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1. Introduction

The current stage in the development of mechanics, includ-
ing determining the stressed-strained state (SSS) of structures, 
is associated with the widespread use of mathematical methods. 
Practice puts forward the tasks of multivariate studies into 
two-dimensional and three-dimensional systems, which could 
be sometimes adequately solved only through mathematical 
modeling. As a rule, it is not possible to find a closed analytical 
solution for most problems while experimental research often 
turns out to be a time-consuming and dangerous process.

Studies on this problem from the 20th century show that, 
first, they were conducted to calculate statistical problems 
related to the strength of structures with an elastic base; 
second, the calculations of structural elements disregarded 
the influence exerted by the elastic-plastic properties of the 
base. Based on those studies, there is a need to construct 
mathematical models of dynamic bending of the beam and 
slab on elastic, elastic-plastic, and viscous bases, taking into 
consideration the influence of the temperature of structural 
elements and their base.

Modeling of the general theory of interaction of material 
(for beams, plates, slabs, strips) with a deformable base as 
a three-dimensional body and using the exact statement of 
a three-dimensional mathematical problem under dynamic 
loads, is investigated. The following issues are addressed:

1. Statement of the problem of interaction of the material 
(for beams, plates, slabs, strips) with the deformable base 
and the interaction of the material (in viscoelastic beams, 
plates, slabs, strips) lying on a porous water-saturated visco-
elastic base, in an exact three-dimensional linear statement, 
considered as a viscoelastic layer of the same geometry. It is 
assumed that the lower surface of the layer is flat while the 
upper surface, in a general case, is not flat and is given by 
some equation.

2. General solution to the problem. Kirchhoff’s hypoth-
esis underlies the classical approximate theories of the 
interaction of a layer with a deformable base. Using the well-
known hypothesis by Timoshenko and others, the general 
three-dimensional problem is reduced to a two-dimensional 
one relative to the displacement of points of the median 
plane of the layer, which imposes restrictions on external 
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surfaces, floodgates, including underground structures.

This paper reports a study into the interaction of 
the material (of beams, plates, slabs, strips) with the 
deformable base as a three-dimensional body and in the 
exact statement of a three-dimensional problem of math-
ematical physics under dynamic loads.

The tasks of studying the interaction of a materi-
al (beams, plates, slabs, strips) with a deformable base 
have been set. A material lying on a porous water-sat-
urated viscoelastic base is considered as a viscoelastic 
layer of the same geometry. It is assumed that the lower 
surface of the layer is flat while the upper surface, in a 
general case, is not flat and is given by some equation.

Classical approximate theories of the interaction of 
a layer with a deformable base, based on the Kirchhoff 
hypothesis, have been considered. Using the well-known 
hypothesis by Timoshenko and others, the general 
three-dimensional problem is reduced to a two-dimen-
sional one relative to the displacement of points of the 
median plane of the layer, which imposes restrictions 
on external efforts. In the examined problem, there is 
no median plane. Therefore, as the desired values, dis-
placements and deformations of the points in the plane 
have been considered, which, under certain conditions, 
pass into the median plane of the layer.

It is not possible to find a closed analytical solution 
for most problems while experimental studies often turn 
out to be time-consuming and dangerous processes
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efforts. In the considered problem, there is no median plane. 
Therefore, as the desired values, displacements and deforma-
tions of the points in the plane are considered, which, under 
certain conditions, pass into the median plane of the layer. 
In the study of wave processes in deformable media, or when 
solving problems of interaction of the layer with the deform-
able base, methods of mathematical physics are used.

It is on the basis of the problem under consideration that 
it is possible to devise the most effective methods for assess-
ing and predicting the operational and technical condition of 
structures, to work out effective ways to protect against neg-
ative influences, to assess the effectiveness of new non-tra-
ditional structures in any industry. Problems that take into 
consideration the interactions of non-elastic media with a 
deformable base or the interaction of non-elastic media lying 
on a porous water-saturated viscoelastic base are important 
and relevant.

2. Literature review and problem statement

The problem of the interaction of beams and slabs on 
a deformable base attracts the attention of numerous re-
searchers. In the second half of the 20th century, that is, 
1950‒1990, a fairly large number of different models of the 
base were proposed. Each of them has its disadvantages and 
advantages, leads to different results in terms of convergence 
with experiment. And, apparently, there is no need to make 
contrasts since each model has the right to exist. However, 
in each case, one should set the boundaries of the use of each 
of them.

Studies in world science up to 2021 have considered the 
propagation of waves in deformable layered media under the 
influence of intense loads. The dynamic problem of bending 
of the cantilever beam located in a resisting environment 
under elastic-plastic deformations is solved in [1]. The meth-
od of solving this problem was based on the introduction 
of some fictitious boundary between the elastic and plastic 
zones. A detailed overview of the dynamic calculation of 
structures is given in [2].

Work [2] reports mathematical models of interaction 
of a beam (plate, slab, strip) with a deformable base under 
dynamic loads. It was revealed that accounting for wave 
processes in deformable media and the interaction of two 
deformable media under dynamic mobile loads reveals the 
strength characteristics of the structure. In [3], the basic 
conclusions on modeling the propagation of blast waves in 
multilayered inhomogeneous half-space were drawn. In [4], 
the interactions of two deformable media under dynamic mo-
bile loads were investigated. It was revealed that at the in-
teraction of two media under the action of dynamic moving 
loads, the strength characteristics of the structure increase. 
In [5], a model calculation of the interaction of beams (plates 
and strips) with a deformable multilayer base under dynamic 
loads [6] was carried out. The solution to the problem on the 
impact of the mobile load, taking into consideration the het-
erogeneity of the medium, was derived. In [7], the influence 
of the mobile pressure load of unchanged profile on a pipeline 
with the deformable base was investigated; the strength 
characteristics of the structure were revealed.

The review of [2–7] shows that the propagation of waves 
in deformable media and the interaction of two deformable 
media under dynamic mobile loads were investigated. It is 
demonstrated that accounting for wave processes in deform-

able media and the interaction of two deformable media un-
der dynamic mobile loads significantly reveals the strength 
characteristics of the structure. It was found that in order 
to determine the strength characteristics of a structure at 
the interaction of two deformable media under the action of 
dynamic moving loads, the specification of the state diagram 
P=P(ε) is essential. This is a global task in modern industry, 
construction, agriculture, and military affairs.

Paper [8] reports an experimental study of the deform-
ability of media during the propagation of ultrasonic waves 
and acoustic emission of rock salt at triaxial compression. 
The study does not consider the propagation of waves in 
deformable media and their interaction under dynamic 
mobile loads. In [9], the propagation of natural waves on a 
multilayer viscoelastic cylindrical body hosting the surface 
of the weakened mechanical contact was investigated; how-
ever, the strength characteristics of the object under study 
were not considered. The authors of [10] built the models of 
propagation of elastic waves during exploratory drilling on 
the island of artificial ice. In [11], by applying the variational 
principle, the propagation of a flat wave in the thermoelastic 
medium with double porosity was considered according to 
the Lord-Shulman theory. Papers [10, 11] disregarded the 
strength characteristics of the object under study, and the 
interactions of the media were not taken into consideration. 
Study [12] investigated the propagation of transverse waves 
through parallel joints of rocks at stress on the spot but the 
wave and strength characteristics of the object under study 
were not considered. In [13], single waves in power deform-
able pipelines with the laminar or turbulent fluid flow were 
investigated but the wave and strength characteristics of the 
object under study were not considered; the interactions of 
media were not taken into consideration. Paper [14] exam-
ined the mathematical modeling of the Stoneleigh wave in 
a transversal-isotropic thermoelastic medium. In [15], the 
propagation of S-waves through parallel joints of rocks at 
stress on site was investigated. Papers [14, 15] disregarded 
the wave and strength characteristics of the object under 
study; the interactions of media were not taken into con-
sideration. In [16], the propagation of an oblique transverse 
wave in finitely deformable layered composites was studied 
but the interactions of media were not taken into consider-
ation. In [17], a method of mathematical modeling was used 
for the Stoneleigh wave in a transverse-isotropic thermo-
elastic medium but the strength characteristics of the object 
under study were not considered; the interactions of the 
media were not taken into consideration. The authors of [18] 
suggested three-dimensional modeling of the influence of 
the bulge on the control over the propagation of nonlinear 
waves of stresses caused by the explosive load but the wave 
and strength characteristics of the object under study and 
the interaction of media were not considered. Paper [19] 
gives a parametric assessment of dispersed viscoelastic lay-
ered media to monitor the state of structures; the wave and 
strength characteristics of the object under study were not 
considered; the interactions of media were disregarded.

In [20], the propagation of a Love wave in function-
al-gradient media with an electrode boundary and a sharply 
thickened imperfect interface was investigated; the deforma-
tions of the interacting media under intense load were not 
taken into consideration. Study [21] reports the microscopic 
instabilities and the propagation of elastic waves in finitely 
deformable layered materials with compressible hyperelastic 
phases. In [22], the result of studying the thermomechanical 
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behavior of multilayer media is given on the basis of the 
Lord-Shulman model; the interactions of media were not 
considered. Paper [23] shows the propagation of SH-waves 
in two anisotropic layers associated with isotropic half-space 
under the influence of gravity; there are no results of studies 
into wave propagation in deformable media and the interac-
tion of two deformable media under dynamic mobile intense 
loads. In [24], three-dimensional numerical modeling of 
methane and air combustion in inert porous media on a pore 
scale under conditions of propagation of the combustion 
wave in the medium up and downstream was considered; 
there are no results of studies into wave propagation in de-
formable media and the interaction of two deformable media 
under dynamic mobile intense loads. In [25], the effect of 
heat load on cattle, the mechanisms of microcrack initiation 
in stainless steel, the hermetic-mechanical behavior of mul-
tilayer media based on the Lord-Schulman model is investi-
gated but there are no results of studies of wave propagation 
in deformable media and the interaction of two deformable 
media under dynamic mobile intense loads. Paper [26] 
considers the oblique propagation of gravitational waves 
during sudden stratospheric warming but does not consider 
issues related to the deformation of interacting media un-
der intense load. The authors of [27] show the influence of 
small defects on the fatigue strength of martensitic stainless 
steel; the propagation of waves in deformable media and the 
interaction of two deformable media under dynamic loads 
were not investigated. In [28], three-dimensional numerical 
simulation of methane and air combustion in inert porous 
media on a pore scale under conditions of propagation of 
the combustion wave in the medium up and downstream is 
reported but there are no results of studies into wave prop-
agation in deformable media and the interaction of two de-
formable media under dynamic mobile intense loads. There 
is no accounting for wave processes in deformable media 
and the interaction of two deformable media under dynamic 
mobile loads, thus the essential strength characteristic of the 
structure was disregarded.

The reason for this is the parameters of materials associ-
ated with finding a closed analytical form of the relationship 
between pressure and deformation under dynamic loads. For 
most problems, it is not possible to find a closed analytical 
solution while experimental research is often time-consum-
ing and dangerous. An option for overcoming the difficulties 
may be the use of the method of mathematical physics. This 
approach was employed in work [2] but the model of linear 
deformations of interacting media disregarded the processes 
occurring in the medium with a decrease in the dynamic load.

The above allows us to assert that it is expedient to con-
duct a study to build a mathematical model of the stressed-
strained state of the material with a deformable porous 
water-saturated base under dynamic load.

3. The aim and objectives of the study

The aim of this work is to construct mathematical models 
of the interaction of the material (in the viscoelastic beam, 
plates, slabs, strips) with a deformable base under dynamic 
loads. This would make it possible to more accurately deter-
mine the state of the investigated interacting object with a 
deformable base under dynamic loads; the results could be 
used when tackling technical and technological issues in the 
industry, construction, agriculture, etc.

To accomplish the aim, the following tasks have been set:
– to state the problem of the dynamic interaction of the 

material (in the viscoelastic beam, plates, slabs, strips) with 
a deformable base;  

– to derive a general solution to the problem based on the 
classical approximate theory of the interaction of the layer 
with the deformable base.

4. The study materials and methods

The object of the study is the interaction of the material 
with the deformable base under dynamic loading. 

The main hypothesis of the study is that one should con-
sider that the process obeys natural laws, such as the conser-
vation of the amount of motion, energy, continuity, mass, as 
well as initial and boundary conditions.

The methods of mathematical physics were used taking 
into consideration the following laws: preservation of the 
amount of motion, energy, continuity, mass, as well as the 
initial and boundary conditions of the dynamic interaction 
of the material with the deformable base.

Wave problems for deformable media described by 
equations of motion for viscoelastic media, the behavior 
of which is described by partial differential equations of 
the fourth or higher order, have been solved. Constructing 
general solutions to the equations of motion is a difficult 
mathematical task, and this complexity is exacerbated by 
various types of boundary conditions. Using the methods 
of mathematical physics, general solutions to the problem 
have been obtained on the basis of the classical approxi-
mate theory of the interaction of the layer with the deform-
able base.

We accepted assumptions that the process is described 
by the equations of motion, and the medium is viscous. 

Our adopted simplification implies that the general solu-
tions to the problem were derived on the basis of the classical 
approximate theory.

5. Results of studying the dynamic interaction of the 
material (viscoelastic beam, plates, slabs, strips) with a 

deformable base 

5. 1. Problem statement.
We assume that the lower surface of the layer is flat while 

the upper surface is not flat, and is given by the following 
equation from [2]

( )= , .z F x y

The parameters of the layer material are to be indicated 
by the index “o”, and those of the base ‒ by the index “1”. 

The dependences of stresses ( )σ 0
ij  on deformation ( )ε 0

ij  at 
points in the layer are described by linear operator equa-
tions, that is, we propose giving them in the form of Boltz-
mann relations

( ) ( )( ) ( )( )σ = ε + ε0 0 0
0 02 ,jj jjL M  ( ) ( )( )σ = ε0 0

0 ,ij ijM  

( )≠ ,i j  ( )=, , , ,i j x y z
		

(1)

where viscoelastic operators L0 and М0 are the linear inte-
grated operators in the following form
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( ) ( ) ( ) ( ) 
τ = λ τ − − ξ τ ξ ξ 

 
∫0 0 1
0

d ,
t

L t f t  

( ) ( ) ( ) ( ) 
τ = µ τ − − ξ τ ξ ξ 

 
∫0 0 2
0

d ,
t

M t f t 	  (2)

fj(t) are the kernels of viscous operators; λ0, µ0 are the elastic 
constants or Lamé coefficients. 

In a general case, the kernels of operators are arbitrary 
and different, that is, the Poisson coefficients of the material 
of the layer are variable while the kernels of the operators are 
such that there exists a resolvent of integrated operators (2). 

Introduce potentials Ф0 and Ψ0  
of the longitudinal and 

transverse waves [1, 6]

= Φ + Ψ0 0 0grad rot ,U 		  (3)

where 0U  is the vector of moving the points of the layer; the 
equations of motion of the layer takes the following form

( ) ∂ Φ
∆Φ = ρ

∂

2
0

0 0 0 2 ,N
t

 ( ) ∂ Ψ
∆Ψ = ρ

∂

2
0

0 0 0 2 ,M
t

 		  (4)

where the operator N0 is ∆ ‒ the three-dimensional Laplace 
operator

∂ ∂ ∂
∆ = + +

∂ ∂ ∂

2 2 2

2 2 2 .
x y z

Considering Helmholtz’s theorem, in the absence of in-
ternal sources, the vector potentials Ψ  of transverse waves 
must satisfy the following condition from [2, 6]

Ψ =0div 0.  		  (5)

Condition (5) is a closing condition for determining the 
components of the Ψ0. potential vector.

The base is considered as a porous water-saturated soil. 
The dependences of stresses ( )σ 1

ij  and ( )σ 1  on deformations ( )ε 1
ij  

and ( )ε 2  in the solid and liquid components are described by 
the following ratios according to the generalized model by 
M. Bio [7]

( ) ( )( ) ( )( ) ( )( )σ = ε + ε + ε1 1 1 2
1 12 ,jj jjL M Q  ( ) ( )( )σ = ε1 1

1 ,ij ijM
	

(6)

( ) ( )( ) ( )( )σ = ε + ε1 2 1 ,R Q  ( )≠ =, , , , ,i j i j x y z

where index “1” is for the solid component, index «2» – for 
the liquid component; operators L1, M1, Q, R are the linear 
integrated operators of type (2), that is

( ) ( ) ( ) ( ) 
τ = λ τ ξ − − ξ τ ξ ξ 

 
∫1 1 11
0

d ,
t

L f t
 

( ) ( ) ( ) ( ) 
τ = µ τ ξ − − ξ τ ξ ξ 

 
∫1 1 12
0

d ,
t

M f t

( ) ( ) ( ) ( ) 
τ = τ ξ − − ξ τ ξ ξ 

 
∫1 13
0

d ,
t

Q Q f t  

( ) ( ) ( ) ( ) 
τ = τ ξ − − ξ τ ξ ξ 

 
∫1 14
0

d .
t

R R f t

Similarly to (3), introduce the Фj and Ψ j  potentials for 
both the solid and liquid base components

= Φ + Ψ1 1 1grad rot ,U  Ψ =1div 0,

= Φ + Ψ2 2 2qrad rot ,U  Ψ =2div 0,

		

(7)

where 1U  and 2U  are the point displacement vectors of the 
solid and liquid components, respectively. 

The motion of the porous water-saturated base is de-
scribed by the following equations from [5, 7, 8]

( ) ( ) ∂ Φ ∂ Φ
∆Φ + ∆Φ = ρ + ρ

∂ ∂

2 2
1 2

1 1 2 11 122 2 ,N Q
t t

		  (8)

( ) ( ) ∂ Φ ∂ Φ
∆Φ + ∆Φ = ρ + ρ

∂ ∂

2 2
1 2

1 2 12 222 2 ,Q R
t t

( ) ρ ρ − ρ ∂ Ψ
∆Ψ =

ρ ∂

2 2
11 22 12 1

1 1 2
22

,M
t

ρ
Ψ = − Ψ

ρ
12

2 1
22

, 		 (9)

where

= +1 1 12 ,N L M  ( )∆Φ = ε 1
1 ,  ( )∆Φ = ε 2

2 ;

Δ is the three-dimensional Laplace operator; Ф1, Ф2 are 
the potentials of longitudinal waves of the solid and liquid 
components; ε(1), ε(2) are, respectively, deformations, while

ρ ρ − ρ >2
11 22 12 0,  ρ <12 0,  ( )ρ = − ρ11 01 ,sk  ρ = ρ − ρ22 0 12;fk

k0 is the porosity of the medium; ρs, ρf are the densities of 
solid and liquid components.

Assuming that non-stationary forces act on the layers, 
both on the upper and lower ones, and the forces on the lower 
surface can be caused by internal, in particular, seismic waves. 

Boundary conditions on the upper surface of the layer 
z=F(x,y) take the following form from [9–11]

( )σ =(0) (0) , , ,nn nf x y t  ( )σ =(0) (0) , , ,
j jns nsf x y t  ( )= 1,2 ,j 	 (10)

where σnn and σ
jns are the normal and tangential stresses; n is 

the normal to the surface F(x,y); sj is the orthogonal directions 
in the tangent plane drawn to the point of the surface of the 
layer. 

The stresses σnn and σ
jns  are expressed by the following for-

mulas through the stresses σij in Cartesian coordinates [12–15]

σ = σ + σ + σ +

+ σ + σ + σ

2 2 2
0 0 0

0 0 0 0 0 02 2 2 ,
nn xx yy zz

xy xz yz

l m n

l m l n m n 		  (11)

( )
( ) ( )

σ = σ + σ + σ + σ + +

+σ + + σ +

0 0 0 0 0

0 0 0 0 ,

jns xx j yy j zz j xy j j

xz j j yz j j

l l m m n n l m l m

l n l n m n m n

where (l0, m0, n0) are the guide cosines of normal n; (lj, mj, 
nj) are the guide cosines of orthogonal coordinates sj and are 
equal to

′
= −

∆0
0

,xF
l  

′
= −

∆0
0

,yF
m  =

∆0
0

1
,n  

( ) ( )∆ = + +′ ′
22

0 1 ,x yF F =
∆1

1

1
,l  

α
=

∆
0

1
1

tg
,m  
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+ α′ ′
=

∆
0

1
1

tg
,x yF F

n  ( )−∆ = α + + α′ ′
22

1 0 0cos tg ,x yF F

in this case, the function F(x,y) describes the upper surface 
of the layer. 

Next, it was assumed that the partial derivatives from 
the function F(x,y) do exist and are continuous almost ev-
erywhere except for points of the first kind, which are noth-
ing more than for counting. 

At the contact boundary z=–h, in the absence of friction, 
we have the following boundary conditions [16–18]

( ) ( ) ( ) ( )σ = σ + − σ +1 1(0) (2)
0 01 , , ,zz zz zk k f x y z  

( ) ( )σ = σ =0 0 0,xz yz

( ) ( )σ + =1(1) , , 0,xz xzf x y z  ( ) ( )σ + =1 , , 0,yz f x y z

( ) ( )= + 1
0 1 1 , , ,w w f x y z  ( ) ( )= + 1

0 2 2 , , ,w w f x y z 	 (12)

and, at infinity z=∞, perturbation tends to zero. 
In (12), the functions ( )1 ,jf  ( )1 ,zf  ( )1

izf  are not independent but 
are determined through the parameters of internal sources, in 
particular, the parameters of waves from an earthquake. 

Conditions (10) for the weakly curved surface z=F(x,y) 
of the layer, that is, when the derivatives above the first 
order are neglected while the products of the derivatives of 
the first order are also neglected, are simplified to take the 
following form

( ) ( )σ − σ + σ =′ ′(0) (0) (0) (0)2 , , ,zz x xz y yz nF F f x y t

( ) ( )σ − σ − σ + σ =′ ′
1

(0) (0) (0) (0) (0) , , ,x zz xy y xz xz nsF F f x y t

( ) ( )σ − σ − σ + σ =′ ′
2

(0) (0) (0) (0) (0) , , .y zz yy x xy yz nsF F f x y t

	

(13)

The initial conditions of the problem are zero [19–21], 
that is

∂Φ ∂Ψ
= Φ = = Ψ =

∂ ∂
0 0

0 0 0,
t t

 

∂Φ ∂Ψ
= Φ = = Ψ =

∂ ∂
0,j j

j jt t
 ( )= 1,2 ,j  = 0.t 	 (14)

The displacements u, v, w, the deformations εij, and the 
stresses σij in the Cartesian coordinates through the poten-
tials Ф and Ψ  of the longitudinal and transverse waves are 
determined from the following formulas from [22–24] for 
displacements

∂Ψ ∂Ψ∂Φ
= + −

∂ ∂ ∂
3 2 ,u

x y z  

∂Ψ ∂Ψ∂Φ
= + −

∂ ∂ ∂
1 3 ,v

y z x  

∂Ψ ∂Ψ∂Φ
= + −

∂ ∂ ∂
2 1 ,w

z x y
				    (15)

for strains

∂ Ψ ∂ Ψ∂ Φ
ε = + −

∂ ∂ ∂ ∂ ∂

2 22
3 2

2 ,xx x x y x z

∂ Ψ ∂ Ψ∂ Φ
ε = + −

∂ ∂ ∂ ∂ ∂

2 22
1 3

2 ,yy y y z x y

∂ Ψ ∂ Ψ∂ Φ
ε = + −

∂ ∂ ∂ ∂ ∂

2 22
2 1

2 ,zz z x z y z
			   (16)

∂ Ψ ∂ Ψ ∂ Ψ ∂ Ψ∂ Φ
ε = + − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

2 2 2 22
1 2 3 3

2 22 ,xy x y x z y z y x

∂ Ψ ∂ Ψ ∂ Ψ ∂ Ψ∂ Φ
ε = + − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

2 2 2 22
3 3 2 1

2 22 ,xz x z y z z x x y

∂ Ψ ∂ Ψ ∂ Ψ ∂ Ψ∂ Φ
ε = + − + −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

2 2 2 22
2 3 1 1

2 22 ,yz y z x y x z z y

for stresses

( )  ∂ Ψ ∂ Ψ∂ Φ
σ = ∆Φ + + − ∂ ∂ ∂ ∂ ∂ 

2 22
3 2

22 ,xx L M
x x y x z

( )  ∂ Ψ ∂ Ψ∂ Φ
σ = ∆Φ + + − ∂ ∂ ∂ ∂ ∂ 

2 22
1 3

22 ,yy L M
y y z x y

( )  ∂ Ψ ∂ Ψ∂ Φ
σ = ∆Φ + + − ∂ ∂ ∂ ∂ ∂ 

2 22
2 1

22 ,zz L M
z x z y z

 ∂ Ψ ∂ Ψ ∂ Ψ ∂ Ψ∂ Φ
σ = + − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

2 2 2 22
1 2 3 3

2 22 ,xy M
x y x z y z y x

	 (17)

 ∂ Ψ ∂ Ψ ∂ Ψ ∂ Ψ∂ Φ
σ = + − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

2 2 2 22
3 2 2 1

2 22 ,xz M
x z y z z x x y

 ∂ Ψ ∂ Ψ ∂ Ψ ∂ Ψ∂ Φ
σ = + − + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

2 2 2 22
2 3 1 1

2 22 .yz M
y z x y x z z y

Thus, the exact three-dimensional problem on the motion 
of a viscoelastic layer of variable thickness lying on a deform-
able porous water-saturated soil is reduced to solving the 
integrated-differential equations of motion (4) and (8) in the 
potentials Ф0, Ф1, Ф2, and Ψ0, Ψ1, Ψ2. The problem is reduced 
under boundary conditions (12), (13) conditions, under the 
formulated constraints and zero initial conditions (14).

5. 2. A general solution to the problem on the interac-
tion of the layer with the deformable base

Within the framework of the set goal, the following prob-
lem is stated and solved:

– to derive a general solution to the problem based on the 
classical approximate theory of the interaction of the layer 
with the deformable base.

In this statement of the problem, the median plane is 
absent. Therefore, as the desired values, we shall consider the 
displacements and deformations of the points of the plane z=0, 
which, at F(x, y)=h, passes into the median plane of the layer. 

In the study of wave processes in linear deformable me-
dia or when solving problems of interaction of the layer with 
the deformable base, mathematical methods are used.

The problem is solved in an exact three-dimensional 
statement, applying the Fourier transform along the x, y co-
ordinates, as well as the Laplace transform for time t. 

A general solution to the problem under zero initial con-
ditions is found, assuming [25–27]

( )

( )

∞ ∞ 
Φ = Φ − − 

∫ ∫ ∫ 0

0 0

sin sin
d d d ,

cos cos
pt

j j
l

kx qy
k q e p

kx qy
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( )

( )

∞ ∞ 
Ψ = Ψ −  

∫ ∫ ∫ 0
1 1

0 0

sin cos
d d d ,

cos sin
pt

j j
l

kx qy
k q e p

kx qy

( )

( )

∞ ∞ 
Ψ = Ψ − 

∫ ∫ ∫ 0
2 2

0 0

cos sin
d d d ,

sin cos
pt

j j
l

kx qy
k q e p

kx qy

( )

( )

∞ ∞ 
Ψ = Ψ 

 
∫ ∫ ∫ 0

3 3
0 0

cos cos
d d d .

sin sin
pt

j j
l

kx qy
k q e p

kx qy
		  (18)

however, due to the formulated limitations on the functions of 
external forces, the functions ( )Φ 0 ,j  ( )Ψ 0

ij  are negligible outside 
the domain ≤ 0,k k  ≤ 0,q q  ≤ ω0Im ,p  and expressions (18) 
can be differentiated under the sign of the integral. 

Substituting (18) in the equations of motion (3) and (8), for 
( )Φ 0 ,j  ( )Ψ 0 ,ij  we obtained ordinary differential equations [28, 29]

( )
( )Φ

− α Φ =
02

020
0 02 0,

d
dz

( )
( )Ψ

− β Ψ =
02

020
0 02 0,i

i

d
dz

	  (19)

( )
( )

( ) ( )

( )
( ) ( )

( ) ( )

 Φ
− + Φ + 

  
 Φ

+ − + Φ = 
  
 = ρ ρ Φ + ρ Φ 

02
0 02 21

1 12

02
02 22

0 22

0 02
11 1 12 2 ,

d
N k q

dz

d
Q k q

dz

( )
( ) ( )

( )
( ) ( )

( ) ( )

 Φ
− + Φ + 

  
 Φ

+ − + Φ = 
  
 = ρ ρ Φ + ρ Φ 

02
02 21

0 12

02
02 22

0 22

0 02
12 1 22 2 ,

d
Q k q

dz

d
R k q

dz

( )
( )Ψ

− β Ψ =
02

021
1 12 0,i

i

d
dz

 ( ) ( )Ψ = ν Ψ0 0
2 1 1 ,i i  

ρ
ν = −

ρ
12

1
22

, 	 (20)

where

( ) ( )α = + + ρ
2

2 2 2
0 0 0

0

,
p

k q
N

 ( ) ( )β = + + ρ
2

2 2 2
0 0 0

0

,
p

k q
M

( ) ( )β = + + ρ
2

2 2 2
1 1 0

1

,
p

k q
M

 ( ) −ρ = ρ ρ − ρ ρ2 1
1 11 22 12 22, 	 (21)

( )0 ,jN  ( )0 ,jM  Q0, R0 are the Laplace-transformed operators Nj, 
Mj, Q, R. 

The transformed values of displacements at the points of 
the layer and the base are expressed through the following 
formulas

( ) ( )
( )

( )Ψ
= Φ − − Ψ

0
0 0 020

0 0 30 ,
d

u k q
dz

( ) ( )
( )

( )Ψ
= Φ + + Ψ

0
0 0 010

0 0 30 ,
d

v q k
dz

( )
( )

( ) ( )Φ
= + Ψ − Ψ

0
0 0 00

0 10 20 ,
d

w q k
dz

		  (22)

( ) ( )
( )

( )Ψ
= Φ − − Ψ

0
0 0 021

1 1 31 ,
d

u k q
dz

( ) ( )
( )

( )Ψ
= Φ + + Ψ

0
0 0 011

1 1 31 ,
d

v q k
dz

( )
( )

( ) ( )Φ
= + Ψ − Ψ

0
0 0 01

1 11 21 ,
d

w q k
dz

( ) ( )
( )

( ) Ψ
= Φ − ν + Ψ  

0
0 0 021

2 2 1 31 ,
d

u k q
dz

( ) ( )
( )

( ) Ψ
= Φ − ν + Ψ  

0
0 0 011

2 2 1 31 ,
d

v q k
dz

( )
( )

( ) ( )( )Φ
= + ν Ψ − Ψ

0
0 0 00

2 1 11 21 .
d

w q k
dz

		  (23)

Equations (20) can be represented as separated equa-
tions. To this end, assume

( ) ( )Φ = ϕ0 0
1 ,  ( ) ( )Φ = γϕ0 0

2 . 		  (24)

Substituting (24) in equation (20), we obtain

( )
( ) ( ) ( )

( )
( )ρ + γρϕ

− + ϕ = ϕ
+ γ

202
0 011 122 2

2 0
1 0

,
pd

k q
dz N Q

( )
( ) ( ) ( )ρ + γρϕ

− + ϕ = ϕ
+ γ

202
0 12 222 2 0

2
0 0

.
pd

k q
dz Q R

		  (25)

Equating the right-hand sides in (25), to find γ, the fol-
lowing algebraic equation is built.

( ) ( )( )
( )( )

ρ − ρ γ − ρ − ρ γ −

− ρ − ρ =

02
22 0 12 0 11 0 22 1

0
11 0 12 1 0,

Q R R N

Q N 		  (26)

denoting the roots of equation (26) through γ1, γ2, for Ф1 
and Ф2, we have

( ) ( ) ( )Φ = ϕ + ϕ0 0 0
1 1 2 ,  ( ) ( ) ( )Φ = γ ϕ + γ ϕ0 0 0

2 1 1 2 2 , 	  (27)

in this case, ( )ϕ 0
1  and ( )ϕ 0

2  satisfy the following equations

( )
( )ϕ

− α ϕ =
02

021
1 12 0,

d
dz

 
( )

( )ϕ
− α ϕ =

02
022

2 22 0,
d

dz
		  (28)

where

( ) ( )
( )
ρ γ + ρ

α = + +
+ γ

2
12 112 2 2

0
1 0

.
j

j

j

p
k q

N Q

The γ1 and γ2 roots of equation (26) are

( )( )
( )( )

( ) ( )( )
( ) −

 ρ − ρ ±
 
  γ = × ρ − ρ +  ±   + ρ − ρ ρ − ρ   

 × ρ − ρ 

0
11 0 22 1

1 220
1,2 11 0 22 1

0
22 0 12 0 11 0 12 1

1

22 0 12 0

4

2 .

R N

R N

Q R Q N

Q R 	 (29)

General solutions to ordinary differential equations 
(19) and (28) of the second order with constant coeffi-
cients are found by known mathematical methods through 
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characteristic equations; these solutions take the follow-
ing form [30]

( ) ( ) ( )Φ = α + α0
0 1 0 2 0 ,A ch z A sh z  

( ) ( ) ( )Ψ = β + β0
10 1 0 2 0 ,B sh z B ch z

( ) ( ) ( )Ψ = β + β0
20 1 0 2 0 ,C sh z C ch z  

( ) ( ) ( )Ψ = β + β0
30 1 0 2 0 ,D ch z D sh z 			   (30)

for a layer where Aj, Bj, Cj, Dj are the arbitrary integration 
constants, and, for a base (under attenuation conditions z=∞),

( ) αϕ = 10
1 0 ,zA e  ( ) αϕ = 20

2 0 ,zB e  

( ) βΨ = 10
11 0 ,zC e  ( ) βΨ = 10

21 0 ,zD e  ( ) βΨ = 10
31 0 ,zE e

		
(31)

In this case, the arbitrary integration constants Aj, Bj, 
Cj, Dj, C0, D0, E0, due to the solenoidality of (3) and (4), are 
related through the following dependences

+ + β =0 0,j j jkB qC D  + + β =0 0 1 0 0,kC qD E  ( )= 1,2 .j
	
(32)

For the transformed layer point movements, we have the 
following representation

( ) ( ) ( )
( ) ( )

( ) ( )

 = α + α − 
 −β β + β − 

 − β + β 

0
0 1 0 2 0

0 1 0 2 0

1 0 2 0 ,

u k A ch z A sh z

C ch z C sh z

q D ch z D sh z

( ) ( ) ( )
( ) ( )

( ) ( )

 = α + α + 
 +β β + β + 

 + β + β 

0
0 1 0 2 0

0 1 0 2 0

1 0 2 0 ,

v q A ch z A sh z

B ch z B sh z

k D ch z D sh z

( ) ( ) ( )
( ) ( )
( ) ( )

 = α α + α + 
 + β + β − 
 − β + β 

1
0 0 1 0 2 0

1 0 2 0

1 0 2 0 .

w A sh z A ch z

q B sh z B ch z

k C sh z C ch z 		  (33)

Expanding the hyperbolic functions (33) into power 
series for z for the transformed values of the movements of 
layer points (0)

0 ,u  (0)
0 ,v  (0)

0w

( ) ( )

( )

+

∞

+
= + + +

 
 α − β − β +  

 =  
  + α − β − β  + 

∑

2
2 2 1 2
0 1 0 1 0 1

0
0 2 1

0 2 1 2 2 2 1
0 2 0 2 0 2

2 !
,

2 1 !

n
n n n

n
n n n n

z
k A C q D

n
u

z
k A C q D

n

( ) ( )

( )

+

∞

+
= + + +

 
 α + β + β +  

 =  
  + α + β + β  + 

∑

2
2 2 1 2
0 1 0 1 0 1

0
0 2 1

0 2 1 2 2 2 1
0 2 0 2 0 2

2 !
,

2 1 !

n
n n n

n
n n n n

z
q A B k D

n
v

z
q A B k D

n

	 (34)

( ) ( )

( )

+
+ +

∞

= +

 
 α + − β +   + =  

  + α + − β   

∑

2 1
2 2 2 1
0 1 1 1 0

0
0 2

0 2 1 2
0 2 2 2 0

( )
2 1 !

.

( )
2 !

n
n n

n
n n n

z
A qB kC

n
w

z
A qB kC

n

Similar representations for the transformed stress values

( )

( )
( ) ( )
( )

( ) ( )

+∞

+ +=

+

  α β + + +
   +
  + β −  σ =  

 α β + + + 
 + + + β −   

∑

2 2 2 2 2
0 1 1

2 1
0 1 10

10 2 1 2 2 2 2 10 0 1 2

2 2
0 2 2

2 !2
,

2 1 !2

n n

n

zz
n nn

n

k q A z
nqB kC

M
k q A z

nqB kC

( )

( )
[ ]

( )

( )
[ ]

( )

∞

= +

+

+

σ =

   
α − − − α +    ×   

  + β β +  
 
 × +
 

=  
   α − − − α   + ×   
  + β β +  

 
× + 

+
∑

0

2 2 2 2 210
0 0 1

10

2
0 0 1 1

2

10
0 2 2 2 2 2 110

0 0 2
10

2 1
0 0 2 2

2 1

2

2

2 !
,

2

2

2 1 !

xx

n

n

n

n n

n

n

L
k q k A

M

k C qD

z
n

M
L

k q k A
M

k C qD

z
n

( )

( )
[ ]

( )

( )
[ ]

( )

∞

= +

+

+

σ =

   
α − − − α −    ×   

  − β β +  
 
 × +
 

=  
   α − − − α   + ×   
  − β β +  

 
 + 

−
∑

0

2 2 2 2 210
0 0 1

10

2
0 0 1 1

2

10
0 2 2 2 2 2 110

0 0 2
10

2 1
0 0 2 2

2 1

2

2

2 !
,��

2

2

2 1 !

yy

n

n

n

n n

n

n

L
k q q A

M

q B kD

z
n

M
L

k q q A
M

q B kD

z
n

 (35)

( )

( )
( )

( )

( )
( )

( )

+

∞

+=
+

+

+

  α +  
  +β − + +
  
  + − β  σ =  

  α  
 + +β − + +  
 + − β   

+
∑

2
0 1 2

2 1
0 1 1

2 2 2
0 10

10
2 10
0 2 2 1

2 2
0 2 2

2 2 2 1
0 2

2

2 !

,
2

2 1 !

n

n
n

n

xy
nn

n
n

n

qk A
z

kB qC
n

k q D
M

qk A
z

kB qC
n

k q D

( )

( )
( )

( )

( )
( )

( )

+

+
+

+∞

+
=

  α +
  
 + β + β − + 

+  
− − β β    σ =  
 α 
  

+ + β + β −  
  
−

+

− β β    

∑

2 2
0 1

2 1
2 2 2 1
0 0 1

2 1
1 0 1 00

10 2 1
0 0 2

2
2 2 2
0 0 2

2
2 0 2 0

2

2 1 !

,
2

2 !

n

n
n

n

yz n
n

n
n

n

q A
z

q B
n

k qC D
M

q A
z

q B
n

k qC D
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( )

( )
( )

( )

( )
( )

( )

+

+
+

+
∞

+=

  α +  
  + − β β +

+  
  −β β +  σ =  

  α +  
 + + − β − 
  
 −β β +  

−



∑

2 2
0 1 2 1

2 1
1 0 1 0

2 1 2 2
0 0 10

10
2 10
0 2 2

2 0 1

2 2 2
0 0 2

2

2 1 !

,
2

2 !

n

n
n

n

xz
nn

n

n

k A
z

q kB D
n

k C
M

k A
z

q kB D
n

k C

Introduce the following auxiliary functions

( )= − β +0 1 0 1 1 ,U kA C qD

( )= α − β β +10 0 2 0 0 2 2 ,U k A C qD

( )= + β +0 0 0 1 1 ,V qA B kD

( )= α + β β +10 0 2 0 0 2 2 ,V k A B qD

( )= α + β −2
0 0 1 0 1 1 ,W A qB kC

( )= α + −10 0 2 2 2 ,W A qB kC
		

(36)

which are the coefficients at z in the zero and first powers in 
decompositions (34), while U0, V0, W10 are the movements of 
points of the plane z=0; U10, V10, W0 are the deformations of 
these same points in the direction of the z axis. 

Expressing the integration constants Aj, Bj, Cj, Dj through 
U0, V0, W0, U10, V10, W10 taking into consideration depen-
dence (32), we obtain

− −
=

α − −
0 0 0

1 2 2 2
0

,
W kU qV

A
k q

( ) ( ) ( )
( )( )

β − α + α β − β − α − β − −
=

β α − − β − −

2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0

1 2 2 2 2 2 2
0 0 0

,
kq U k q V q k q W

B
k q k q

( ) ( ) ( )
( )( )

α + β − β α + α − β + β − −
=

β α − − β − −

2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0

1 2 2 2 2 2 2
0 0 0

,
k q U kq V k k q W

C
k q k q

−
=

β − −
0 0

1 2 2 2
0

,
qU kV

D
k q

 ( )
β − −

=
α α − −

2
0 10 10 10

2 2 2 2
0 0

,
W kU qV

A
k q

		 (37)

( ) ( )
( )

β − − α + + −
=

β − −

2 2 2 2 2
0 0 10 10 10

2 2 2 2
0

2
,

k V q k q W kqU
B

k q

( )
−

=
β − −

10 10
2 2 2 2

0

,
kW U

C
k q

 ( )
−

=
β β − −

10 10
2 2 2 2

0 0

.
qU kV

D
k q

Moving in (34) from the integration constants Aj, Bj, Cj, 
Dj to the auxiliary quantities in (33) taking into consideration 
condition (32), that is substituting (33) in (34), we obtain
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Converting expressions (38) to k, q, p, or moving to the 
true movements u0, v0, w0 of the points of the layer through 
the movements and deformations U, V, W, U1, V1, W1 – points 
of the plane z=0 in the direction of the z coordinate, we ob-
tained [2, 31, 32]
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In this case, the ( )λ 1
1  and ( )λ 1

2  operators are the two-di-
mensional integrated-differential equations of the propaga-
tion of longitudinal and transverse waves in the plane z=0.

Expressions (39) have been derived only from solving 
the equation of motion (4) under zero initial conditions and 
are the general solutions to the problem about the layer. 

To find unknown U, V, W, U1, V1, W1 and the base pa-
rameters A0, B0, C0, D0, E0, we have the boundary condi-
tions (12) and (13).

6. Discussion of results of studying the stressed-strained 
state of the material with a porous water-saturated base 

under dynamic load

This study has stated the problem, constructed mathe-
matical models of the interaction of the material (for the vis-
coelastic beam, plates, slabs, strips) with a deformable base 
under dynamic loads. The problem is reduced to solving the 
integrated-differential equations of motion (4) and (8) in the 
potentials Ф0, Ф1, Ф2 and Ψ0, Ψ1, Ψ2 under the boundary 
conditions (12), (13), under formulated constraints and zero 
initial conditions (14).

We have considered the problem of propagation of a 
plastic wave in a two-layer medium with a flatly parallel 
interface boundary under the influence of an intense load 
of a falling profile moving along its upper boundary with a 
constant over seismic speed D.

The two-layer medium consists of a soft layer of soil with 
a thickness of h with an elastic deformable base. The soil 
is modeled by an inelastic ideal medium with linear com-
pressibility and linear irreversible unloading. Consequently, 
the resistance of the medium to shear forces is neglected. 
According to this statement, the influence of deformation 
of the base and load profile on the distribution of dynamic 
parameters of the layer and the contact surface has been 
investigated. Let a monotonously decreasing normal load 
with speed D moves along the upper boundary of the layer 
with an elastic base; the exceeding speed of the propagation 
of waves does not change. The material of the layer has such 
a property that when loading and unloading, the relationship 
between the pressure P and the volumetric deformation ε 
is linear and irreversible, the angle of inclination E2 of the 
unloading branch of the P~ε diagram exceeds the angle of 
inclination E1 of the loading branch, that is E1<E2.

Based on the results of studying the construction of 
mathematical models of wave propagation in a multilayer, 
in particular heterogeneous, half-space, taking into consid-
eration irreversible processes within the framework of an 
ideal nonlinear-compressible and linear-elastic medium, the 
following conclusions can be drawn:

1. The problem has been stated and an analytical solu-
tion to the problem of the propagation of a plastic wave 

in half-space has been constructed for the case where the 
dependence between pressure and volumetric deformation 
during loading and unloading is linear but different. Based 
on the analysis of the results, it has been shown that if the 
mobile load acting at the boundary of the half-space has a 
monotonous-decreasing profile, then the medium is unload-
ed in the perturbation region, and the oblique compression 
wave is obtained by the load-unloading wave. The pressure 
of the medium against the background of this wave, depend-
ing on the depth of the half-space, decreases slower than on 
the free surface. In the case when the relationship between 
P and when the medium is loaded is taken to be nonlinear 
and impact, which corresponds to the propagation in the 
medium of a two-dimensional shock wave, the pressure in 
the perturbation region, compared with the linear case, is 
somewhat overestimated.

2. We have investigated the problem of propagation of a 
plastic wave in a two-layer medium with densities ρ1, ρ2 for 
the case when the state diagram P=P(ε) of the first medium 
(soil) is impact-induced. Additionally, when loading, it takes 
the form P(ε)=a1ε+a1ε2, and the second medium (black rock 
or gasket) is elastic or rigid plastic. The problem is solved 
analytically by both direct and inverse methods, taking into 
consideration wave processes in the second medium and 
without taking them into consideration.

Thus, our study of the stressed-strained state of a me-
dium under the influence of mobile load confirms the need 
and importance of taking into consideration nonlinear, irre-
versible, wave processes. Clarification of the accounting for 
nonlinearity, irreversibility of the object under study during 
wave processes is the main direction for the mechanics of 
deformable media. In our work on studying the stressed-
strained state of the medium under the influence of mobile 
load, when considering the object with a porous water-sat-
urated viscoelastic medium, we have determined the scope 
and boundaries of the applicability of the results, the con-
ditions that must be met, as well as the solution robustness.

7. Conclusions

1. We have stated the problem of the interaction of the 
material (for beams, plates, slabs, strips) with the deform-
able base. The material (of the viscoelastic beam, plate, slab, 
strip) lying on a porous water-saturated viscoelastic base is 
considered as a viscoelastic layer of the same geometry. It 
was assumed that the lower surface of the layer is flat while 
the upper surface is not flat and is given by the equation 
z=F(x,y). Thus, the exact three-dimensional problem of the 
motion of the viscoelastic layer of variable thickness lying 
on the deformable porous water-saturated soil is reduced to 
solving the integrated-differential equations of motion (4) 
and (8) in the potentials Ф0, Ф1, Ф2 and Ψ0, Ψ1, Ψ2. It has 
a solution under the boundary conditions (12), (13), under 
formulated restrictions and zero initial conditions (14).

2. The equations for a general solution to the problem of 
interaction of the layer with the deformable base have been 
derived. We have built the classical approximate equations 
of the theory of interaction of a layer with a deformable 
base, based on Kirchhoff’s hypothesis. Using the well-
known hypotheses by Timoshenko and others, the general 
three-dimensional problem is reduced to a two-dimension-
al one relative to the displacements of points of the median 
plane of the layer, which imposes restrictions on external 
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conditions. In the present problem, there is no median 
plane. Therefore, the displacement and deformation of the 
points of the plane z=0, which, at F(x, y)=h, passes into 
the median plane of the layer, have been considered as the 
desired quantities. Wave processes in the linear deformable 
media, as well as in solving problems of interaction of the 
layer with the deformable base, have been investigated us-
ing mathematical methods. The derived general equations 
of the interaction of the layer with the deformable base are 
complex in structure, contain derivatives of any order for 
coordinates and time.
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