quality processing indicators 
would deteriorate. In accordance with the proven general-
ization of the theorem, obtaining the frequency-time samples 
in the processing of any signal entering a prior domain П×Т 
would be carried out against the background of noises from 
the domain Δfc×τс occupied by the signal (Fig. 6). This fact 
makes it possible to obtain a win in relation to a signal/
noise ratio compared to a single-coordinate sampling for 
time, equal to П/Δfc, and a one-coordinate sampling for 
frequency, Т/τс.

Thus, the model of a discrete two-coordinate represen-
tation of signals by the system of orthogonal functions, ob-
tained on the basis of generalization of the sampling theorem 
in the frequency-time domain, meets the requirements for:

‒ the adequate representation of real signals; 
‒ the monopulse extraction, in the process of measuring, 

of information not only about parameters but also about the 
form (type) of signal;

‒ optimizing the processing of an ensemble of signals to 
solve the tasks of radio monitoring of radio emission and 
jamming radio-electronic devices.

This conclusion is illustrated by the results from pro-
cessing real signals based on the derived representation and 
a dispersion Fourier transform when they are mapped onto 
frequency-time signal panoramas.

The main condition limiting the use of the sampling 
theorem in a frequency-time domain is the consistency of 
spectrum width or transmission Δfc with the processing 
band, for example, in radar, radio navigation, and radio com-
munication, which renders bulky two-coordinate sampling 
impractical. A certain restriction on the frequency-time 
sampling is imposed by a fundamental inability to obtain 
simultaneously high resolution capabilities for time ΔТ and 
frequency ΔF.

Possible areas for further research are:
– optimizing the frequency-time sampling parameters, 

subject to ΔТ×ΔF=1, for various tasks of radio electronics 
and frequency ranges;

– studying errors in the truncation, overlay, tremor, and 
rounding [15] that can occur when a frequency-time sam-
pling is applied in practice.

The results reported here are planned to be used in the 
future to devise methods, procedures, and algorithms for 
processing determinized and random signals under the con-
ditions of varying degrees of a priori uncertainty.

7. Conclusions

1. The WKS sampling theorem has been generalized for 
a frequency-time domain. As a result of proving the theo-
rem, a mathematical model has been built for the discrete 
frequency-temporal representation of signals in the form of 
a double series. The model, unlike known ones, allows for a 
two-coordinate expansion of signals with a finite spectrum 
on the systems of orthogonal functions sin x/x or the Wood-
ward rectangular strobe functions with frequency filling by 
the harmonics of a Fourier series. At the same time, a priori 
frequency-time plane П×Т, within which the received signals 
can be found, is sampled into frequency-time elements with 
a frequency band ΔF=Δfc/L and the duration ΔT=1/ΔF, de-
pending on L. That makes it possible, under the conditions 
of structural-parametric a priori uncertainty, to form a suf-
ficient number of samples to detect signals. In addition, the 
model explicitly contains the function of a phase-frequen-
cy-temporal modulation.

2. The properties of the derived representation have been 
investigated. The following has been proven:

‒ the orthogonality of sinx/x expansion functions and 
the rectangular Woodward strobe functions; 

‒ the non-correlated samples at points kΔT and ℓΔF; 
‒ the equivalence of the accuracy of the approximation 

of signals by the basis functions sin x/x and the Woodward 
rectangular strobe functions;

‒ the compliance of the accuracy of the derived signal 
representation in the form of a double series for frequency and 
time to the accuracy of signal representation by a WKS series; 

‒ the possibility to identify and reproduce the signal 
2 2 C CN K L f= ⋅ = τ ⋅ ∆ , limited in its spectrum width and du-

ration, by digital samples.
3. The experimental study on the detection-recovery of 

test signals has confirmed the theoretical results obtained 
and their practical significance for optimizing digital signal 
processing under the conditions of structural-parametric a 
priori uncertainty. The hardware errors in the detection-re-
production of signals did not exceed one frequency-time 
sampling element ΔFΔT=1 MHz×1 µs. The study results 
show the practical value of generalizing the sampling the-
orem for a frequency-time domain and its mathematical 
description for devising effective methods, algorithms, and 
signal processing devices to overcome the structural-para-
metric a priori uncertainty.
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