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Many advanced recommender models are implemented 
using matrix factorization algorithms. Experiments show 
that the quality of their performance depends significant­
ly on the selected hyperparameters. Analysis of the effec­
tiveness of using various methods for solving this problem 
of optimizing hyperparameters was made. It has shown 
that the use of classical Bayesian optimization which treats 
the model as a «black box» remains the standard solution. 
However, the models based on matrix factorization have  
a number of characteristic features. Their use makes it pos­
sible to introduce changes in the optimization process lead­
ing to a decrease in the time required to find the sought 
points without losing quality.

Modification of the Gaussian process core which is used 
as a surrogate model for the loss function when performing the 
Bayesian optimization was proposed. The described modi­
fication at first iterations increases the variance of the values 
predicted by the Gaussian process over a given region of the 
hyperparameter space. In some cases, this makes it possible to 
obtain more information about the real form of the investiga­
ted loss function in less time.

Experiments were carried out using well-known data 
sets for recommender systems. Total optimization time 
when applying the modification was reduced by 16 % (or 
263 seconds) at best and remained the same at worst (less 
than 1-second difference). In this case, the expected error of 
the recommender model did not change (the absolute diffe­
rence in values is two orders of magnitude lower than the value 
of error reduction in the optimization process). Thus, the use 
of the proposed modification contributes to finding a bet­
ter set of hyperparameters in less time without loss of quality
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1. Introduction

Recommender systems (RS) are software systems that 
solve the problem of predicting user interest in objects from  
a certain subject area [1]. Depending on the context, objects 
and users can mean different entities. For example, products 
and customers in e-commerce, content and its consumers in 
media services, actions and situations in decision-making sup-
port systems, prescriptions and patients in medical systems. 
This makes it possible to use common mechanisms for effective 
solutions to problems of completely different directionalities.

One of the most widespread approaches to constructing 
an RS is based on the use of collaborative filtering methods. 
With this approach, interest predictions are calculated on 
the assumption that similar users rate the same items in the 
same way. Depending on the chosen method of determining 
the proximity of users, various implementations of recom-
mender models are created. When the task of forming a list 
of recommendations is reduced to the task of predicting the 
numerical assessment (rating) of objects, advanced results 
demonstrate latent-factor models. Such models associate 
each user and object with a vector of latent factors, i.e. im-
plicit features that characterize entities and patterns of their 

interaction. The learning process consists in calculating the 
sought vectors. Since the input data usually are a matrix of 
existing ratings explicitly or implicitly given by users to the 
objects with which they interacted, the latent factors can be 
calculated using matrix factorization algorithms. Despite the 
simplicity of the described idea and the steady development 
of new methods of generating recommendations, various 
versions of collaborative filtering models based on matrix fac-
torization algorithms remain in demand. They demonstrate 
advanced results in solving the rating prediction problem 
outperforming more sophisticated machine learning methods 
in many cases [2, 3].

An important problem that arises when training models 
with matrix factorization algorithms is a choice of hyperpa-
rameters of such algorithms. The values used have a direct 
impact on the quality of rating predictions by the final model. 
At the same time, their optimal values can change over time 
as the amount of data for training grows and initial patterns 
of interaction between users and objects are transformed 
into new ones. Consequently, the resource-demanding op-
timization process is repeatedly performed at the stages 
of developing a recommender model and teaching it new 
data during operation. Reducing overall optimization time  
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without sacrificing quality will make it possible to fasten 
experimentation and actualization of production models. 
This substantiates the relevance of developing new effective 
methods for optimizing the hyperparameters of the matrix 
factorization algorithms.

2. Literature review and problem statement

When analyzing and developing approaches to RS de-
sign, it is important to take into account the fact that their 
ultimate task consists in listing the recommendation users. 
Systems based on matrix factorization solve this problem by 
sorting objects according to the calculated ratings. It is ar-
gued in [4] that this approach leads to the following problem. 
Even minor fluctuations in the rating prediction error entail 
significant changes in the quality of the samples formed by 
the recommender system.

Experimental testing of latent-factor models confirms 
the existence of the indicated problem. For example, the 
study [5] investigates the operation of the SVD model on the 
well-known Movielens 100k data set [6]. This set contains 
the ratings given by users to the movies they have watched. 
According to the presented results, the models trained using 
different regularization constants generate different sets of 
recommendations. In this case, the prediction error changes 
accordingly. However, the influence of the selected values of 
hyperparameters was considered in [5] only for isolated cases.

A much more detailed study of this dependence for the 
SVD model on the Movielens 100k dataset was given in [7]. 
The presented results show that the studied error can vary 
significantly (often by more than 10 %) depending on the 
chosen learning rate, the number of factors and constants of 
regularization. A large number of tests have been performed 
and detailed graphs were presented that reflect the depen-
dence under consideration. Nevertheless, in order to develop 
methods that improve the process of optimizing hyperpara
meters, it is important to consider the features of functioning 
of other models as well and use datasets of different sizes.

Broader studies of these features of the models based on 
matrix factorization were carried out in [8] by the authors 
of the current study. The models trained by the SVD and 
SVD++ algorithms were tested on larger datasets using dif-
ferent values of the number of factors and regularization con-
stants. Despite the use of a broader set of algorithms and data 
sets, the dependence of the prediction error on the selected hy-
perparameters remained within similar limits and was subject 
to the same characteristic features. Preservation of this depen-
dence is observed with further model complications as well.

Similar results are presented in [9] where a significantly 
improved version of SVD was described. In addition to the 
classical interactions of latent factors, additional user percep-
tions, as well as joint attractiveness and unattractiveness of 
objects, were introduced in the model. Prediction accuracy 
was assessed by ranking metrics. The use of a complicated al-
gorithm and other metrics also did not change the considered 
negative dependences. Scatter of values of the loss function 
of the model at different regularization constants remained 
within the same limits (more than 10 % of the minimum) and 
the shape of graphs of this dependence had the same charac-
teristic features as in the studies discussed above [7, 8].

Thus, the results presented in [5, 7–9] confirm the impor-
tance of optimization of hyperparameters in the RS design 
and substantiate the relevance of the studies carried out 

by the authors. The quality of the rating predictions calcu-
lated by the models based on matrix factorization depends 
significantly on the chosen regularization constants and the 
number of factors. This, in turn, has a significant impact on 
the quality of the generated recommendations.

In the studies considered above [4, 5, 7–9], general me
thods used in other subject areas are used to optimize hyper-
parameters. Much attention is paid to Bayesian optimization 
which is actually a standard solution for a wide range of similar 
problems. For the latent-factor models, the effectiveness of this 
approach is limited for the following reasons. Bayesian opti-
mization takes into account the visited points of the hyper-
parameter space creating a probabilistic model of the sought 
loss function on their basis [10]. The investigated function is 
considered as a «black box»: it is assumed that there can be 
any number of its extrema, and the cost of testing any different 
points is the same. This prerequisite force one to obtain all the 
necessary information empirically. At the same time, some of 
the necessary information is a priori for the models based on 
matrix factorization. This allows one to perform optimization 
more efficiently finding a set of hyperparameters of the same 
quality in a shorter time. Reducing wasted time without sacri-
ficing quality is essential for both industrial and research pur-
poses. This makes it possible to carry out the necessary nume
rical experiments and update the models faster, and, possibly, 
find more advantageous sets of hyperparameters in a limited 
time. The use of general-purpose methods (such as classical 
Bayesian optimization) does not enable the use of a priori 
information, and, accordingly, obtain the necessary speed of 
the RS development cycle and teaching the RS to new data.

The features of the models based on matrix factorization 
which make it possible to improve the optimization process 
were mentioned in [7–9] and are as follows. First, optimal va
lues of the regularization constants and the number of factors 
correlate with each other rather weakly. In order to obtain 
more information about the influence of other parameters on 
the model error, it may be advantageous to fix values of a part 
of the studied parameters in a certain part of the space. Since 
a weak dependence does exist, the fixation does not have to 
be strict. It is preferable to temporarily narrow the bounda
ries of the studied values. Secondly, the speed of training and 
testing the model directly depends on the number of factors 
used. For common matrix factorization algorithms, the upper 
estimate of complexity has a linear dependence on the number 
of factors since the most frequently performed operation is 
the elementwise multiplication of vectors. Thus, the desired 
advantage can be obtained by simultaneously optimizing the 
number of factors and the regularization constants used (and, 
possibly, a small number of other hyperparameters). These 
features can be used either by modifying the known general-
purpose optimization methods or developing special methods 
for the latent-factor models. The following examples are 
existing examples of the application of these two approaches.

Most modifications of general-purpose methods are asso-
ciated with solving the problem of optimizing the number of 
factors. This problem is reduced to the problem of estimating 
the cost of training and testing the model which is quite 
common among a wide range of machine learning algorithms. 
Its theoretical solution consisting in changing the function 
of point extraction is proposed in [11]. The described modi
fication includes modeling the cost of calculating the loss 
function. At each iteration of the search, not only the value 
of the objective function is memorized but also the amount of 
resources spent on its calculation. Due to this, when choosing  
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the next point, one can take into account not only the expec
ted improvement but also the estimated cost making a choice 
with accounting for the available resources. For example, the 
implementation of such an idea in practice is presented in [12]. 
It describes the entropy-based point extraction function and 
the method used in conjunction with it to select the reference 
point. Due to their use, the optimization process takes into 
account the cost of testing and gives priority to more re-
source-intensive calculations at the beginning of optimization.  
The application of the presented method makes it possible 
to find a more advantageous set of hyperparameters in a li
mited time for a model taken as a «black box» but does not 
enable solving the problems of the current study. The total 
optimization time required to generate a model with the 
same prediction accuracy as classical Bayesian optimization 
is not necessarily reduced. Information about the testing cost 
is formed in this case as a result of a series of experiments. 
However, it is known a priori for latent-factorial models. The 
ability to analyze a much smaller number of factors to find 
a neighborhood of the optimal values of the regularization 
constants is also not used. In addition, the idea of prioritizing 
more resource-intensive computations contradicts theoretical 
conclusions about features of the considered loss functions.

The second approach using the features of models based 
on matrix factorization is based on the development of special 
optimization methods. A solution to the problem of finding 
values of the regularization constants is the main subject of 
such studies. The study [13] is an illustrative example. It 
proposes the «λOpt» method which consists in modifying the 
regularization coefficients during the model training. The ap-
plication of this method makes it possible to obtain values of 
the constants that are acceptable in terms of efficiency at the 
end of the training stage. Duration of this stage increases but 
the total amount of the computational resources spent is re-
duced in comparison with the implementation of full optimi-
zation of hyperparameters by classical methods. Nevertheless, 
the sought number of factors remains undetermined which 
makes it necessary to perform its optimization separately. 
Since there is a weak correlation between the considered 
values of hyperparameters, the final efficiency of the regula
rization constants chosen at the first stage is not guaranteed. 

Thus, the problem of accelerating the search for values 
of the regularization constants together with the number of 
factors cannot be solved even by using special well-known 
methods. The results of this analysis allow us to assert that it 
is relevant to conduct studies on the development of a new 
optimization method for the models based on matrix facto
rization. The main purpose of its application in scientific and 
applied fields consists in reducing the total time of optimiz-
ing the hyperparameters without losing the quality of the 
generated recommendations.

3. The aim and objectives of the study

The presented study objective is to develop a special 
method for optimizing the hyperparameters of matrix factor-
ization algorithms used to train recommender models. The 
sought method should provide the ability to perform less 
resource-intensive computations at the beginning of opti-
mization. Due to this, the total time of searching for optimal 
values of the regularization constants and the number of fac-
tors can be reduced without loss of quality compared to the 
classical Bayesian optimization.

To achieve the objective, it was necessary to solve the 
following tasks:

– identify the existing drawbacks of using classical 
Bayesian optimization and formulate requirements for the 
special optimization method being developed;

– theoretically describe the sought-for special method 
that meets the formed requirements by modifying one or 
more components of classical Bayesian optimization;

– programmatically implement the described method 
and repeatedly test it using latent-factor models trained on 
known datasets for the recommender systems having ob-
tained statistically significant results.

4. Materials and methods used in the study

The problem of the recommender system was considered 
as the problem of predicting ratings. To solve it, the models 
trained by matrix factorization algorithms of the SVD family 
were used.

The problem of optimizing hyperparameters was posed as 
the problem of finding optimal values of the number of fac-
tors and constants of regularization for the algorithms under 
consideration. The classical method of Bayesian optimization 
was used as a basic one. The special optimization method was 
developed on the basis of the basic one. It was proposed to 
analyze its limitations and modify it to provide the desired 
changes in the optimization process.

It was proposed to evaluate the effectiveness of the deve
loped method by conducting experiments on known datasets 
for recommender systems. The experiments should compare 
the total optimization time and quality of rating the predic-
tions generated by the final models. The results obtained 
using classical Bayesian optimization and the developed spe-
cial method were subject to comparison. To achieve the set 
objective, the time spent on optimization should be reduced 
without losing the quality of rating predictions.

Further in the current section, a formal description of the 
mathematical apparatus used is given and the experimenting 
procedure is described in detail.

4. 1. The problem of the recommender system and its 
solution using the matrix factorization algorithms

A formal statement of the problem for the recom-
mender system in the considered variant looks as follows.  
A set of users U and a set of objects I are given. As a result 
of interactions, some users have rated some objects. This 
has made it possible to form the set K = {rui Î  ,|u Î UÙi Î I},  
where rui is the rating assigned by the user u to the object i.  
The task of the RS consists in calculating the set of un-
known ratings { ui Î  |u Î UÙi Î IÙrui ÏK}. More generally, 
we can say that the recommender model calculates an  

 Î  U´I matrix containing predictions of ui ratings for all 
possible pairs of users and objects.

The idea of using matrix factorization algorithms to 
implement the collaborative filtering approach is as follows. 
The sought rating prediction matrix can be roughly repre-
sented as a product of two others: »PQ, P Î  U´f, Q Î  f´I.  
Then the matrix rows P are nothing but vectors of latent 
factors pu Î  f of users and columns Q are vectors of latent 
factors of objects qi Î  f, respectively. Individual rating  
prediction is calculated as follows:

r ui u i
T

 = p q . 	 (1)
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It is also important to remember that the rating is influ-
enced not only by interaction between users and objects but 
also by their individual characteristics. The latter ones are ca-
pable, for example, of making permanent adjustments to the as-
sessments given by one of the users. Biases are used to account 
for these effects. The bui bias of the rui rating can be given as:

b b bui K u i= + +µ , 	 (2)

where µK is the average rating in the entire dataset and bu 
and bi are the observed biases of ratings of an individual user  
and an object, respectively.

Rating prediction taking into account the latent factors 
and biases is used in the well-known SVD matrix factori
zation algorithm:

r b bui u i
T

K u i
 = + + +p q µ . 	 (3)

The model training consists in finding the values pu, qi,  
bu, bi for all users u Î U and objects i Î I. The regularized 
squared error is minimized for training:

r b b

b b

ui u i
T

K u i

i u u i
r Kui

− − − −

+ + + +

( ) +

( )





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





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∑
p q
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λ

2

2 2 2 2
, 	 (4)

where λ is a regularization constant. The loss function can be 
minimized using standard techniques such as SGD or ALS.

The SVD++ algorithm improves the accuracy of SVD 
predictions by the involvement of additional object fac-
tors which make it possible to better model the implicit 
preferences of an individual user. For each object i Î I, an-
other vector of latent factors yi Î  f is specified. The sets 
Iu = {i Î I|rui Î K} are also defined. They contain an enumera-
tion of objects for each user u to which he has given ratings. 
The prediction is defined as:

r I b bui u u j
j I

i
T

K u i

u

 = +






+ + +

−

Î
∑p y q| | .

1
2 µ 	 (5)

When training the SVD++ model, a search for the pu, qi, 
yi, bu, bi values is performed. The regularized squared error  
is calculated as:

r I b b
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, 	 (6)

and is minimized by SGD or ALS similar to the SVD (4) error.
Further modifications of the SVD family algorithms are 

constructed in a similar way. For example, the authors of [14] 
modify the error minimization process (6) including gradient 
perturbations to reduce the likelihood of disclosing the perso
nal data of users. The study [15] uses additional vectors of la-
tent factors of users in conjunction with a matrix of their mutual 
influence on each other. In the previously considered study [9], 
the improved SVD algorithm also assumes calculation of rat-
ings and errors using similar formulas. The results presented 
in the mentioned studies of models based on matrix factoriza-
tion [5, 7–9, 13–15] demonstrate the following features:

– the error in predicting the ratings of the trained model 
strongly depends on the hyperparameters f and λ used (as 

well as, possibly, others: learning rate constant, individual 
constants of regularization of different parameters, etc.);

– hyperparameters f and λ are weakly dependent on  
each other;

– the computational cost of training the model depends 
on the |U |, |I | and f values and the dependence on f is no  
less than linear [16].

4. 2. Optimizing the hyperparameters
To construct a model that predicts ratings with the smallest  

error, it becomes necessary to optimize the hyperparameters. 
Formally, the problem of optimizing the hyperparameters 
looks like this. Let the model have N hyperparameters. Let us 
denote the domain of definition of the n-th hyperparameter θn 
as θn ,  and the entire space of hyperparameter configurations  
as Q = ×…×θ θ1 N .  In the simplest case, the dataset K is divided 
into training and validation parts Ktrain and Kvalid, respectively. 
The model is trained with a set of hyperparameters θ Î Q on 
the Ktrain dataset. The value of the loss function shown by such 
a model on the Kvalid dataset is denoted as L(θ). The challenge 
consists in finding the optimal set of hyperparameters θbest:

θ θ
θ

best E L= ( ) 
Î

arg min .
Q

	 (7)

The present-day solution to the problem is to use Baye
sian optimization. It includes two main components: a sur-
rogate model for the loss function L and a point extraction 
function. The surrogate model based on experimental obser-
vations (θt, L(θt)) constructs a probabilistic approximation 
of the objective function. With its help, predictions of the 
mathematical expectation µ(θ) = E[L(θ)] and the variance 
σ2(θ) = σ2[L(θ)] of the loss function values become available 
at any point of the search space. The first few points for test-
ing are selected at random. Points at each of the following 
iterations are selected using the point extraction function the 
extrema of which correspond to the sets of hyperparameters 
the most attractive for testing.

In the presented study, UCB (Upper Confidence Bound) 
is chosen as the point extraction function:

UCB θ µ θ κs θ( ) ( ) + ( )= 2 , 	 (8)

where κ is a constant used for regulation of priority between 
research and operation.

The Gaussian process is often used as a surrogate model for 
the sought function. Also, examples of effective use of random 
forests in this capacity are known as well as TPE (Tree-Struc-
tured Parzen Estimator). Their main advantage over Gaussian 
processes is the smaller algorithmic complexity of calculation.  
However, for the hyperparameter optimization of the latent- 
factor model considered in this article, the complexity of 
prediction calculation is insignificant: the number of points is 
small (several tens) since the size of the hyperparameter con-
figuration space is also small. The use of the Gaussian process 
makes it possible to fairly accurately simulate the loss function 
taking into account a small number of known values. Analysis of 
practical implementations of the Bayesian optimization shows 
that such a choice of a surrogate model is becoming a fairly fre-
quent occurrence, and often, the only available solution.

The Gaussian process is determined by the a priori func-
tions of calculation of the mathematical expectation µprior(x) 
and the covariance function k(x,x ′). If µprior(x) = 0, then the 
flow of the stochastic process is completely determined by 
the covariance function. The Matern 5/2 function is one of  
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the most commonly applied covariance functions for the 
Gaussian processes used in the Bayesian optimization:

k x x
d

l
d
l

d
l

, exp ,′( ) = + +






−







α2

2

21
5 5

3
5

	 (9)

where d is the Euclidean distance between x and x′, α is the 
amplitude, l is the scale.

By definition of the Gaussian process, observations 
xt = L(θt) are considered to be subject to a multivariate 
normal distribution. Therefore, the conditional probabi
lity of obtaining new L* = L(θ*) values at not yet visited 
points θ* Î Q* with already obtained Lobs = {L(θ1, …)} at points 
Qobs = {θ1, …} is also normally distributed:

Pr | ~ , ,* * *L Lobs( ) ( ) ( )( ) µ θ s θ2 	 (10)

µ θ θ* *, , ,( ) =   [ ]+
K KQ Q Qobs obs obs obsL 	 (11)

s θ θ θ

θ θ

2 * * *

* *

,

, , , ,

( ) =   −

−   [ ]  
+

K

K K KQ Q Q Qobs obs obs obs 	 (12)

where K[X,X′] are covariance matrices in which each ele-
ment with index (i, j) is equal to k(xi,x′j); K+ is a pseudoin-
verse matrix for K. Formulas (11), (12) are applied to the 
calculation of the mathematical expectation and variance of 
the loss function at any not yet investigated point θ* of the 
space of configuration of Q hyperparameters. When perform-
ing the Bayesian optimization, formulas (11), (12) are used 
by the point extraction function.

4. 3. The procedure used for conducting the experiments
The purpose of the experiments consisted in evaluating 

the effectiveness of the developed method of optimizing the 
hyperparameters of recommender models based on matrix 
factorization.

The Movielens datasets are widely used when conducting 
experiments for testing the recommender systems [6]. Each 
set consists of users, movies and ratings (ranging from 1 to 
5). The problem consisted in predicting the ratings that users 
will give to movies that have not yet been watched. Table 1 
shows the characteristics of the datasets used.

Table 1
Datasets used in the study

Name
Number  
of users

Number  
of objects

Number  
of ratings

Movielens 100k 943 1,682 100,000

Movielens 1M 6,040 3,706 1,000,209

Movielens 10M 69,878 10,677 10,000,054

The experimental procedure included the following stages.  
Each dataset was randomly divided into training and val-
idation set in a ratio of 80 % to 20 %, respectively. SVD 
and SVD++ models were trained in the training part. The 
training rate was fixed at 0.05, the number of learning epochs 
was 20. Fixed regularization constant λb = 0.02 was used for 
parameters bi and bu ((4), (6)). Values of hyperparameters f 
and λ were in the process of optimization. The hyperparame-
ter f was discretely determined in the interval from 1 to 100, 
the hyperparameter λ was continuously determined in the 
interval from 0.01 to 0.1.

RMSE was used as an error metric:

L
r r

K

ui ui
r K

valid

ui validθ( ) =
−( )Î∑ 

2

| |
, 	 (13)

where ui is the prediction made by the model trained with  
a θ hyperparameter set on the Ktrain training set.

Classical Bayesian optimization was used as a reference 
optimization method. It is performed with UCB (8) as  
a point extraction function (κ = 2.576) and the Gaussian 
process as a surrogate model (with Matern 5/2 core (9),  
α = 1, l = 1). The effectiveness of the reference and developed 
methods should be compared in different experiments.

The number of Bayesian optimization iterations was li
mited by 10. The number of preselected random points was 1.  
All hyperparameters were normalized in the interval (0;1]. 
Since the optimization process is sufficiently dependent 
on random factors (initial sampling of points and sampling 
during the calculation of the surrogate model values), the 
experiment with the same parameters should be performed 
several times. The number of repetitions for Movielens 1M 
and 10M was 10. For Movielens 100k, it was increased to 100 
because of its small size.

In the course of each experiment, values of the model er-
ror were measured relative to the current iterations and the 
time elapsed since the optimization start.

The experiments were performed on an Intel Core i5-4690  
processor using 16 GB of DDR3 RAM at 1600 MHz.

5. The results obtained in the development of a method 
for optimizing hyperparameters of models based  

on matrix factorization

5. 1. Limitations of Bayesian optimization and require-
ments to the developed method

The value of the regularization constant λ (as well as the 
learning rate, etc.) has a rather weak dependence on the f va
lues used. The neighborhood of the sought λ value in the vi-
cinity of the optimal value of f can most likely be determined 
by testing the model with fewer factors. If this number of 
factors can be significantly less than the optimal one, then the 
time of model training can be greatly reduced. In the classical 
application of Bayesian optimization, no prior information 
about the shape of the predicted loss function is used. All 
data available before the optimization start are determined 
by testing the model at several randomly selected points of 
the search space. Consequently, when applying the classical 
method to simultaneous search for optimal values of the f  
and λ hyperparameters of the matrix factorization algorithm, 
the traversal order may turn out to be ineffective. As a result, 
the total search time becomes much longer than the mini-
mum required. This is the limitation of Bayesian optimiza-
tion which was proposed to be overcome in the current study.

The main requirements for the developed solution are as 
follows. Since the information used is a priori information, the 
priority of points in the area of smaller f must exist from the 
first iteration of the search (immediately following the test of 
random points). Since the sought set of hyperparameters still 
remains in the region of large f, the last iterations of the search 
should be performed without artificially prioritizing any values.

Obviously, the simplest solution that allows the use of  
a priori information in Bayesian optimization is a preliminary  
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study of different λ values with a fixed small f. However, 
this solution has significant drawbacks. The course of the 
Bayesian optimization process strongly depends on the result 
of testing at the initial, randomly selected points. In the stan-
dard version of the method, there is a possibility that such 
points will immediately fall into the vicinity of the global 
minimum of the loss function, however, when the values are 
fixed manually, it is lost. In addition, fixing the f value does 
not allow obtaining additional information about the shape 
of the function L with respect to the number of factors. After 
several initial iterations, only one value of L along the f axis 
will be available which degrades the accuracy of the con-
structed probabilistic model. Therefore, the method being 
developed does not have to do a strict fixation of f.

Moreover, the previously mentioned studies [11, 12] de-
voted to the solution of the related problem of the variable 
cost of model testing reveal an additional problem. If the 
initial, randomly selected points correspond to too large 
values of the loss function at a small number of factors, the 
optimization process is likely to be performed in a more 
resource-intensive region. At the same time, the study with 
lower f may remain effective in some cases. If the initial ran-
dom points fall into the target region of the search space, it 
may be advantageous to prioritize empirical information and 
not do research with lower f. Therefore, the developed me
thod should take into account the fact that the benefit from 
the study of the initial random points is variable.

5. 2. Modification of the Gaussian process core
To solve the listed problems and eliminate the described 

limitations, the following was proposed. At initial iterations 
of the optimization algorithm, it is possible to slightly increase 
the variance σ2(θ*) in the not studied region of the search 
space corresponding to a smaller number of factors. Using 
this modification allows one to achieve the following effects:

– the above problem is solved: all hyperparameters, ex-
cept for f, are initially investigated at lower f which makes 
it possible to determine the neighborhood of their desired 
values in less time;

– during the first iterations, information about the form 
of the loss function L relative to the axis of the number of 
factors is also extracted;

– during subsequent iterations, the probabilistic predic-
tion of L is not distorted in any way;

– if randomly selected starting points immediately fall 
into the target area of the search space, the optimization 
algorithm may not investigate ineffective values in a less 
resource-intensive area since the mathematical expectation 
L does not change;

– at the same time, when randomly selected initial points 
correspond to too large values of the loss function, there is 
a possibility that the study will be continued in a less re-
source-intensive area since the σ2(θ*) is increased;

– variance of already visited values remains zero, and 
variance in their vicinity changes in proportion to the ori
ginal which excludes the possibility of an unnecessarily  
thorough study of such neighborhoods.

To implement the described idea, it is enough to change 
the covariance function used as a core. The matrix K[θ,θ*] is 
used only when calculating the variance of values (12) but 
not when calculating their mathematical expectation (11).  
In the simplest case, such a matrix measures 1´1 and con-
tains covariance of the unvisited point with itself (i.e.,  
the variance). If the variance is calculated simultaneously for  

a large number of unvisited points, a diagonal matrix is used. 
Thus, if the modified covariance function kmod(θ,θ′) for the 
points θ Î Q*Ùθ = θ′ will return values increased in the area of 
smaller f, the goal will be achieved. It is also necessary to take 
into account that kmod(θ,θ′) must be non-negatively definite:
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=
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j i jk: , .
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where k(θ,θ’) is any valid covariance function; niter is 
the number of the current iteration (starting from zero); 
cdecay>0 is the constant defining the number of iterations 
during which the modification is active; cscale>0 is scale;  
θf is the value of hyperparameter f normalized from 0 to 1. 
The specified function ω(θ) is a mirrored sigmoid. It is scaled 
in height, decays linearly with increasing the iteration num-
ber, and is offset by 1 along the vertical axis (so as not to dis-
tort the covariance values for large f). If necessary, additional 
parameters can be added that horizontally stretch or com-
press the sigmoid or shift its center. Since k(θ,θ′) is nonnega-
tively definite, then ω(θ)>0 for any θ, and kmod(θ,θ′) changes 
only at θ = θ′, the condition (14) is obviously satisfied.

Fig. 1 shows an example of predictions of the Gaussian 
process with a modified Matern 5/2 covariance function, 
cdecay = 3, cscale = 1e-3. The filled area reflects the variance, the  
curved line is the mathematical expectation. Rendering 
was done for four niter values. With niter = 3, the graph 
corresponds to a Gaussian process with an unmodified co
variance function.
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Fig. 1. Values predicted by the Gaussian process with 	
a modified core for different niter : a – niter = 0; b – niter = 1; 

c – niter = 2; d – niter = 3

The graphs in Fig. 1 demonstrate that the unmodified 
process gives priority to exploring the right side of the space 
while the variance predicts a possible minimum on the left 
side in the version with modification with niter values equal  
to 0 and 1. In this case, priority may be given to it (depending 
on the used point extraction function). For other random ini-
tial points, the shape of the mathematical expectation curve 
may be different resulting in that the left-hand side may not 
be studied at all or studied more strongly.

5. 3. Experimental tests
To compare the reference optimization method with the 

developed one, it is sufficient to use different cores of the 
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Gaussian process. Three different covariance functions (c.f.) 
were used in experiments to this end:

– c.f. Matern 5/2 (9), α = 1, l = 1;
– modified (15), (16) c.f. Matern 5/2, α = 1, l = 1, cscale = 1e-3, 

cdecay = 3;
– modified (15), (16) c.f. Matern 5/2, α = 1, l = 1, cscale = 1e-3, 

 cdecay = 4.
The source code for the experiments is publicly avail-

able on Github [17]. To enable a large number of expe
riments, fast implementations of SVD and SVD++ based  
on [18] were used. Implementation of [19] was used for the 
Bayesian optimization.

Table 2 shows the results of estimating the time spent 
on the implementation of the entire optimization process. 
Table 3 shows the RMSE values of the models after opti
mization. Values in both tables are presented with a 95 % 
confidence interval. «Original c.f.» means covariance func-
tion Matern 5/2, «Modified c.f.» means modified functions 
with different values of the cdecay parameter.

For clarity, Fig. 2 shows visualizations of the error reduc-
tion processes (in time and iterations) in some interesting cases.

Without modification, the average time to run the opti-
mization was approximately 13–20 seconds for the Movie
lens 100k dataset, 105–115 seconds for the Movielens 1M. 
The interval is much higher on the Movielens 10M set: 
963.03 seconds for SVD and 1634.60 seconds for SVD++. 
On the same dataset, the total execution time of all iterations 
was consistently lower when the modification was applied. 
For the SVD model, the reduction was about 5 % (or 45 se
conds), and for the SVD++ model, the reduction was about 
16 % (or 263 seconds). There was also a decrease in the 
Movielens 1M set but it was unstable and comparatively 
lower (from 0.8 % to 5 % in different experiments). For Mo
vielens 100k, it was practically not observed, in some cases the 
total time turned out to be even higher (within one second).
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Fig. 2. Error reduction process (95 % confidence interval): 
a – Movielens 10M, SVD++, cdecay = 3; 	

b – Movielens 10M, SVD, cdecay = 4; 	
c – Movielens 1M, SVD, cdecay = 3; 	

d – Movielens 1M, SVD++, cdecay = 4; 	
e – Movielens 1M, SVD, cdecay = 3 (by iterations); 	

f – Movielens 1M, SVD++, cdecay = 4 (by iterations); 	
 
 
 original core; 

 
  modified core

It should be especially noted that the RMSE values of the 
models measured at the end of optimization with different 
cores, practically coincided with each other. The observed 
difference in most cases was two orders of magnitude less than 

the direct decrease in error in the optimiza-
tion time. The difference between the model 
errors on the Movielens 10M set was less 
than the others and practically nonexistent.

The effect of the cdecay parameter on the 
final execution time was ambiguous. For 
SVD models, it turned out to be slightly 
lower with cdecay = 4 in all cases and for 
SVD++ models, it was more often with  
cdecay = 3. However, the observed difference 
was negligible. The more important diffe
rence consists in a spread of the error values 
within the confidence interval. At cdecay = 3, 
the absolute width of the confidence interval 
along the RMSE axis decreased more strong-
ly in all cases with increasing time and at the 
final iteration, it was less than at cdecay = 4.

Mathematical expectation and variance 
of the error at the first iteration of the search 
(for niter = 0) are determined by randomly 
selected points of the hyperparameter confi
guration space. Based on the results of all ex-
periments, the following data were obtained 
regarding the further course of the opti
mization process. In all cases in which op-
timization with the use of modification was 
performed with the worst initial choice, its 
error reduction graph intersected the similar 
optimization graph without modifications  

Table 2

Time spent on hyperparameter optimization 	
(seconds, 95 % confidence interval)

Model Dataset Original c.f.
Modified c.f., 

cdecay = 3
Modified c.f., 

cdecay = 4

SVD Movielens 100k 13.03 ± 0.16 12.72 ± 0.10 12.58 ± 0.15

SVD Movielens 1M 114.06 ± 2.92 108.20 ± 3.46 105.36 ± 2.68

SVD Movielens 10M 963.03 ± 25.94 918.44 ± 24.04 912.82 ± 16.95

SVD++ Movielens 100k 19.88 ± 0.20 20.04 ± 0.24 21.29 ± 0.53

SVD++ Movielens 1M 115.38 ± 4.37 114.45 ± 3.90 113.54 ± 4.33

SVD++ Movielens 10M 1634.60 ± 94.93 1371.33 ± 39.24 1378.82 ± 44.12

Table 3

RMSE of models after optimization (95 % confidence interval)

Model Dataset Original c.f.
Modified c.f., 

cdecay = 3
Modified c.f., 

cdecay = 4

SVD Movielens 100k 0.9459 ± 0.0005 0.9462 ± 0.0004 0.9462 ± 0.0005

SVD Movielens 1M 0.9608 ± 0.0021 0.9589 ± 0.0093 0.9621 ± 0.0027

SVD Movielens 10M 0.8455 ± 0.0003 0.8454 ± 0.0003 0.8455 ± 0.0003

SVD++ Movielens 100k 0.9448 ± 0.0008 0.9452 ± 0.0005 0.9452 ± 0.0006

SVD++ Movielens 1M 0.9434 ± 0.0091 0.9462 ± 0.0031 0.9491 ± 0.0022

SVD++ Movielens 10M 0.8437 ± 0.0001 0.8436 ± 0.0001 0.8435 ± 0.0004
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in the region of iterations 6–9. If the initial choice of points 
approximately coincided, then the optimization graph with 
modification was higher than the similar one, as a rule, at 
first iterations but it crossed it again at subsequent iterations.  
If the initial choice of points for optimization with modifica-
tion was better, then the error reduction was observed earlier 
than after the expiration of cdecay iterations. At the same time, 
the final result is no worse than when applying optimization 
without modifications. It is also extremely important that 
due to faster first iterations, error reduction is faster when 
using the modification than without it. For the same reason, 
the intersection of lines is in most cases more to the left on 
the time chart than on the iteration chart. If we limit the 
available time and compare the errors within about 70 % of 
the total execution time, the following can be observed. The 
error of the model with the hyperparameters selected at that 
time with optimization with modification was in all cases 
lower than at optimization without modification.

6. Discussion of the results obtained in the development 
of a method for optimizing hyperparameters of the models 

based on matrix factorization

For a better understanding of features of optimization of 
hyperparameters of the considered models, we can consider 
visualization of the observed error obtained in previous stu
dies [8] in the space of the hyperparameter configuration. 
The number of factors f varied from 10 to 100 with a step of 
10 and the regularization constant λ varied from 0.01 to 0.1 
with a step of 0.01. Fig. 3 shows four graphs showing features 
that are important for explaining the results.
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Fig. 3. Error values over the entire space of the 
hyperparameter configuration: a – Movielens 100k, SVD; 	
b – Movielens 100k, SVD++; c – Movielens 1M, SVD++; 	

d – Movielens 10M, SVD++

The dependence of optimal λ value on optimal f value is 
indeed rather weak. The target neighborhood λ at a smaller 
number of factors practically coincides with that at a target 
number of factors. In this case, the function of dependence 
of L(θ) on λ at a fixed f has only a global minimum but does 
not have pronounced local minima. These facts explain the 
increased rate of error reduction when the cdecay iterations are 
reached: the study continues with a larger f but already in the 

desired neighborhood λ. With an increase in the size of the 
dataset and complication of the model, the neighborhood of 
the sought λ noticeably narrows, and the difference between 
adjacent values increases. This could serve as an additional 
explanation for why the optimization time was more reduced 
for a more complex model on larger datasets. The results for 
Movielens 100k are also explained by peculiarities of the 
used implementation. The training time of the SVD model 
on this set is within a few seconds and is more influenced by 
disk operations and other overheads than by the computa-
tion time itself.

Sets of the search space points visited during optimi-
zation are of particular interest. The analysis showed that 
the sought effects from the use of the modified core were 
observed in all experiments. Sets of the points selected in the 
first four search iterations when optimizing the models on the 
Movielens 10M dataset are the most representative. They are 
shown in Fig. 4.
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Fig. 4. Points visited in the first four iterations during 
optimization of the models trained on the Movielens 10M 
dataset: a – SVD, original core; b – SVD, modified core, 
cdecay = 3; c – SVD, modified core, cdecay = 4; d – SVD++, 

original core; e – SVD++, modified core, cdecay = 3; 	
f – SVD++, modified core, cdecay = 4

The graphs in Fig. 4 clearly show how the selection of 
points is shifted to the left side of the space corresponding to 
smaller f when using modification. The points are distributed 
much more evenly without modification. Obviously, the off-
set is stronger at cdecay = 4. The only exception where the bias 
is weak is the SVD++ graph on the Movielens 10M dataset 
with cdecay = 4. This is due to the good choice of starting 
points. In this case, the points on the right side of the graphs 
in Fig. 4 are present in all visualizations. This confirms the 
fact that the proposed optimization process does not spend 
extra time on testing models with smaller f with a sufficiently 
good choice of random starting points. It is also worth noting 
that all corner points of the space were checked in all cases. 
This feature arises because of the use of Gaussian processes 
that predict increased variance at the boundaries of the area 
under study.

The results of the experiments performed demonstrate 
that the expected effects from the use of the proposed modifi-
cation were successfully achieved. Regardless of the choice of 
starting points, the Bayesian optimization with modification 
has turned out to be either more profitable to use than with-
out it, or, in some cases, of the same efficiency. The changes 
were less noticeable for smaller datasets and a simpler model. 
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The quality of the sets of hyperparameters found in less time 
practically coincided with the quality of the sets obtained by 
the classical method.

cdecay = 3 and cscale = 1e-3 can be considered optimal pa-
rameters of the function (16) (in this case, cscale, obviously, 
changes with other rating scales). Parameters of the rest of 
the optimization components do not differ from those when 
using the original core.

The simplicity of modification implementation is its sepa-
rate advantage. Since the calculation of the diagonal variance 
matrix at unvisited points is often taken out in a separate 
procedure for performance reasons, it is enough to redefine it.

The following can be highlighted as the factors limiting 
the applicability of the study results.

Firstly, the specific area of the most effective applica-
tion of the proposed optimization method remains an open 
question. There are various modifications of the SVD and 
SVD++ algorithms. In addition, other datasets may have 
meta-characteristics different from Movielens: by the ratio of 
the number of users and objects, the sparseness of the rating 
matrix, variety of interaction patterns, etc. The application 
of the described method makes sense if the loss function of 
the models trained on them has a similar form in a similar 
hyperparameter configuration space.

As regards modifications of the SVD and SVD++ algo-
rithms, it can be assumed that the considered optimization 
method will remain effective if the minimized loss function is 
similar to (4) and (6). Since the complexity of calculation is 
always growing with the number of factors and the regulari
zation method does not change, it can be expected that the 
key properties of the loss function will not be changed and the 
initial study of the regularization constants with smaller f re-
mains justified. It is not possible to give an answer regarding 
other data sets without experimental testing. However, the 
results presented in the current study show that it is possible 
to check the optimization efficiency for a large dataset by us-
ing only a part of it. It should retain all characteristic features 
of the initial set and the model training time on the selected 
part should be at least several tens (or hundreds) of seconds. 
In this case, when performing at least 2cdecay optimization 
iterations, it will be possible to assess how applicable the 
method is for the dataset under consideration.

Second, the study was conducted using exclusively the 
Matern 5/2 function as the original core, and UCB as the 
point extraction function. Using other covariance functions 
as a core is likely to lead to the same results. This assumption 
is substantiated by the fact that the described modification 
introduces the same changes in values of any valid covariance 
function. The use of other point extraction functions will 
change the contribution made by the variance of the predic-
tions at a given point to the probability of its selection. Since 
the shape of the loss function does not change, the initial 
investigation of model errors with fewer factor numbers re-
mains beneficial. In both cases, differences can only be in the 
parameters of the function (16). Nevertheless, experimental 
verification is necessary for a definite answer.

Thus, the potential development of the study presented 
in this article may be as follows. Additional experimental 
testing can be performed, which will make it possible to 
clarify limits of applicability of the described method, as well 
as optimal values of the parameters of function (16) in indi-
vidual cases. It may also be of interest to test the proposed 
method for solving the optimization problem for a wider set 
of hyperparameters. The main obstacle to doing additional 

experiments is the need to perform a lot of resource-intensive 
computations.

In addition, the results can be improved if the modi
fication (15) is performed by a function other than the 
sigmoid (16). In a more general case, the possibility of de-
veloping similar modifications for surrogate models other 
than Gaussian processes is of interest. In these cases, the 
theoretical component of the study should be significantly 
expanded. The difficulty lies in the fact that other models 
may not provide similar ways of changing the priorities of 
selecting points for testing.

7. Conclusions

1. An analysis of the limitations of using classical Baye
sian optimization to optimize model hyperparameters based 
on matrix factorization was made. The main disadvantage 
limiting its effectiveness in solving this problem consists in 
the use of only a posteriori information about the form of 
the loss function and the cost of its testing. For matrix fac-
torization algorithms, it is possible to speed up the search for 
hyperparameters without losing quality by examining values 
of the regularization constant with fewer numbers of factors 
at first iterations. Main requirements to the developed spe-
cial method were identified. They concern the prioritization 
of a smaller number of factors only at first iterations, the lack 
of strict fixation of values, and also the consideration of an 
initial random selection of points.

2. To ensure the sought changes in the process of op-
timization, a modification of the Gaussian process core  
was proposed. It is used as a surrogate model for the loss 
function in Bayesian optimization. The sought modification 
at first iterations insignificantly increases the variance of the 
values predicted by the surrogate model in the region of the 
search space corresponding to a smaller number of factors f. 
It was theoretically substantiated that this behavior would 
lead to the desired investigation of the values of all hyper-
parameters, except for f, in the vicinity of smaller f. At the 
same time, all requirements specified for the special method 
were fulfilled. The proposed covariance function was mathe-
matically described. Its correctness and applicability as the 
Gaussian process core have been confirmed. The changes 
introduced by the application of the modified core, depend-
ing on the current iteration, were graphically demonstrated.

3. The developed method of optimizing the hyperpa
rameters was implemented in software. Its effectiveness was 
tested on common datasets. The source code of the modified 
core and the experiments performed have been published. 
It has been experimentally confirmed that all the specified 
requirements for a special method are met. A statically 
significant reduction in overall optimization time of up to 
16 % has been demonstrated on larger datasets. In the worst 
case, the timing was the same as for the original core. The 
expected error in rating the predictions practically coincided 
in the models with their hyperparameters found using the 
classical Bayesian optimization method and the developed 
method. Consequently, the quality of optimization was not 
reduced while reducing the time spent which confirms the 
achievement of the study objective. It has also been demon-
strated that the use of core modification can be beneficial in  
a limited time environment. The results show that the larger 
the dataset and the more complex the model, the more effec-
tive the method is.
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