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At present, there are theoretical and experimental studies of such 
bearings without taking into account the elastic deformation of the 
bearing segments. The rotor bearings of powerful turbines at nuclear  
power plants are subjected to loads as high as tens of tons. One of the 
important issues in designing segmental bearings operating under these 
conditions consists in taking into account elastic deformations of the 
segments. A schematic diagram of a segmental hydrostatic bearing was 
presented and the principle of its operation was described. When deter­
mining the deformation of spherical support, a formula of change in 
volume of a solid steel ball subjected to uniform pressure was applied.

To determine the segment deformation in the axial direction, diffe­
rential equation of bending of the strip beam as the initial one. The basic 
equation of deformation of rods with a curved axis acting in the plane 
of curvature was taken as a starting point of determining the segment 
deformation in the circumferential direction.

It was found in the studies that the maximum deformation of the seg­
ment is 4.5 % of radial clearance at a feed pressure of 5 MPa and can 
affect the bearing characteristics. A substantially nonlinear character of 
deformations along the segment axis was revealed. It was found that the 
pressure of the working fluid significantly affects the segment thickness. 
With an increase in feeding pressure from 1 MPa to 10 MPa, the thick­
ness of the steel segment increased more than 2 times and the thickness of 
the bronze segment increased more than 3 times. It was established that 
the pressure of the working fluid exceeding 10 MPa substantially affects 
the deformation of the spherical support and the bearing clearance.

The study results will make it possible to determine more accurate­
ly the main characteristics of the segmental bearing and design it more 
efficiently
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1. Introduction

High reliability and durability in all operating modes are 
some of the main requirements for bearings. In addition, the 
following requirements are imposed on them: guaranteed 
long-term working efficiency, high fire safety, good maintain-
ability after storage, transportation, and overload.

Non-stationarity of loading, high rotational speeds of 
rotors, the possibility of the appearance of elastic deforma-
tions in segments, and the use of low-viscosity liquids as  
a lubricant are the main operating features of rotor bearings 
in power plant units. The high probability of turbulent flow 
of lubricant is caused by these factors.

Slider bearings of various types are used in existing designs 
of power units. There are many types of bearing shell bore. 

The simplest cylindrical bore is used most often. Taking into 
account peculiarities of operation of rotor bearings in present- 
day power plant units, a bearing with self-aligning segments 
is the most reliable type of bearing that counteracts the 
excitation of vibrations. Unlike the conventional designs, it 
possesses stabilizing properties enabling expansion of the zone 
of stable rotor motion. In addition, it is able to compensate for 
shaft misalignments and has fewer frictional losses.

In 1972, for the first time in the practice of turbine con-
struction, 0.3 and 0.4 m diameter segmental bearings were 
installed on a K-500-240 turbine (Russia). Capacities of nu-
clear power plants measure hundreds of megawatts, bearing 
diameters reach 0.8 m and more, and loads acting on bearings 
amount up to tens of tons. Taking into account the deforma-
bility of segments is one of the important issues in designing  
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segmental bearings operating in such conditions. It is especial-
ly important in designing large-diameter segmental bearings.

Thus, the need to use segmental hydrostatic bearings for 
rotors of high-capacity plants and the lack of information 
on determining deformation of segments and their supports 
makes relevant the study on this problem.

2. Literature review and problem statement

Journal bearings operated with the use of magnetic fluids 
are considered in [1]. Magnetized bearings can create fluid 
support through magnetostatic force. Supporting capacity 
provided by liquefied gas helps reduce friction. This design 
will be especially important in precision sliding machines. 
Static and dynamic characteristics of impact gas-film bear-
ings are considered in [2]. A model of deformation of foil with 
a protrusion has been created using the theory of elasticity. 
Distribution of gas film pressure and bearing gas film thick-
ness of the bearing and influence of parameters of the shock 
film structure on static and dynamic characteristics of bear-
ing were studied based on the developed procedure. A com-
putational model of static characteristics of self-aligning 
thrust bearings with an inclined pad is presented in [3]. The 
self-aligning thrust bearing with a tilted pad improves ope
rational reliability by adjusting its pad by tilting a thrust ring. 
The kinematic model of the aligning mechanism is described. 
It is integrated into the existing tool of elastohydrodynamic 
analysis which makes it possible to forecast the load-bearing 
capacity of the bearing. Transient interactions between the 
degree of wear during sliding and liquid-solid-temperature 
characteristics of a sliding bearing were revealed in [4]. The 
journal bearing characteristics including wear rate, depth of 
wear, fluid pressure, contact pressure, and maximum tem-
perature were calculated numerically. The numerical results 
show that the worn area is mainly located at both ends of the 
bearing and the time-varying profile of the worn surface can 
be useful in the improvement of the hydrodynamic effect. 
Adjustable plain bearings are considered in [5]. The most 
common control methods include delivery pressure control; 
discharge slope angle adjustment; plain bearing clearance 
control and lubricant viscosity control. Main problems to 
be solved for industrial application of adjustable plain bear-
ings are considered. Characteristics and dynamic stability 
of a three-blade slider bearing with microprotrusions are 
considered in [6]. Some useful recommendations for future 
scientific studies in this area are also given in this paper.  
Paper [7] is devoted to experimental studies of sliding sup-
port systems. Two laboratory test procedures are presented 
and their ability to visualize certain bearing performance pa-
rameters is emphasized. Paper [8] briefly describes a version 
of the original software for analysis of hydrodynamics of cy-
lindrical plain bearings. A two-dimensional problem of lubri-
cant fluid flow in the bearing clearance was solved by the finite 
element method taking into account various types of devia-
tion of the contact surface from cylindrical shape. A bearing 
design in which several zones of hydrodynamic friction are 
formed was considered. The influence of the base oil struc-
ture on elastic hydrodynamic friction is considered in [9].  
It was found that liquids with linear molecules and flexible  
bonds give significantly less friction than the liquids based 
on molecules with spatial side groups. When using fluids 
based on pure ester, it has been shown that rather small 
differences in molecular structure can have a significant ef-

fect on bearing friction. The study [10] describes a recently 
developed system of base insulation that can significantly 
reduce lateral forces transmitted to buildings, bridges, and 
other structures. The system uses hydrostatic plain bearings 
to minimize friction between bearings and base plates. Note-
worthy is study [11] in which hybrid bearings are proposed 
to improve in-service reliability. The bearings are a combi-
nation of rolling and film bearings. The results of theoretical 
and numerical studies are presented. Conditions of occur-
rence of the minimum friction effect have been substantiated.  
Article [12] presents an experimental study of a journal 
bearing with tilted pads. Optimized vortex grooves are made 
in the bearing sliding surfaces. The study results have shown 
that reduction of bearing surface temperature achieved 
by optimized vortex grooves resulted in a significant in-
crease in bearing capacity. Thermal deformations of slider 
bearing pads of a powerful turbine are considered in [13].  
Comparison of measurement data and calculations is given 
which showed good conformance for thermal deforma-
tions  in pads.

A hydrostatic/hydrodynamic problem of a multi-seg-
mental bearing with point chambers is considered in [14]. 
Theoretical dependences and some results of the calculation 
of hydrostatic/hydrodynamic forces acting on the segments 
are given. However, elastic deformations of the segment body 
and its spherical support caused by the action of these forces 
are not considered.

In the studies considered, there is no information on 
determining the deformation of segments and their spherical 
supports. A solution to this problem is associated with sig-
nificant mathematical difficulties since it becomes necessary 
to jointly solve the hydrodynamic problem and determine 
the deformation of segments by methods of the theory of 
elasticity. The numerical solution of the problem under 
consideration is also rather complicated. Due to insufficient 
knowledge, as well as the prospects for the use of segmental 
hydrostatic bearings, it is necessary to conduct a study de-
voted to the analysis of deformations in the bearing segments 
and their supports.

3. The aim and objectives of the study

The study objective implied identifying the influence of 
changes in operating parameters of bearings on deformations 
in segments and their spherical supports. This will make it 
possible to more accurately determine the characteristics of 
bearings or establish the required thickness of their segments.

To achieve the objective, the following tasks were set:
– establish the magnitude of influence of pressure of the 

working fluid feed and various materials of the segment on 
the magnitude of its maximum deformation in circumferen-
tial and axial directions;

– determine the magnitude of influence of pressure of 
the working fluid feed on the minimum required thickness 
of the segment and establish the need of taking into account 
deformation of the segment supports when determining the 
bearing characteristics.

4. The study materials and methods

When constructing theoretical dependences for calcu-
lating the deformation of the bearing segments and their  
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spherical supports, methods of the theory of elasticity and 
strength of materials were used. To calculate deformation in 
the axial direction, the method of thin-walled shells was used. 
The segment in this direction was considered as a strip beam 
for which the differential equation of bending is valid. To 
determine deformations in the circumferential direction, an 
equation of determining deformations in rods with a curved 
axis under the action of forces in the plane of curvature was 
taken as the initial equation. In expressions for calculating 
deformations in segments, the distributed load was repre-
sented as a grid function of pressure distribution. The distri
buted load was assumed to be constant within the grid step.

A general solution of the differential equation describing de-
formations in segments in circumferential direction was found 
as a sum of the general solution of the homogeneous equation 
and a partial solution of the inhomogeneous linear equation.

To determine deformation in a spherical support of 
a  segment, a formula of change of volume of a solid steel ball 
subjected to uniform pressure was used.

The developed method of calculating deformations in 
segments and their spherical supports was numerically imple-
mented in the Excel program. Figures and graphs of the results 
obtained were constructed in the Compass graphic editor.

5. The results obtained in the study of deformations  
in segments and their spherical supports

5. 1. Determining the segment deformation in circum-
ferential and axial directions under the action of a distri
buted load on it

A schematic diagram of the segmental-type hydrostatic 
bearing under consideration is shown in Fig. 1.

The bearing consists of several segments 1 pivoting 
around spherical supports 2. The spherical support is dis-
placed relative to the segment in the direction of rotation of 
the shaft 3. Working fluid is fed through holes in the spherical 
supports 2 and enters the supporting chambers in the work-
ing surface of the segments after passing through the system 
of holes in segments 1. The working fluid is fed under high 
pressure determined by calculation. Hydrostatic pressures 

arise between the working surfaces of the segments and the 
shaft surface which provide the required load-bearing capa
city and can cause deformation in the segments.

The posed problem of segment deformation was solved by 
methods of the theory of elasticity. The segment is considered 
loaded with an external load distributed over its surface. The 
segment bending will occur in two mutually perpendicular 
planes relative to the spherical support 2 (Fig. 1). Deforma-
tion of the spherical support 2 itself is considered as well.

When calculating deformations in the axial direction, the 
shell method was used. The segment was considered in this 
direction as a strip beam. Then the differential equation of 
bending of the strip beam is valid [15]:

E I d W
dz

Mz
z

⋅
−

⋅ =
1 2

2

2ν
, 	 (1)

where E is the modulus of elasticity of the segment material;  
ν is the Poisson’s ratio; Mz is bending moment; Wz is the 
deformation of the segment in the axial direction; I is the 
moment of inertia of the segment section.

Using the concept of cylindrical stiffness D, the expres-
sion (1) was transformed:

D
d W
dz

Mz
z⋅ =

2

2 , 	 (2)

where D
E I

=
⋅

−1 2ν
 is cylindrical stiffness.

Differentiating twice both sides of equation (2) with 

respect to z and denoting it 
d M

dz
g zz

2

2 = ( ),  it takes the form:

D
d W
dz

g zz⋅ = ( )
4

4 . 	 (3)

Proceeding from the assumption of rigid embedding of 
the beam at the support point, the expression for determining 
the segment deformations will take the form:

W
D

g z zz = ( )⋅∫∫∫∫
1

d .	 (4)

Fig. 1. Diagram of a segmental-type hydrostatic bearing: 	
a – general view of the bearing; b – working surface of a segment with spherical bearing chambers
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To determine the distributed load gij, the Reynolds equa-
tion was used:

∂
∂
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∂
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3 3 6μ w ,

where h is the bearing clearance; g is distributed load;  
x, z are coordinate axes (circumferential and axial, respec-
tively); µ is the dynamic viscosity of the working fluid; R is 
the shaft radius.

Using a five-point template (Fig. 1, b), the difference no-
tation of the Reynolds equation takes the form:
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To solve the difference scheme of the Reynolds equation 
written in an implicit form, the well-known transverse-longi-
tudinal sweep method was applied. In this case, along with the 
basic values gn and gn+1 of the sought grid function, introduce 
an intermediate value gn+1/2 in the sublayer. Perform a tran-
sition from the n-th layer to the n+1-th layer in two stages:

1. Formulas of transition from the n-th layer to the 
n+1/2-nd layer (transverse run):

g gi j n i j i j n i j, / , , / , ,( ) = ⋅( ) +
+ + +1 2 1 1 2

1 1α β

where α1i, j, and β1i, j are the run coefficients;
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−

A1i, B1i, C1i, and F1i are constant coefficients; A1i = r2i; B1i = r3i; 
C1i = r4i; F1i = Fi–r1i(gi, j+1)n–r1i(gi, j–1)n.

2. Formulas for the transition from the n+1/2-th layer to 
the n-th layer (longitudinal run):

g gi j n i j i j n i j, , , , ,( ) = ⋅( ) +
+ + +1 1 1

2 2α β

where α2i, j and β2i, j are the run coefficients;
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A2i = r1i; B2i = r3i; C2i = r1i; F2i = Fi–r2i(gi+1, j)n+1/2–r4i(gi–1, j)n+1/2.
Using the method of trapezoids, the load distributed over 

the surface was replaced by a linear load along the Z axis:

g x gj i j
i

N

= ⋅
=
∑∆ , ,

1

1

where N1 is the number of grid nodes from the segment sup-
port to the edge (X-axis); j = 2, ..., N2–1; N2 is the number of 
grid points from the segment support to the edge (Z-axis).

After replacing the linear load gj with an averaged con-
stant linear load, the equation for its determination takes 
the form:

g
N

gjcp j
j

N

= ⋅
=

−

∑1

2 2

12

.

Afterward, the transformations, the expression for nu-
merical determination of deformations in the axial direction 
takes the form:

W
g z

D

g z j

Dzj
jcp j jcp=

⋅
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=
⋅ ⋅ −( ) 

⋅

4 4

24

1

24

∆
, 	 (5)

where j = 1, ..., N2.
To determine the segment deformations in the circumfe

rential direction, the basic equation was adopted as the initial 
equation to determine deformations of rods with a curved 
axis under the action of forces in the curvature plane [15]:

d W
d

W
M R

E I
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x
x k

2

2

2

θ
+ =

⋅
⋅

,	 (6)

Wx is the deformation of the segment in a circumferential 
direction; Rk is the radius of the segment curvature; θ is the 
current angle measured from the segment edge and varying 
from 0 to j; j is the angle defining the part of the segment 
between its edge and the support; Mx is the bending moment; 
E is the modulus of elasticity of the segment material; I is the 
moment of inertia of the segment section perpendicular to 
the circumferential coordinate.

After substitution of the expression for the moment:

M R g xx k= ⋅ ⋅ ( )⋅2

2
θ

θ
sin ,

equation (6) takes the form:

d W
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k

1

4
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⋅
; g(x) is the load distributed over the 

working surface of the segment.
The expression for the averaged constant linear load 

along the X axis takes the form:
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1 2
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2
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.

Equation (7) is inhomogeneous. Its general solution gives 
a sum of the general solution of the corresponding homoge-
neous equation and the partial solution of the inhomoge-
neous linear equation:

W W Wx x x= +1 2.	 (8)

General solution of Wx1 of the homogeneous equation 
′′+ =W Wx x 0 takes the form [16]:

W C C Cx1 10 10 11= ⋅ + ⋅θ θsin . 	 (9)

To find a partial solution of Wx2 of the inhomogeneous 
equation (7), the characteristic equation K2

2 1 0+ = ,  was com-
piled whence K i2 1= − = .

The solution was found as in [16]:

W x e Q x b x Q x b xx
p a x

2 1 2= ⋅ ⋅ ( )⋅ ⋅( ) + ( )⋅ ⋅( ) 
⋅ cos sin , 	 (10)
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where Q1(x) and Q2(x) are polynomials of degree «m» with 
inhomogeneous coefficients; p is the multiplicity of the root 
of the characteristic equation equal to a+b ⋅i.

In this case, a = 0; b = 1/2; p = 0 because 1/2i is not a root 
of the characteristic equation K2

2 1 0+ = .
In this case, a partial solution of the inhomogeneous 

equation will take the form:

W A B A Bx 2 1 1 2 22 2
= ⋅ +( )⋅ + ⋅ +( )⋅θ

θ
θ

θ
sin cos . 	 (11)

When differentiating expression (11) twice and sub-
stituting this expression in (7), the following equation was 
obtained:
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Comparing the coefficients in both sides of the equality, 
we will have:
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16
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Partial solution in this case will take the form:
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A general solution to the inhomogeneous equation (7) 
takes the form:
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Arbitrary constants C10 and C11 are found from the con-
dition of segment anchoring:
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Using expressions (13), equations were written for arbi-
trary constants C10 and C11:
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Expressions (13) and (15) describe deformations of the 
segment in the circumferential direction. At θ = 0, the value 
of the segment deformation will be maximum and equal to:

W C Kx max .= − ⋅10 1

16
9

	 (16)

Elastic deformations of the segments were calculated using 
expressions (5), (13), and (15). Deformations were calculated 
for the most loaded lower segment in which pressure in the 
chambers at large eccentricities was close to the feeding pres-
sure of the working fluid. The pressure diagram over the work-
ing surface of the segment was determined from the joint solu-
tion of the Reynolds equations and the flow rate balance. Elastic 
deformations of the segment were calculated for a segmental 
hydrostatic bearing having the following basic dimensions:

1. Bearing diameter D = 60 mm.
2. Bearing length L = 60 mm.
3. Radial clearance between the shaft and the bearing 

δ0 = 0.08 mm.
4. Diameter of the nozzles installed at the inlet to the 

chambers d0 = 1 mm.
5. The number of segments k = 4.
6. Shaft weight G = 40 kg.
7. Circumferential length of the segment L1 = 45 mm.
8. Segment thickness h0 = 16 mm.
The results obtained in calculating elastic deformations of 

the segment in the circumferential direction at various pres-
sures P of the working fluid feed are shown in Fig. 2. Values 
of elastic deformations of the segment in the axial direction 
at various values of the feeding pressure are shown in Fig. 3.

Fig. 4 shows the character of change in the segment de-
formation in a circumferential direction for various segment 
materials. The character of the deformation change is linear.

 

Fig. 2. Deformation of the segment in the 	
circumferential direction

 

Fig. 3. Deformations of the segment in the axial direction

 

Fig. 4. Deformations of the segment manufactured 	
of different materials: 1 – bronze; 2 – steel
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With a working fluid feed pressure of 6 MPa, the transi-
tion of the extreme point measured 5.3 % of the radial clea
rance for a steel segment and 10.5 % i. e. about 2 times more 
for a bronze segment at the same pressures.

Quantitative assessment of elastic deformation of the 
segment and influence of the working fluid feed pressure on 
it as applied to hydrostatic bearings is a novelty.

5. 2. Determining the segment thickness and the amount 
of deformation of its spherical support

To determine the segment thickness, a differential equa-
tion of a curved beam [15] was used:

d W
d

M R
E I

x x k
2
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After double integration, equation (17) takes the form:

W K C Cx = − ⋅ ⋅ ⋅ ⋅ + ⋅





+ ⋅ +2 2
2

4
21 12 13θ

θ θ
θsin cos . 	 (18)

Arbitrary constants were written proceeding from the 
conditions of segment fixation (14):
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An expression was written using equations (18) and (19) 
to determine the segment thickness h0:
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To determine the deformation of spherical supports of the 
segments, a formula of change in volume of a solid steel ball 
subjected to uniform pressure was used [17]:

∆1

3 1 2
= −

⋅ ⋅ − ⋅( )P

E

ν
, 	 (21)

where P is specific pressure on the sphere; Δ1 is relative vo
lumetric compression; ν is Poisson’s ratio; E is the modulus of 
elasticity of the spherical support material.

If we denote the diameter of the spherical support before 
deformation by d and the diameter after deformation by d1, 
then a decrease in the spherical support volume can be calcu-

lated from the dependence 
π⋅

⋅
d 3

16
∆ .  Volume after deforma-

tion can be found from the dependence:

π π π⋅
−

⋅
⋅ =

⋅d d d3 3

1
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3

6 6 6
∆ , 	 (22)

whence d d1 1
3 1= ⋅ − ∆ .

The amount of deformation of the spherical support of 
the segment is determined from the dependence:

∆ ∆= − = ⋅ − −( )d d d1 1
31 1 . 	 (23)

The thickness of the segment and deformation of its sphe
rical support were determined using expressions (20) and (23).

Having determined the thickness of the segment with the 
minimum allowable value of its deformation, it is possible to 
neglect the deformability of the segments when determining 
the main characteristics of the segmental hydrostatic bearing.

In order that the magnitude of displacement of extreme 
points of the segment not to exceed 0.5 % of the radial clea
rance of 80 μm at different values of the feeding pressure, 
different thicknesses of the segments h0 is required.

Using expression (20), it was found (Fig. 5) that with an 
increase in the feed pressure from 1 to 10 MPa, in order to en-
sure a given amount of displacement, it is necessary to increase 
the thickness of the steel segment from 16 to 36.5 mm, i.e. more 
than 2 times. When the feeding pressure changes from 1 MPa 
to 10 MPa, the increase in thickness of the bronze segment is 
more than 3 times in comparison with the steel segment.

 

Fig. 5. Influence of the working fluid feed pressure 	
on the segment thickness: 1 – a segment of bronze; 	

2 – a segment of steel

Using expression (23), it was found (Fig. 6) that the 
value of deformability of the spherical support of the seg-
ment depends significantly on the feeding pressure and the 
material used.

 

Fig. 6. Influence of the feed pressure on deformation 	
of the spherical support: 1 – a segment of bronze; 	

2 – a segment of steel

The dependence of deformation of the spherical support 
on the feeding pressure is nonlinear.

6. Discussion of the results obtained in the study of the 
deformation of segments and their spherical supports

The results obtained in calculating the deformation of 
segments and their spherical supports are shown in Fig. 2–6.

It can be seen from Fig. 2 that the greatest displacements 
caused by segment deformation are made by the extreme 
point of the segment. This suggests that the developed mathe
matical model qualitatively correctly describes the segment 
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deformation. For a feeding pressure P = 1 MPa, displacement 
of the extreme segment point is approximately 0.9 % of radial 
clearance of 80 μm. With an increase in the feeding pressure 
to P = 5 MPa, displacement of the extreme point as a result of 
segment deformation is approximately 4.5 % of radial clea
rance and, therefore, can have a significant effect on the main 
characteristics of the segmental hydrostatic bearing.

It can be seen from Fig. 3 that the greatest displacements 
caused by deformation are found for the extreme point of 
the segment. The character of deformation change along the 
segment axis is substantially nonlinear and nonlinearity in-
creases with an increase in the feeding pressure of the work-
ing fluid. Quantitative assessment of the deformation shows 
that with an increase in the feeding pressure from 1 MPa 
to 5 MPa, displacement of the segment’s extreme point in-
creased by about 5 times.

Linear character of change in segment deformation in 
circumferential direction was revealed for various segment 
materials (Fig. 4).

It was found that the value of the working fluid feed pres-
sure significantly affects the thickness of the segment (Fig. 5). 
With an increase in the feeding pressure from 1 MPa to 
10 MPa, the thickness of the steel segment increases more 
than 2 times and the thickness of the bronze segment increas-
es more than 3 times.

It can be seen from Fig. 6 that deformation of the sphe
rical support can have a significant effect on the bearing 
clearance, and, consequently, on its main characteristics. For 
example, deformation of the steel spherical support is appro
ximately 2.1 % of the radial clearance at feeding pressure of 
10 MPa, and deformation of the bronze spherical support is 
4.2 % of the radial clearance at the same pressure.

As a result of the analysis of deformation of the segment 
and its spherical support, it can be noted that total clearance 
between the shaft and the bearing increases significantly 
because of segment deformation at certain pressures of the 
working fluid feed. It becomes necessary to take these defor-
mations into account when calculating the basic characte
ristics of the bearing. The materials adopted for the segment 
and its spherical support also have a significant effect on the 
total bearing clearance.

Determining the segment thickness with the minimum 
allowable value of its deformation makes it possible to design 
the segmental hydrostatic bearings more rationally.

The proposed solutions and the results obtained make it 
possible to solve the problem of deformation of segments and 

their spherical supports by a computational method that was 
absent in existing studies. Determination of deformation of the 
segments and their spherical bearings will also enable a more 
accurate characterization of the hydrostatic segmental bearing.

The advantage of this study consists in an integrated 
approach associated with solving a complex hydrodynamic 
problem and taking into account the deformation of seg-
ments and their spherical supports.

The limitations inherent in this study are primarily 
related to the disregard for temperature deformation of the 
segments. Not taking into account temperature deformations 
in this study was substantiated by the fact that operation of 
hydrostatic bearings is associated with high flow rates of the 
working fluid and a very small increase in temperature in 
the bearing. Experimental studies have also shown that the 
temperature of the working fluid practically does not change 
during the bearing operation. However, it may be necessary 
to take into account thermal deformations for powerful tur-
bines with a large bearing surface.

The disadvantage of this study consists in the lack of ex-
perimental confirmation of the results obtained. Therefore, it 
is necessary to conduct further experimental studies to assess 
the elastic deformation of segments and their spherical sup-
ports and confirm the theoretical studies obtained.

7. Conclusions

1. It was revealed that the magnitude of influence of 
pressure of the working fluid feed on maximum deformation 
of the segment with an increase in pressure to 5 MPa is ap-
proximately 4.5 % of the radial clearance and can affect the 
bearing characteristics. A substantially nonlinear character 
of deformation along the segment axis was revealed.

2. It was found that the value of the working fluid feed 
pressure substantially affects the segment thickness. With 
the growth of feed pressure from 1 MPa to 10 MPa, required 
thickness increases from 16 mm to 36.5 mm, i.e. more than 
2 times for the steel segment and more than 3 times for the 
bronze segment. It was also found that the pressure of the 
working fluid can have a substantial effect on the deforma-
tion of the spherical support of the segment and on the bear-
ing clearance. So, at a feeding pressure of 10 MPa and higher, 
deformation is 2.1 % of the radial clearance for steel spherical 
support and 4.2 % for bronze spherical support and can affect 
the bearing characteristics.
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