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This paper reports the construction of cubature formulas for a finite 
element in the form of a bipyramid, which have a second algebraic order 
of accuracy. The proposed formulas explicitly take into consideration 
the parameter of bipyramid deformation, which is important when using 
irregular grids. The cubature formulas were constructed by applying 
two schemes for the location of interpolation nodes along the polyhe-
dron axes: symmetrical and asymmetrical. The intervals of change in 
the elongation (compression) parameter of a bipyramid semi-axis have 
been determined, within which interpolation nodes of the construc
ted formulas belong to the integration region, while the weight coeffi-
cients are positive, which warrants the stability of calculations based  
on these cubature formulas. If the deformation parameter of the bipyra-
mid is equal to unity, then both cubature formulas hold for the octahedron 
and have a third algebraic order of accuracy.

The resulting formulas make it possible to find elements of the local 
stiffness matrix on a finite element in the form of a bipyramid. When cal-
culating with a finite number of digits, a rounding error occurs, which 
has the same order for each of the two cubature formulas.

The intervals of change in the elongation (compression) parameter of 
the bipyramid semi-axis have been determined, which meet the require-
ments, which are employed in the ANSYS software package, for devia-
tions in the volume of the bipyramid from the volume of the octahedron.

Among the constructed cubature formulas for a bipyramid, the opti-
mal formula in terms of the accuracy of calculations has been chosen, 
derived from applying a symmetrical scheme of the arrangement of nodes 
relative to the center of the bipyramid. This formula is invariant in rela-
tion to any affinity transformations of the local bipyramid coordinate 
system. The constructed cubature formulas could be included in libra
ries of methods for approximate integration used by those software suites 
that implement the finite element method
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1. Introduction

The finite element method (FEM) is one of the widely 
used techniques for solving problems related to mathematical 
physics. The scope of its application covers all boundary-value  
problems that can be described by differential equations. 
However, the main disadvantage of a given method is cum-
bersome calculations that require the use of a large amount 
of computer memory. Therefore, in line with the process of 
developing high-performance computers, there is an issue of 
reducing the volume of FEM calculations.

The search for new opportunities to reduce the time 
complexity of the FEM algorithm requires a reasonable 
choice not only of the finite-element grid and node coordi-
nate functions but also of numerical integration formulas.  
It should also be taken into account that such a choice should 
ensure the stability and accuracy of the resulting solutions. 
This task is especially difficult in 3D. If the computational 
domain has a complex geometric shape, then its discretiza-
tion only by regular polyhedra is often impossible. In the 
libraries of computational software that implement FEM, 
more and more irregular polyhedra appear, which are used 
in the near-boundary layer when discretization of the region  
of the problem being solved.

Despite the large enough selection of software implement
ing FEM, the search for new formulas and methods of 
numerical integration in the regions of both regular and 
irregular polyhedra continues. Confirmation of this fact is in 
works [1–3], which address the construction of symmetrical 
cubature formulas of a high order of accuracy on the tetrahe-
dron, hexahedron, prism, and pyramid. The resulting formulas 
are accurate for algebraic polynomials of three variables up to 
the order of 20 inclusive, and allow for the rapid construction 
of stiffness and mass matrices in finite-element analysis. How-
ever, the use of these formulas in the region of an octahedron 
or a bipyramid, which can be represented by a combination of 
tetrahedra or prisms, would have an excessively large number 
of nodes and increase the volume of calculations. That means 
that the subject of research tackling the numerical integration 
in the region of the octahedron and the bipyramid is relevant.

2. Literature review and problem statement

Paper [4] shows that an octahedron in the ensemble with 
a tetrahedron forms a hybrid grid, which, in terms of the ac-
curacy of calculations, is not inferior to the tetrahedral one, 
and is optimal as regards the time of calculations.
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To implement finite-element calculations, the authors of 
the cited paper built the piecewise-linear node coordinate 
functions corresponding to the vertices of the octahedron 
and its center. Computational experiments were performed 
for the thermal conductivity problem. Numerical integration 
in the octahedron region is based on its representation in 
the form of a combination of eight tetrahedra. In this case,  
a cubature formula, which is known from work [5], is used for 
the tetrahedron. The issue of constructing a cubature formu-
la for the octahedron was not considered in [4]. The reason 
for this may relate to that the task of finding new effective 
methods of discretization the three-dimensional region was 
resolved only for the visualization of objects, which makes 
the relevant studies of numerical analysis impractical. At 
the same time, the authors of [4] note that the grids of the 
tetrahedral-octahedral structure can be used to improve the 
algorithm of parallel FEM calculations. In the case where an 
extremely large number of finite elements (FE) are needed to 
obtain a solution, parallel processing is useful at each FEM 
stage, including grid refinement.

Paper [6] shows that tetrahedral-octahedral grids have 
two advantages compared to tetrahedral ones. First, the 
grids containing octahedra are symmetrical, which simplifies 
the implementation of the algorithm for refining such a grid.  
Second, the grids of the tetrahedral-octahedral structure  
generate fewer comparison classes than the simplest tetra-
hedral grids, which is important in multilevel FEM calcu-
lations. The refinement algorithm [5, 6] generates two com-
parison classes in 3D instead of three, which is important in 
terms of practical application.

The effectiveness of using the grid of a tetrahedral-oc-
tahedral structure was confirmed in work [7] when solving 
practical problems related to electromagnetism. In the cited 
work, the methods of dynamic load balancing are studied, in 
the parallel refinement of the grid in order to optimize the 
architecture of a parallel system of calculations and program 
methods. With a parallel design of the FEM algorithm, load 
balancing should reach the minimum execution time, dis-
tributing the task evenly among processors. The authors of 
work [7] devised a new approach to modeling, analysis, and 
design of communication circuits with the parallel improve-
ment of the FE grid using Petri networks. A given approach 
has been introduced to an effective concurrent data process-
ing pipeline strategy to improve the FEM tetrahedral grid, 
which employs octahedra at two stages of refinement [8]. 
The issue of numerical analysis was not considered in [6–8] 
since those works addressed the optimization of system re-
sources and the balance of overall computational loads.

Work [9] investigated the possibilities of using grids of  
a tetrahedral-octahedral structure in solving boundary prob-
lems of mathematical physics for elliptical type equations. 
It has been proved that the piecewise-linear approximation 
of the temperature field, as well as the piecewise-linear and 
quadratic finite-element approximations of functions of the 
displacement field on the grids of the tetrahedral-octahedral 
structure converge to the exact solution in problems with 
the differential operator of the second-order of the elliptical 
type. Verification of the obtained theoretical conclusions was 
carried out in the Maple computer mathematics system for 
problems related to thermal conductivity and linear elas-
ticity theory in the simplest regions that have the shape of  
a parallelepiped, which makes it possible to compare the ac-
curacy of numerical solutions with those derived analytically.  
To find the elements of the local stiffness matrix of an octa

hedron with piecewise-linear functions, the cited work’s 
authors built a formula for numerical integration, which is  
a consequence of the application of the properties of the triple  
integral in the region of the octahedron. To find elements of 
the local stiffness matrix of an octahedron with quadratic 
functions, the procedures for integrating by analytical me
thods that are built into the Maple processor were applied. 
Formulas of numerical integration for FE in the form of an 
octahedron to the seventh algebraic order of accuracy were 
constructed in work [10]. These formulas reduce the time 
complexity of the FEM algorithm when using cells in the 
form of an octahedron but cannot be applied to FE of irregu-
lar geometric shape.

The first step in overcoming the difficulties associated 
with the adaptation of a tetrahedral-octahedral grid to re-
gions of complex geometry is work [11], in which a bipyra-
mid was studied as FE.

In this case, the bipyramid is considered, which is ob-
tained from the octahedron by elongating (compressing) 
one of its half-diagonals. In the cited work, two systems of 
node coordinate functions were built that correspond to the 
vertices and center of the polyhedron. Both systems of the 
node coordinate functions of such a bipyramid depend on  
a parameter equal to the length of the deformed half-diagonal.

To perform finite-element calculations involving bipy
ramids, which could be used when discretization three-di-
mensional regions in the near-border layer, it is necessary to 
derive formulas for numerical integration on a given polyhe-
dron. That allows us to assert that it is advisable to conduct  
a study on the construction of cubature formulas on FE in 
the shape of a bipyramid.

3. The aim and objectives of the study

The purpose of this work is to study the possibility of 
constructing cubature formulas of the Steklov type for FE 
in the shape of a bipyramid to calculate the elements of the 
stiffness matrix on a given geometric carrier.

To accomplish the aim, the following tasks have been set:
– to construct a cubature formula of the second algebraic 

order of accuracy for a bipyramid with the symmetrical lo-
calization of nodes relative to the center of the polyhedron;

– to build a cubature formula of the second algebraic 
order of accuracy for a bipyramid with the asymmetric lo-
calization of nodes relative to the center of the polyhedron;

– to define the conditions for the use of constructed cu-
bature formulas in the algorithmization of FEM;

– to assess the effect of the approximate execution of 
arithmetic operations in a finite bit grid on the final accuracy 
of the application of the proposed cubature formulas.

4. The study materials and methods

During the research, we employed the main provisions of 
a finite element method, in particular, the properties of the 
basis functions of finite elements; rules for the construction 
of local stiffness matrices (thermal conductivity) for the 
problems of mathematical physics in an elliptical type; the 
estimates of permissible deviations of the geometric shape of 
finite elements from regular polyhedra [12].

The construction of new cubature formulas relies on well-
known theorems in the theory of approximate integration 
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methods. Namely, a theorem about the existence of a cubature 
formula with positive weight coefficients and the property 
of computational stability of calculations using it; a theorem 
about possible algebraic accuracy of the cubature formula de-
pending on the localization of interpolation nodes [13].

The research was carried out using the tools of Maple 
computer mathematics software.

5. The results of studying the possibilities of constructing 
cubature formulas of Steklov type and evaluation of their 

computational characteristics 

5. 1. The symmetrical scheme of localization of cuba-
ture formula nodes

Let Ω Ω Ω= ∪1 2  be the region in the shape of a bipyra-
mid (Fig. 1), where Ω1 1 0= ( ) + + ≤ ≥{ }x y z x y z p z, , : ,  and 
Ω2 1 0= ( ) + − ≤ <{ }x y z x y z z, , : , , p is the K0K5 half-diagonal 
elongation (compression) coefficient that meets the condi-
tions p>0 and p Î R.

 
Fig. 1. FE in the shape of a bipyramid

Consider the region Ω as a FE with six nodes that corre-
spond to the vertices K ii =( )1 6,  of the bipyramid. The corre-
sponding node coordinate functions N N x y zi i= ( ), , , where 
i = 1 6, , were derived by us earlier and reported in [12]:
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Let the function f(x,y,z) be continuous in the region Ω. 

Consider the integral f x y z x y z, , ,( )∫
Ω

d d d  where (x,y,z) is Ω, 

and dxdydz is the bipyramid volume element.
To calculate the integral, build a cubature formula in the 

following form:

f x y z x y z f a I fs s
s
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=

d d d
Ω 1

	 (2)

where As are the weight coefficients, as are the interpolation 
nodes, Q is the number of nodes. 

The following value is considered to be an error in cuba-
ture formula (2):

R f f x y z x y z I fn R+ ( ) = ( ) − ( )∫∫∫1 , , ,d d d
Ω

which is the residual term of formula (2) in the Lagrange 
form, where n is the highest order of the algebraic polynomial 
for which formula (2) is exact.

Let the triple integral in formula (2) be an element of the 
stiffness matrix k k B D B x y zij
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derivatives from the node coordinate functions, [D] is the elas-
ticity, thermal conductivity, permeability, etc. matrix. Then 
f(x,y,z) is the algebraic polynomial of the second power rela-
tive to the coordinates of an arbitrary point (x,y,z) is Ω, that is:
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where aijk are the coefficients, α = α(i,j,k) is the multi-index, 
|α| = i+j+k.

Given the symmetry in the region Ω, the nodes as in in-
terpolation formula (2) are to be chosen separately along the 
bipyramid’s half-diagonals at a distance t  from the center K0. 

Then the nodes of the cubature formula are the vertices of the 
octahedron x y z t+ + ≤ .  Integrate polynomial (3):
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Since (2) must be exact for the second-power polyno
mials, we derive the following system of equations:
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The following is the solution to the system of equations (5):
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Thus, the corresponding cubature formula takes the form:

f x y z x y z A f as s
s

, , ,( ) ≈ ( )∫∫∫ ∑
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Ω 1

6

	 (7)

where the coefficients A ss =( )1 4,  that are equal correspond 
to the nodes a ss =( )1 4, , located in the Оху plane, where  
the integration region Ω is centrally symmetrical [13].

Let us analyze a given solution graphically. Fig. 2 shows 
the dependence of the obtained values of the coordinate t of 
the nodes and weight coefficients in formula (2) on the pa-
rameter p of the bipyramid.

In this case, the charts of the curves A A ps s= ( ),  where 
s = 1 4, , match.

Obviously, the number of nodes in (7) can be reduced  
to Q = 5 by choosing p ≈ 0.42.

5. 2. The asymmetrical scheme of localization of cuba-
ture formula nodes

Let us arrange the nodes as in cubature formula (2) one at 
a time along the half-diagonals of the bipyramid Ω (Fig. 1) in 
such a way that the following ratio is satisfied:

a
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where |as| is the distance from a node in formula (2) to the 
bipyramid center K0, |K0Ki| is the distance from the top of  
the bipyramid to the center K0.

Then the nodes in (2) are at the vertices of the bipyramid:
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The requirement that the desired cubature formu-
la should be exact for polynomials (3), and the integra-
tion of polynomials (4), leads to the following system of  
equations:
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The following is the solution to the 
system of equations (8):
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Thus, we obtain another cubature formula in form (7) 
with six as nodes as and the weight coefficients As, to be de-
termined from formulas (9).

Our analysis of the graphical parameters of formulas (9) 
for cubature formula (7) indicates that the specified cubature 
formula has five interpolation nodes when p ≈ 0.42 (Fig. 3). 
In this case, the value of p, at which A5 = 0, is the same in 
formulas (6) and (9).
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5. 3. Determining the conditions for using constructed 
cubature formulas in the algorithmization of FEM

Studying the regions of values for functions as = as(p) and 
As = As(p) shows that the nodes as that satisfy formulas (6) 
belong to the integration region Ω at p ≥ 0.52.

The nodes as that satisfy (8) belong to the integration 
Ω at p>0. In this case, the node as, which has coordi-
nates (0,0,pt), also belongs to the half-diagonal K0K5 of 
the bipyramid (Fig. 1). Indeed, the condition pt ≤ p, where 
p, t >0, is met at t ≤ 1, which is confirmed by Fig. 3.

The weight coefficients As(s ≠ 5), which satisfy formu-
las  (6) and (9), are positive at p>0, and the coefficient A5 ≥ 0 
at p>0.42 regardless of the choice of formulas (6) or (9).

The condition under which the nodes of the cubature for-
mula belong to the integration region is optional [13], unlike 
the condition of the positiveness of the weight coefficients, 
which warrants the stability of calculations based on the 
cubature formula [14].

Let us evaluate the resulting cubature formulas according 
to the Skewness asymmetry indicators used by the ANSYS 
software package (USA) [15, 16]. High and permissible 
indicators of the quality of calculations are considered such 
at which the value of the FE volume of an irregular geo-
metric shape deviates from the volume 
of the regular polyhedron by no more 
than 10 % and 25 %. For the bipyramid, 
the values 0.66 ≤ p ≤ 0.86 and 0.51 ≤ p ≤ 1.1 
correspond to the high and sufficient 
indicator.

Thus, the cubature formulas construc
ted according to (7) satisfy the condi-
tions of stability and precision of calcu-
lations at 0.51 ≤ p ≤ 1.1. Within a given 
interval, the resulting formulas have six 
interpolation nodes, which can be deter-
mined from (6) or (9). In addition, note 
that at p = 1, the systems of equations (5)  
and (8) have a common solution, which, 
when substituting into formula (7), is  
a cubature formula for the octahedron [10], 
which is accurate for the third-power al-
gebraic polynomials.

The constructed cubature formulas 
hold when calculating the elements of 
the FE stiffness matrix in the shape of 

a bipyramid with seven nodes located at 
the vertices of the polyhedron Ki i =( )1 6,  
and its center – point K0 (Fig. 1). The 
corresponding node coordinate functions 
of the bipyramid are as follows [11]:
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where p>0. At the same time, the choice of FE with one or 
another set of node coordinate functions depends, first of 
all, on the type of problem being solved, the geometry of 
the calculated region, and the type of boundary conditions. 
However numerical integration formulas are part of the FEM 
algorithm, so it is important to get estimates of the accuracy 
of calculations according to these formulas.

5. 4. Estimating the accuracy of resulting cubature for-
mulas in a finite bit grid

When calculating the bipyramid stiffness matrix, the 
accuracy of the obtained formulas at different values for the 
parameter p is high but depends on the rounding errors that 
occur when performing arithmetic operations. The results of 

our calculations ∆ = ( )max ,
kij

R f3  where f x y z kij, ,( ) =  are the 

elements of the stiffness matrix [B]T[D][B] of the bipyramid, 
belonging to class C2(Ω), are shown in Fig. 4.

All calculations were performed in the Maple computer 
mathematics system for the isotropic environment, which has 
a geometric shape Ω, where [D] is the unit matrix.

Fig. 3. Dependence of the solutions to system (8) on the parameter p
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The calculation was performed over a segment of 
0.51 ≤ p ≤ 1.1, which corresponds to the studied changes in 
the p parameter. According to the results from calculating  
an error in (7) for the two options for the selection of nodes 
and weights, the optimal accuracy of the calculations is 
produced by the cubature formula, which was obtained by 
applying a symmetrical scheme of the nodes relative to the 
center of the bipyramid. In addition, this formula is invariant 
in relation to any affinity transformations of the local bipyra-
mid coordinate system, which simplifies its application in the 
algorithmization of FEM when bypassing polyhedron nodes.

6. Discussion of results of studying the conditions for 
applying the obtained cubature formulas

Our results are based on meeting the conditions in the the-
orems about the existence of a cubature formula with positive 
weight coefficients and the algebraic accuracy of the cubature 
formula, depending on the localization of interpolation nodes.

The proposed cubature formulas (7) with nodes and co-
efficients determined from (6) or (9) have a second algebraic 
accuracy order. However, these cubature formulas are used in 
calculations with a finite number of digits, so when perform-
ing arithmetic operations, a rounding error occurs. Indeed, 
the results of the calculations in Fig. 4 clearly illustrate that 
the accuracy of the values received is not less than 7∙10–20 for 
FE in the form of a bipyramid with six interpolation nodes. In 
addition, the accuracy of calculations is not less than 2∙10–19 

for a bipyramid with seven interpolation nodes. In both 
cases, the accuracy of calculations meets both the high and 
sufficient requirements put forward by the ANSYS software 
package. That is why the resulting cubature formula (7) with 
nodes and weight coefficients that satisfy formulas (6) can be 
considered optimal in terms of the accuracy of calculations, 
to be used in finite-element calculations.

The constructed formulas of numerical integration in the 
region of a bipyramid are endowed with the advantage that 
they could be used to calculate local stiffness matrices for FE 
in the form of a bipyramid at different values of the coeffi-
cient of elongation (compression) p.

This study was carried out with certain restrictions on 
the parameter of bipyramid deformation. The resulting cuba-
ture formulas can be applied at the values of the deformation 
parameter 0.66 ≤ p ≤ 0.86 at the high quality indicators of 
finite-element calculations employed by the ANSYS software 
package, and 0.51 ≤ p ≤ 1.1 – at the sufficient ones.

The disadvantages of the current study include the fact 
that only one bipyramid semi-axis is taken into consideration. 
At the same time, bipyramids that have two or three variable 
parameters are of practical interest. Such polyhedra better 
adapt to the boundaries of regions of complex geometric shape.

It should be noted that the proposed cubature formulas 
cannot be used to find a local mass matrix of bipyramid, the 

elements of which are the integrals from the three-dimen-
sional algebraic polynomials of the fourth power. This fact 
points the direction of further research aimed at obtaining  
a cubature formula in the region of a bipyramid, which would 
make it possible to find exactly the elements of the matrix of 
masses on a given polyhedron. That could make it possible to 
obtain solutions to the dynamic boundary problems by using 
the FEM, provided that the estimation region is discretized 
with an irregular grid with cells in the shape of a bipyramid.

7. Conclusions

1. A cubature formula (7) was constructed for a bipy
ramid with the symmetrical localization of nodes relative to 
the center of the polyhedron that satisfies (6). The resulting 
formula has a second algebraic accuracy order and makes it 
possible to find exactly the elements of the local bipyramid 
stiffness matrix. The intervals of change in the bipyramid 
deformation parameter have been determined, for which in-
terpolation nodes belong to the integration region while the 
weight coefficients are positive, which warrants the stability 
of numerical calculations based on a given formula.

2. A cubature formula (7) was constructed for a bipyra-
mid with the asymmetrical localization of nodes relative to 
the center of the polyhedron that satisfies (9). The resulting 
formula has characteristics that are similar to the characte
ristics of the preceding formula. If the bipyramid deformation 
parameter p = 1, then the constructed formulas have the same 
nodes and weight coefficients and are also accurate for the 
third-order algebraic polynomials.

3. When algorithmizing FEM, the resulting cubature for-
mulas can be used with certain limitations. According to the 
requirements by the ANSYS software complex for bipyramid 
volume deviations from the volume of the octahedron, a high 
level of calculation accuracy is achieved at parameter values 
0.66 ≤ p ≤ 0.86, and a sufficient one – at 0.51 ≤ p ≤ 1.1.

4. The constructed cubature formulas are used in calcu-
lations with a finite number of digits, so when performing 
arithmetic operations, a rounding error occurs. At the same 
time, the accuracy of calculations for a bipyramid with six 
interpolation nodes is not less than 7∙10–20, and, for a bipy
ramid with seven interpolation nodes, not less than 2∙10–19.
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