
Mathematics and Cybernetics – applied aspects

45

Copyright © 2021, Authors. This is an open access article under the Creative Commons CC BY license

DEVELOPMENT OF
A HYPERPARAMETER

OPTIMIZATION
METHOD FOR

RECOMMENDER
MODELS BASED

ON MATRIX
FACTORIZATION

A l e x a n d e r N e c h a e v
Corresponding author

Postgraduate Student*
E-mail: dapqa@yandex.ru
V a s i l y M e l t s o v

PhD, Associate Professor*
D m i t r y S t r a b y k i n

Doctor of Technical Sciences, Professor*
*Department of Computer Science

Vyatka State University
Moskovskaya str., 36, 	

Kirov, Russian Federation, 610000

Many advanced recommender models are implemented
using matrix factorization algorithms. Experiments show
that the quality of their performance depends significant­
ly on the selected hyperparameters. Analysis of the effec­
tiveness of using various methods for solving this problem
of optimizing hyperparameters was made. It has shown
that the use of classical Bayesian optimization which treats
the model as a «black box» remains the standard solution.
However, the models based on matrix factorization have
a number of characteristic features. Their use makes it pos­
sible to introduce changes in the optimization process lead­
ing to a decrease in the time required to find the sought
points without losing quality.

Modification of the Gaussian process core which is used
as a surrogate model for the loss function when performing the
Bayesian optimization was proposed. The described modi­
fication at first iterations increases the variance of the values
predicted by the Gaussian process over a given region of the
hyperparameter space. In some cases, this makes it possible to
obtain more information about the real form of the investiga­
ted loss function in less time.

Experiments were carried out using well-known data
sets for recommender systems. Total optimization time
when applying the modification was reduced by 16 % (or
263 seconds) at best and remained the same at worst (less
than 1-second difference). In this case, the expected error of
the recommender model did not change (the absolute diffe­
rence in values is two orders of magnitude lower than the value
of error reduction in the optimization process). Thus, the use
of the proposed modification contributes to finding a bet­
ter set of hyperparameters in less time without loss of quality

Keywords: Bayesian optimization, Gaussian process,
covariance function, matrix factorization, recommen-
der systems

UDC 004.852
DOI: 10.15587/1729-4061.2021.239124

How to Cite: Nechaev, A., Meltsov, V., Strabykin, D. (2021). Development of a hyperparameter optimization method for

matrix factorization based recommender models. Eastern-European Journal of Enterprise Technologies, 5 (4 (113)), 45–54.

doi: https://doi.org/10.15587/1729-4061.2021.239124

Received date 23.08.2021

Accepted date 04.10.2021

Published date 29.10.2021

1. Introduction

Recommender systems (RS) are software systems that
solve the problem of predicting user interest in objects from
a certain subject area [1]. Depending on the context, objects
and users can mean different entities. For example, products
and customers in e-commerce, content and its consumers in
media services, actions and situations in decision-making sup-
port systems, prescriptions and patients in medical systems.
This makes it possible to use common mechanisms for effective
solutions to problems of completely different directionalities.

One of the most widespread approaches to constructing
an RS is based on the use of collaborative filtering methods.
With this approach, interest predictions are calculated on
the assumption that similar users rate the same items in the
same way. Depending on the chosen method of determining
the proximity of users, various implementations of recom-
mender models are created. When the task of forming a list
of recommendations is reduced to the task of predicting the
numerical assessment (rating) of objects, advanced results
demonstrate latent-factor models. Such models associate
each user and object with a vector of latent factors, i.e. im-
plicit features that characterize entities and patterns of their

interaction. The learning process consists in calculating the
sought vectors. Since the input data usually are a matrix of
existing ratings explicitly or implicitly given by users to the
objects with which they interacted, the latent factors can be
calculated using matrix factorization algorithms. Despite the
simplicity of the described idea and the steady development
of new methods of generating recommendations, various
versions of collaborative filtering models based on matrix fac-
torization algorithms remain in demand. They demonstrate
advanced results in solving the rating prediction problem
outperforming more sophisticated machine learning methods
in many cases [2, 3].

An important problem that arises when training models
with matrix factorization algorithms is a choice of hyperpa-
rameters of such algorithms. The values used have a direct
impact on the quality of rating predictions by the final model.
At the same time, their optimal values can change over time
as the amount of data for training grows and initial patterns
of interaction between users and objects are transformed
into new ones. Consequently, the resource-demanding op-
timization process is repeatedly performed at the stages
of developing a recommender model and teaching it new
data during operation. Reducing overall optimization time

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (113) 2021

46

without sacrificing quality will make it possible to fasten
experimentation and actualization of production models.
This substantiates the relevance of developing new effective
methods for optimizing the hyperparameters of the matrix
factorization algorithms.

2. Literature review and problem statement

When analyzing and developing approaches to RS de-
sign, it is important to take into account the fact that their
ultimate task consists in listing the recommendation users.
Systems based on matrix factorization solve this problem by
sorting objects according to the calculated ratings. It is ar-
gued in [4] that this approach leads to the following problem.
Even minor fluctuations in the rating prediction error entail
significant changes in the quality of the samples formed by
the recommender system.

Experimental testing of latent-factor models confirms
the existence of the indicated problem. For example, the
study [5] investigates the operation of the SVD model on the
well-known Movielens 100k data set [6]. This set contains
the ratings given by users to the movies they have watched.
According to the presented results, the models trained using
different regularization constants generate different sets of
recommendations. In this case, the prediction error changes
accordingly. However, the influence of the selected values of
hyperparameters was considered in [5] only for isolated cases.

A much more detailed study of this dependence for the
SVD model on the Movielens 100k dataset was given in [7].
The presented results show that the studied error can vary
significantly (often by more than 10 %) depending on the
chosen learning rate, the number of factors and constants of
regularization. A large number of tests have been performed
and detailed graphs were presented that reflect the depen-
dence under consideration. Nevertheless, in order to develop
methods that improve the process of optimizing hyperpara
meters, it is important to consider the features of functioning
of other models as well and use datasets of different sizes.

Broader studies of these features of the models based on
matrix factorization were carried out in [8] by the authors
of the current study. The models trained by the SVD and
SVD++ algorithms were tested on larger datasets using dif-
ferent values of the number of factors and regularization con-
stants. Despite the use of a broader set of algorithms and data
sets, the dependence of the prediction error on the selected hy-
perparameters remained within similar limits and was subject
to the same characteristic features. Preservation of this depen-
dence is observed with further model complications as well.

Similar results are presented in [9] where a significantly
improved version of SVD was described. In addition to the
classical interactions of latent factors, additional user percep-
tions, as well as joint attractiveness and unattractiveness of
objects, were introduced in the model. Prediction accuracy
was assessed by ranking metrics. The use of a complicated al-
gorithm and other metrics also did not change the considered
negative dependences. Scatter of values of the loss function
of the model at different regularization constants remained
within the same limits (more than 10 % of the minimum) and
the shape of graphs of this dependence had the same charac-
teristic features as in the studies discussed above [7, 8].

Thus, the results presented in [5, 7–9] confirm the impor-
tance of optimization of hyperparameters in the RS design
and substantiate the relevance of the studies carried out

by the authors. The quality of the rating predictions calcu-
lated by the models based on matrix factorization depends
significantly on the chosen regularization constants and the
number of factors. This, in turn, has a significant impact on
the quality of the generated recommendations.

In the studies considered above [4, 5, 7–9], general me
thods used in other subject areas are used to optimize hyper-
parameters. Much attention is paid to Bayesian optimization
which is actually a standard solution for a wide range of similar
problems. For the latent-factor models, the effectiveness of this
approach is limited for the following reasons. Bayesian opti-
mization takes into account the visited points of the hyper-
parameter space creating a probabilistic model of the sought
loss function on their basis [10]. The investigated function is
considered as a «black box»: it is assumed that there can be
any number of its extrema, and the cost of testing any different
points is the same. This prerequisite force one to obtain all the
necessary information empirically. At the same time, some of
the necessary information is a priori for the models based on
matrix factorization. This allows one to perform optimization
more efficiently finding a set of hyperparameters of the same
quality in a shorter time. Reducing wasted time without sacri-
ficing quality is essential for both industrial and research pur-
poses. This makes it possible to carry out the necessary nume
rical experiments and update the models faster, and, possibly,
find more advantageous sets of hyperparameters in a limited
time. The use of general-purpose methods (such as classical
Bayesian optimization) does not enable the use of a priori
information, and, accordingly, obtain the necessary speed of
the RS development cycle and teaching the RS to new data.

The features of the models based on matrix factorization
which make it possible to improve the optimization process
were mentioned in [7–9] and are as follows. First, optimal va
lues of the regularization constants and the number of factors
correlate with each other rather weakly. In order to obtain
more information about the influence of other parameters on
the model error, it may be advantageous to fix values of a part
of the studied parameters in a certain part of the space. Since
a weak dependence does exist, the fixation does not have to
be strict. It is preferable to temporarily narrow the bounda
ries of the studied values. Secondly, the speed of training and
testing the model directly depends on the number of factors
used. For common matrix factorization algorithms, the upper
estimate of complexity has a linear dependence on the number
of factors since the most frequently performed operation is
the elementwise multiplication of vectors. Thus, the desired
advantage can be obtained by simultaneously optimizing the
number of factors and the regularization constants used (and,
possibly, a small number of other hyperparameters). These
features can be used either by modifying the known general-
purpose optimization methods or developing special methods
for the latent-factor models. The following examples are
existing examples of the application of these two approaches.

Most modifications of general-purpose methods are asso-
ciated with solving the problem of optimizing the number of
factors. This problem is reduced to the problem of estimating
the cost of training and testing the model which is quite
common among a wide range of machine learning algorithms.
Its theoretical solution consisting in changing the function
of point extraction is proposed in [11]. The described modi
fication includes modeling the cost of calculating the loss
function. At each iteration of the search, not only the value
of the objective function is memorized but also the amount of
resources spent on its calculation. Due to this, when choosing

Mathematics and Cybernetics – applied aspects

47

the next point, one can take into account not only the expec
ted improvement but also the estimated cost making a choice
with accounting for the available resources. For example, the
implementation of such an idea in practice is presented in [12].
It describes the entropy-based point extraction function and
the method used in conjunction with it to select the reference
point. Due to their use, the optimization process takes into
account the cost of testing and gives priority to more re-
source-intensive calculations at the beginning of optimization.
The application of the presented method makes it possible
to find a more advantageous set of hyperparameters in a li
mited time for a model taken as a «black box» but does not
enable solving the problems of the current study. The total
optimization time required to generate a model with the
same prediction accuracy as classical Bayesian optimization
is not necessarily reduced. Information about the testing cost
is formed in this case as a result of a series of experiments.
However, it is known a priori for latent-factorial models. The
ability to analyze a much smaller number of factors to find
a neighborhood of the optimal values of the regularization
constants is also not used. In addition, the idea of prioritizing
more resource-intensive computations contradicts theoretical
conclusions about features of the considered loss functions.

The second approach using the features of models based
on matrix factorization is based on the development of special
optimization methods. A solution to the problem of finding
values of the regularization constants is the main subject of
such studies. The study [13] is an illustrative example. It
proposes the «λOpt» method which consists in modifying the
regularization coefficients during the model training. The ap-
plication of this method makes it possible to obtain values of
the constants that are acceptable in terms of efficiency at the
end of the training stage. Duration of this stage increases but
the total amount of the computational resources spent is re-
duced in comparison with the implementation of full optimi-
zation of hyperparameters by classical methods. Nevertheless,
the sought number of factors remains undetermined which
makes it necessary to perform its optimization separately.
Since there is a weak correlation between the considered
values of hyperparameters, the final efficiency of the regula
rization constants chosen at the first stage is not guaranteed.

Thus, the problem of accelerating the search for values
of the regularization constants together with the number of
factors cannot be solved even by using special well-known
methods. The results of this analysis allow us to assert that it
is relevant to conduct studies on the development of a new
optimization method for the models based on matrix facto
rization. The main purpose of its application in scientific and
applied fields consists in reducing the total time of optimiz-
ing the hyperparameters without losing the quality of the
generated recommendations.

3. The aim and objectives of the study

The presented study objective is to develop a special
method for optimizing the hyperparameters of matrix factor-
ization algorithms used to train recommender models. The
sought method should provide the ability to perform less
resource-intensive computations at the beginning of opti-
mization. Due to this, the total time of searching for optimal
values of the regularization constants and the number of fac-
tors can be reduced without loss of quality compared to the
classical Bayesian optimization.

To achieve the objective, it was necessary to solve the
following tasks:

– identify the existing drawbacks of using classical
Bayesian optimization and formulate requirements for the
special optimization method being developed;

– theoretically describe the sought-for special method
that meets the formed requirements by modifying one or
more components of classical Bayesian optimization;

– programmatically implement the described method
and repeatedly test it using latent-factor models trained on
known datasets for the recommender systems having ob-
tained statistically significant results.

4. Materials and methods used in the study

The problem of the recommender system was considered
as the problem of predicting ratings. To solve it, the models
trained by matrix factorization algorithms of the SVD family
were used.

The problem of optimizing hyperparameters was posed as
the problem of finding optimal values of the number of fac-
tors and constants of regularization for the algorithms under
consideration. The classical method of Bayesian optimization
was used as a basic one. The special optimization method was
developed on the basis of the basic one. It was proposed to
analyze its limitations and modify it to provide the desired
changes in the optimization process.

It was proposed to evaluate the effectiveness of the deve
loped method by conducting experiments on known datasets
for recommender systems. The experiments should compare
the total optimization time and quality of rating the predic-
tions generated by the final models. The results obtained
using classical Bayesian optimization and the developed spe-
cial method were subject to comparison. To achieve the set
objective, the time spent on optimization should be reduced
without losing the quality of rating predictions.

Further in the current section, a formal description of the
mathematical apparatus used is given and the experimenting
procedure is described in detail.

4. 1. The problem of the recommender system and its
solution using the matrix factorization algorithms

A formal statement of the problem for the recom-
mender system in the considered variant looks as follows.
A set of users U and a set of objects I are given. As a result
of interactions, some users have rated some objects. This
has made it possible to form the set K = {rui Î  ,|u Î UÙi Î I},
where rui is the rating assigned by the user u to the object i.
The task of the RS consists in calculating the set of un-
known ratings { ui Î  |u Î UÙi Î IÙrui ÏK}. More generally,
we can say that the recommender model calculates an

 Î  U´I matrix containing predictions of ui ratings for all
possible pairs of users and objects.

The idea of using matrix factorization algorithms to
implement the collaborative filtering approach is as follows.
The sought rating prediction matrix can be roughly repre-
sented as a product of two others: »PQ, P Î  U´f, Q Î  f´I.
Then the matrix rows P are nothing but vectors of latent
factors pu Î  f of users and columns Q are vectors of latent
factors of objects qi Î  f, respectively. Individual rating
prediction is calculated as follows:

r ui u i
T

 = p q . 	 (1)

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (113) 2021

48

It is also important to remember that the rating is influ-
enced not only by interaction between users and objects but
also by their individual characteristics. The latter ones are ca-
pable, for example, of making permanent adjustments to the as-
sessments given by one of the users. Biases are used to account
for these effects. The bui bias of the rui rating can be given as:

b b bui K u i= + +µ , 	 (2)

where µK is the average rating in the entire dataset and bu
and bi are the observed biases of ratings of an individual user
and an object, respectively.

Rating prediction taking into account the latent factors
and biases is used in the well-known SVD matrix factori
zation algorithm:

r b bui u i
T

K u i
 = + + +p q µ . 	 (3)

The model training consists in finding the values pu, qi,
bu, bi for all users u Î U and objects i Î I. The regularized
squared error is minimized for training:

r b b

b b

ui u i
T

K u i

i u u i
r Kui

− − − −

+ + + +

() +

()














Î

∑
p q

p q

µ

λ

2

2 2 2 2
, 	 (4)

where λ is a regularization constant. The loss function can be
minimized using standard techniques such as SGD or ALS.

The SVD++ algorithm improves the accuracy of SVD
predictions by the involvement of additional object fac-
tors which make it possible to better model the implicit
preferences of an individual user. For each object i Î I, an-
other vector of latent factors yi Î  f is specified. The sets
Iu = {i Î I|rui Î K} are also defined. They contain an enumera-
tion of objects for each user u to which he has given ratings.
The prediction is defined as:

r I b bui u u j
j I

i
T

K u i

u

 = +






+ + +

−

Î
∑p y q| | .

1
2 µ 	 (5)

When training the SVD++ model, a search for the pu, qi,
yi, bu, bi values is performed. The regularized squared error
is calculated as:

r I b b

b b

ui u u j
j I

i
T

K u i

i u

u

− + − − − +

+ + +

















−

Î
∑p y q

p

| |
1
2

2

2 2

µ

λ uu i i

r Kui 2 2 2+ +()





















Î
∑

q y

, 	 (6)

and is minimized by SGD or ALS similar to the SVD (4) error.
Further modifications of the SVD family algorithms are

constructed in a similar way. For example, the authors of [14]
modify the error minimization process (6) including gradient
perturbations to reduce the likelihood of disclosing the perso
nal data of users. The study [15] uses additional vectors of la-
tent factors of users in conjunction with a matrix of their mutual
influence on each other. In the previously considered study [9],
the improved SVD algorithm also assumes calculation of rat-
ings and errors using similar formulas. The results presented
in the mentioned studies of models based on matrix factoriza-
tion [5, 7–9, 13–15] demonstrate the following features:

– the error in predicting the ratings of the trained model
strongly depends on the hyperparameters f and λ used (as

well as, possibly, others: learning rate constant, individual
constants of regularization of different parameters, etc.);

– hyperparameters f and λ are weakly dependent on
each other;

– the computational cost of training the model depends
on the |U |, |I | and f values and the dependence on f is no
less than linear [16].

4. 2. Optimizing the hyperparameters
To construct a model that predicts ratings with the smallest

error, it becomes necessary to optimize the hyperparameters.
Formally, the problem of optimizing the hyperparameters
looks like this. Let the model have N hyperparameters. Let us
denote the domain of definition of the n-th hyperparameter θn
as θn , and the entire space of hyperparameter configurations
as Q = ×…×θ θ1 N . In the simplest case, the dataset K is divided
into training and validation parts Ktrain and Kvalid, respectively.
The model is trained with a set of hyperparameters θ Î Q on
the Ktrain dataset. The value of the loss function shown by such
a model on the Kvalid dataset is denoted as L(θ). The challenge
consists in finding the optimal set of hyperparameters θbest:

θ θ
θ

best E L= () 
Î

arg min .
Q

	 (7)

The present-day solution to the problem is to use Baye
sian optimization. It includes two main components: a sur-
rogate model for the loss function L and a point extraction
function. The surrogate model based on experimental obser-
vations (θt, L(θt)) constructs a probabilistic approximation
of the objective function. With its help, predictions of the
mathematical expectation µ(θ) = E[L(θ)] and the variance
σ2(θ) = σ2[L(θ)] of the loss function values become available
at any point of the search space. The first few points for test-
ing are selected at random. Points at each of the following
iterations are selected using the point extraction function the
extrema of which correspond to the sets of hyperparameters
the most attractive for testing.

In the presented study, UCB (Upper Confidence Bound)
is chosen as the point extraction function:

UCB θ µ θ κs θ() () + ()= 2 , 	 (8)

where κ is a constant used for regulation of priority between
research and operation.

The Gaussian process is often used as a surrogate model for
the sought function. Also, examples of effective use of random
forests in this capacity are known as well as TPE (Tree-Struc-
tured Parzen Estimator). Their main advantage over Gaussian
processes is the smaller algorithmic complexity of calculation.
However, for the hyperparameter optimization of the latent-
factor model considered in this article, the complexity of
prediction calculation is insignificant: the number of points is
small (several tens) since the size of the hyperparameter con-
figuration space is also small. The use of the Gaussian process
makes it possible to fairly accurately simulate the loss function
taking into account a small number of known values. Analysis of
practical implementations of the Bayesian optimization shows
that such a choice of a surrogate model is becoming a fairly fre-
quent occurrence, and often, the only available solution.

The Gaussian process is determined by the a priori func-
tions of calculation of the mathematical expectation µprior(x)
and the covariance function k(x,x ′). If µprior(x) = 0, then the
flow of the stochastic process is completely determined by
the covariance function. The Matern 5/2 function is one of

Mathematics and Cybernetics – applied aspects

49

the most commonly applied covariance functions for the
Gaussian processes used in the Bayesian optimization:

k x x
d

l
d
l

d
l

, exp ,′() = + +






−







α2

2

21
5 5

3
5

	 (9)

where d is the Euclidean distance between x and x′, α is the
amplitude, l is the scale.

By definition of the Gaussian process, observations
xt = L(θt) are considered to be subject to a multivariate
normal distribution. Therefore, the conditional probabi
lity of obtaining new L* = L(θ*) values at not yet visited
points θ* Î Q* with already obtained Lobs = {L(θ1, …)} at points
Qobs = {θ1, …} is also normally distributed:

Pr | ~ , ,* * *L Lobs() () ()() µ θ s θ2 	 (10)

µ θ θ* *, , ,() =   []+
K KQ Q Qobs obs obs obsL 	 (11)

s θ θ θ

θ θ

2 * * *

* *

,

, , , ,

() =   −

−   []  
+

K

K K KQ Q Q Qobs obs obs obs 	 (12)

where K[X,X′] are covariance matrices in which each ele-
ment with index (i, j) is equal to k(xi,x′j); K+ is a pseudoin-
verse matrix for K. Formulas (11), (12) are applied to the
calculation of the mathematical expectation and variance of
the loss function at any not yet investigated point θ* of the
space of configuration of Q hyperparameters. When perform-
ing the Bayesian optimization, formulas (11), (12) are used
by the point extraction function.

4. 3. The procedure used for conducting the experiments
The purpose of the experiments consisted in evaluating

the effectiveness of the developed method of optimizing the
hyperparameters of recommender models based on matrix
factorization.

The Movielens datasets are widely used when conducting
experiments for testing the recommender systems [6]. Each
set consists of users, movies and ratings (ranging from 1 to
5). The problem consisted in predicting the ratings that users
will give to movies that have not yet been watched. Table 1
shows the characteristics of the datasets used.

Table 1
Datasets used in the study

Name
Number
of users

Number
of objects

Number
of ratings

Movielens 100k 943 1,682 100,000

Movielens 1M 6,040 3,706 1,000,209

Movielens 10M 69,878 10,677 10,000,054

The experimental procedure included the following stages.
Each dataset was randomly divided into training and val-
idation set in a ratio of 80 % to 20 %, respectively. SVD
and SVD++ models were trained in the training part. The
training rate was fixed at 0.05, the number of learning epochs
was 20. Fixed regularization constant λb = 0.02 was used for
parameters bi and bu ((4), (6)). Values of hyperparameters f
and λ were in the process of optimization. The hyperparame-
ter f was discretely determined in the interval from 1 to 100,
the hyperparameter λ was continuously determined in the
interval from 0.01 to 0.1.

RMSE was used as an error metric:

L
r r

K

ui ui
r K

valid

ui validθ() =
−()Î∑ 

2

| |
, 	 (13)

where ui is the prediction made by the model trained with
a θ hyperparameter set on the Ktrain training set.

Classical Bayesian optimization was used as a reference
optimization method. It is performed with UCB (8) as
a point extraction function (κ = 2.576) and the Gaussian
process as a surrogate model (with Matern 5/2 core (9),
α = 1, l = 1). The effectiveness of the reference and developed
methods should be compared in different experiments.

The number of Bayesian optimization iterations was li
mited by 10. The number of preselected random points was 1.
All hyperparameters were normalized in the interval (0;1].
Since the optimization process is sufficiently dependent
on random factors (initial sampling of points and sampling
during the calculation of the surrogate model values), the
experiment with the same parameters should be performed
several times. The number of repetitions for Movielens 1M
and 10M was 10. For Movielens 100k, it was increased to 100
because of its small size.

In the course of each experiment, values of the model er-
ror were measured relative to the current iterations and the
time elapsed since the optimization start.

The experiments were performed on an Intel Core i5-4690
processor using 16 GB of DDR3 RAM at 1600 MHz.

5. The results obtained in the development of a method
for optimizing hyperparameters of models based

on matrix factorization

5. 1. Limitations of Bayesian optimization and require-
ments to the developed method

The value of the regularization constant λ (as well as the
learning rate, etc.) has a rather weak dependence on the f va
lues used. The neighborhood of the sought λ value in the vi-
cinity of the optimal value of f can most likely be determined
by testing the model with fewer factors. If this number of
factors can be significantly less than the optimal one, then the
time of model training can be greatly reduced. In the classical
application of Bayesian optimization, no prior information
about the shape of the predicted loss function is used. All
data available before the optimization start are determined
by testing the model at several randomly selected points of
the search space. Consequently, when applying the classical
method to simultaneous search for optimal values of the f
and λ hyperparameters of the matrix factorization algorithm,
the traversal order may turn out to be ineffective. As a result,
the total search time becomes much longer than the mini-
mum required. This is the limitation of Bayesian optimiza-
tion which was proposed to be overcome in the current study.

The main requirements for the developed solution are as
follows. Since the information used is a priori information, the
priority of points in the area of smaller f must exist from the
first iteration of the search (immediately following the test of
random points). Since the sought set of hyperparameters still
remains in the region of large f, the last iterations of the search
should be performed without artificially prioritizing any values.

Obviously, the simplest solution that allows the use of
a priori information in Bayesian optimization is a preliminary

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (113) 2021

50

study of different λ values with a fixed small f. However,
this solution has significant drawbacks. The course of the
Bayesian optimization process strongly depends on the result
of testing at the initial, randomly selected points. In the stan-
dard version of the method, there is a possibility that such
points will immediately fall into the vicinity of the global
minimum of the loss function, however, when the values are
fixed manually, it is lost. In addition, fixing the f value does
not allow obtaining additional information about the shape
of the function L with respect to the number of factors. After
several initial iterations, only one value of L along the f axis
will be available which degrades the accuracy of the con-
structed probabilistic model. Therefore, the method being
developed does not have to do a strict fixation of f.

Moreover, the previously mentioned studies [11, 12] de-
voted to the solution of the related problem of the variable
cost of model testing reveal an additional problem. If the
initial, randomly selected points correspond to too large
values of the loss function at a small number of factors, the
optimization process is likely to be performed in a more
resource-intensive region. At the same time, the study with
lower f may remain effective in some cases. If the initial ran-
dom points fall into the target region of the search space, it
may be advantageous to prioritize empirical information and
not do research with lower f. Therefore, the developed me
thod should take into account the fact that the benefit from
the study of the initial random points is variable.

5. 2. Modification of the Gaussian process core
To solve the listed problems and eliminate the described

limitations, the following was proposed. At initial iterations
of the optimization algorithm, it is possible to slightly increase
the variance σ2(θ*) in the not studied region of the search
space corresponding to a smaller number of factors. Using
this modification allows one to achieve the following effects:

– the above problem is solved: all hyperparameters, ex-
cept for f, are initially investigated at lower f which makes
it possible to determine the neighborhood of their desired
values in less time;

– during the first iterations, information about the form
of the loss function L relative to the axis of the number of
factors is also extracted;

– during subsequent iterations, the probabilistic predic-
tion of L is not distorted in any way;

– if randomly selected starting points immediately fall
into the target area of the search space, the optimization
algorithm may not investigate ineffective values in a less
resource-intensive area since the mathematical expectation
L does not change;

– at the same time, when randomly selected initial points
correspond to too large values of the loss function, there is
a possibility that the study will be continued in a less re-
source-intensive area since the σ2(θ*) is increased;

– variance of already visited values remains zero, and
variance in their vicinity changes in proportion to the ori
ginal which excludes the possibility of an unnecessarily
thorough study of such neighborhoods.

To implement the described idea, it is enough to change
the covariance function used as a core. The matrix K[θ,θ*] is
used only when calculating the variance of values (12) but
not when calculating their mathematical expectation (11).
In the simplest case, such a matrix measures 1´1 and con-
tains covariance of the unvisited point with itself (i.e.,
the variance). If the variance is calculated simultaneously for

a large number of unvisited points, a diagonal matrix is used.
Thus, if the modified covariance function kmod(θ,θ′) for the
points θ Î Q*Ùθ = θ′ will return values increased in the area of
smaller f, the goal will be achieved. It is also necessary to take
into account that kmod(θ,θ′) must be non-negatively definite:

∀ Î () ≥
=

∑α α α θ θ

m
i

i j

m

j i jk: , .
, 1

0 	 (14)

It was proposed to modify the covariance function as
follows:

k
k

kmod

*

,
, ,

,
θ θ

θ θ ω θ θ θ θ
θ θ

′() =
′() () Î Ù = ′
′()







for

otherwise

Q
	 (15)

ω θ
θ

() =
+ () ⋅

−()
⋅ +

1

1

0
1

exp

max ,
,

f

decay iter

decay
scale

c n

c
c 	 (16)

where k(θ,θ’) is any valid covariance function; niter is
the number of the current iteration (starting from zero);
cdecay>0 is the constant defining the number of iterations
during which the modification is active; cscale>0 is scale;
θf is the value of hyperparameter f normalized from 0 to 1.
The specified function ω(θ) is a mirrored sigmoid. It is scaled
in height, decays linearly with increasing the iteration num-
ber, and is offset by 1 along the vertical axis (so as not to dis-
tort the covariance values for large f). If necessary, additional
parameters can be added that horizontally stretch or com-
press the sigmoid or shift its center. Since k(θ,θ′) is nonnega-
tively definite, then ω(θ)>0 for any θ, and kmod(θ,θ′) changes
only at θ = θ′, the condition (14) is obviously satisfied.

Fig. 1 shows an example of predictions of the Gaussian
process with a modified Matern 5/2 covariance function,
cdecay = 3, cscale = 1e-3. The filled area reflects the variance, the
curved line is the mathematical expectation. Rendering
was done for four niter values. With niter = 3, the graph
corresponds to a Gaussian process with an unmodified co
variance function.

0.98

0.90
0 1

L(
)θ f

θf

0.96

0.90
0 1

L(
)θ f

θf

0.96

0.90
0 1

L(
)θ f

θf

0.94

0.91
0 1

L(
)θ f

θf

 а b c d

Fig. 1. Values predicted by the Gaussian process with 	
a modified core for different niter : a – niter = 0; b – niter = 1;

c – niter = 2; d – niter = 3

The graphs in Fig. 1 demonstrate that the unmodified
process gives priority to exploring the right side of the space
while the variance predicts a possible minimum on the left
side in the version with modification with niter values equal
to 0 and 1. In this case, priority may be given to it (depending
on the used point extraction function). For other random ini-
tial points, the shape of the mathematical expectation curve
may be different resulting in that the left-hand side may not
be studied at all or studied more strongly.

5. 3. Experimental tests
To compare the reference optimization method with the

developed one, it is sufficient to use different cores of the

Mathematics and Cybernetics – applied aspects

51

Gaussian process. Three different covariance functions (c.f.)
were used in experiments to this end:

– c.f. Matern 5/2 (9), α = 1, l = 1;
– modified (15), (16) c.f. Matern 5/2, α = 1, l = 1, cscale = 1e-3,

cdecay = 3;
– modified (15), (16) c.f. Matern 5/2, α = 1, l = 1, cscale = 1e-3,

 cdecay = 4.
The source code for the experiments is publicly avail-

able on Github [17]. To enable a large number of expe
riments, fast implementations of SVD and SVD++ based
on [18] were used. Implementation of [19] was used for the
Bayesian optimization.

Table 2 shows the results of estimating the time spent
on the implementation of the entire optimization process.
Table 3 shows the RMSE values of the models after opti
mization. Values in both tables are presented with a 95 %
confidence interval. «Original c.f.» means covariance func-
tion Matern 5/2, «Modified c.f.» means modified functions
with different values of the cdecay parameter.

For clarity, Fig. 2 shows visualizations of the error reduc-
tion processes (in time and iterations) in some interesting cases.

Without modification, the average time to run the opti-
mization was approximately 13–20 seconds for the Movie
lens 100k dataset, 105–115 seconds for the Movielens 1M.
The interval is much higher on the Movielens 10M set:
963.03 seconds for SVD and 1634.60 seconds for SVD++.
On the same dataset, the total execution time of all iterations
was consistently lower when the modification was applied.
For the SVD model, the reduction was about 5 % (or 45 se
conds), and for the SVD++ model, the reduction was about
16 % (or 263 seconds). There was also a decrease in the
Movielens 1M set but it was unstable and comparatively
lower (from 0.8 % to 5 % in different experiments). For Mo
vielens 100k, it was practically not observed, in some cases the
total time turned out to be even higher (within one second).

0.82

0.80

1000 2000
Время (с)

R
M

SE

0.83

0.80

500 1000
Время (с)

R
M

SE

0.88

0.86

50 100
Время (с)

R
M

SE 0.87

0.86

50 100
Время (с)

RM
SE

0.88

0.86

5 10
Итерация

RM
SE 0.87

0.86

5 10
Итерация

R
M

SE

Time (s)

Iteration Iteration

Time (s) Time (s)

Time (s)
 а b

 с d

 e f

Fig. 2. Error reduction process (95 % confidence interval):
a – Movielens 10M, SVD++, cdecay = 3; 	

b – Movielens 10M, SVD, cdecay = 4; 	
c – Movielens 1M, SVD, cdecay = 3; 	

d – Movielens 1M, SVD++, cdecay = 4; 	
e – Movielens 1M, SVD, cdecay = 3 (by iterations); 	

f – Movielens 1M, SVD++, cdecay = 4 (by iterations); 	

 original core;

 modified core

It should be especially noted that the RMSE values of the
models measured at the end of optimization with different
cores, practically coincided with each other. The observed
difference in most cases was two orders of magnitude less than

the direct decrease in error in the optimiza-
tion time. The difference between the model
errors on the Movielens 10M set was less
than the others and practically nonexistent.

The effect of the cdecay parameter on the
final execution time was ambiguous. For
SVD models, it turned out to be slightly
lower with cdecay = 4 in all cases and for
SVD++ models, it was more often with
cdecay = 3. However, the observed difference
was negligible. The more important diffe
rence consists in a spread of the error values
within the confidence interval. At cdecay = 3,
the absolute width of the confidence interval
along the RMSE axis decreased more strong-
ly in all cases with increasing time and at the
final iteration, it was less than at cdecay = 4.

Mathematical expectation and variance
of the error at the first iteration of the search
(for niter = 0) are determined by randomly
selected points of the hyperparameter confi
guration space. Based on the results of all ex-
periments, the following data were obtained
regarding the further course of the opti
mization process. In all cases in which op-
timization with the use of modification was
performed with the worst initial choice, its
error reduction graph intersected the similar
optimization graph without modifications

Table 2

Time spent on hyperparameter optimization 	
(seconds, 95 % confidence interval)

Model Dataset Original c.f.
Modified c.f.,

cdecay = 3
Modified c.f.,

cdecay = 4

SVD Movielens 100k 13.03 ± 0.16 12.72 ± 0.10 12.58 ± 0.15

SVD Movielens 1M 114.06 ± 2.92 108.20 ± 3.46 105.36 ± 2.68

SVD Movielens 10M 963.03 ± 25.94 918.44 ± 24.04 912.82 ± 16.95

SVD++ Movielens 100k 19.88 ± 0.20 20.04 ± 0.24 21.29 ± 0.53

SVD++ Movielens 1M 115.38 ± 4.37 114.45 ± 3.90 113.54 ± 4.33

SVD++ Movielens 10M 1634.60 ± 94.93 1371.33 ± 39.24 1378.82 ± 44.12

Table 3

RMSE of models after optimization (95 % confidence interval)

Model Dataset Original c.f.
Modified c.f.,

cdecay = 3
Modified c.f.,

cdecay = 4

SVD Movielens 100k 0.9459 ± 0.0005 0.9462 ± 0.0004 0.9462 ± 0.0005

SVD Movielens 1M 0.9608 ± 0.0021 0.9589 ± 0.0093 0.9621 ± 0.0027

SVD Movielens 10M 0.8455 ± 0.0003 0.8454 ± 0.0003 0.8455 ± 0.0003

SVD++ Movielens 100k 0.9448 ± 0.0008 0.9452 ± 0.0005 0.9452 ± 0.0006

SVD++ Movielens 1M 0.9434 ± 0.0091 0.9462 ± 0.0031 0.9491 ± 0.0022

SVD++ Movielens 10M 0.8437 ± 0.0001 0.8436 ± 0.0001 0.8435 ± 0.0004

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (113) 2021

52

in the region of iterations 6–9. If the initial choice of points
approximately coincided, then the optimization graph with
modification was higher than the similar one, as a rule, at
first iterations but it crossed it again at subsequent iterations.
If the initial choice of points for optimization with modifica-
tion was better, then the error reduction was observed earlier
than after the expiration of cdecay iterations. At the same time,
the final result is no worse than when applying optimization
without modifications. It is also extremely important that
due to faster first iterations, error reduction is faster when
using the modification than without it. For the same reason,
the intersection of lines is in most cases more to the left on
the time chart than on the iteration chart. If we limit the
available time and compare the errors within about 70 % of
the total execution time, the following can be observed. The
error of the model with the hyperparameters selected at that
time with optimization with modification was in all cases
lower than at optimization without modification.

6. Discussion of the results obtained in the development
of a method for optimizing hyperparameters of the models

based on matrix factorization

For a better understanding of features of optimization of
hyperparameters of the considered models, we can consider
visualization of the observed error obtained in previous stu
dies [8] in the space of the hyperparameter configuration.
The number of factors f varied from 10 to 100 with a step of
10 and the regularization constant λ varied from 0.01 to 0.1
with a step of 0.01. Fig. 3 shows four graphs showing features
that are important for explaining the results.

0.05

0.00
50 100

0.94

0.92

Кол-во факторов f

Ко
нс

т.
ре

г.
λ

0.05

0.10

50 100

0.93

0.92

Кол-во факторов f

Ко
нс

т.
ре

г.
λ

0.05

0.10

50 100

0.88

0.86

Кол-во факторов f

Ко
нс

т.
ре

г.
λ

0.05

0.10

50 100

0.82

0.80Ко
нс

т.
ре

г.
λ

Re
g.

 c
on

st.
 λ

Number of factors f

Re
g.

 c
on

st.
 λ

Number of factors f

Re
g.

 c
on

st.
 λ

Number of factors f

Re
g.

 c
on

st.
 λ

Number of factors f

 а b

 c d

Fig. 3. Error values over the entire space of the
hyperparameter configuration: a – Movielens 100k, SVD; 	
b – Movielens 100k, SVD++; c – Movielens 1M, SVD++; 	

d – Movielens 10M, SVD++

The dependence of optimal λ value on optimal f value is
indeed rather weak. The target neighborhood λ at a smaller
number of factors practically coincides with that at a target
number of factors. In this case, the function of dependence
of L(θ) on λ at a fixed f has only a global minimum but does
not have pronounced local minima. These facts explain the
increased rate of error reduction when the cdecay iterations are
reached: the study continues with a larger f but already in the

desired neighborhood λ. With an increase in the size of the
dataset and complication of the model, the neighborhood of
the sought λ noticeably narrows, and the difference between
adjacent values increases. This could serve as an additional
explanation for why the optimization time was more reduced
for a more complex model on larger datasets. The results for
Movielens 100k are also explained by peculiarities of the
used implementation. The training time of the SVD model
on this set is within a few seconds and is more influenced by
disk operations and other overheads than by the computa-
tion time itself.

Sets of the search space points visited during optimi-
zation are of particular interest. The analysis showed that
the sought effects from the use of the modified core were
observed in all experiments. Sets of the points selected in the
first four search iterations when optimizing the models on the
Movielens 10M dataset are the most representative. They are
shown in Fig. 4.

0.1

0.0
0 100

Кол-во факторов f

Ко
нс

т.
ре

г.
λ 0.1

0.0
0 100

Кол-во факторов f

Ко
нс

т.
ре

г.
λ 0.1

0.0
0 100

Кол-во факторов f

Ко
нс

т.
ре

г.
λ

0.10

0.05

0 100
Кол-во факторов f

Ко
нс

т.
ре

г.
λ 0.10

0.05

0 100
Кол-во факторов f

Ко
нс

т.
ре

г.
λ 0.10

0.05

0 100
Кол-во факторов f

Ко
нс

т.
ре

г.
λ

Re
g.

 c
on

st.
 λ

Number of factors f

Re
g.

 c
on

st.
 λ

Number of factors f

Re
g.

 c
on

st.
 λ

Number of factors f

Re
g.

 c
on

st.
 λ

Number of factors f

Re
g.

 c
on

st.
 λ

Number of factors f

Re
g.

 c
on

st.
 λ

Number of factors f

 а b c

 d e f

Fig. 4. Points visited in the first four iterations during
optimization of the models trained on the Movielens 10M
dataset: a – SVD, original core; b – SVD, modified core,
cdecay = 3; c – SVD, modified core, cdecay = 4; d – SVD++,

original core; e – SVD++, modified core, cdecay = 3; 	
f – SVD++, modified core, cdecay = 4

The graphs in Fig. 4 clearly show how the selection of
points is shifted to the left side of the space corresponding to
smaller f when using modification. The points are distributed
much more evenly without modification. Obviously, the off-
set is stronger at cdecay = 4. The only exception where the bias
is weak is the SVD++ graph on the Movielens 10M dataset
with cdecay = 4. This is due to the good choice of starting
points. In this case, the points on the right side of the graphs
in Fig. 4 are present in all visualizations. This confirms the
fact that the proposed optimization process does not spend
extra time on testing models with smaller f with a sufficiently
good choice of random starting points. It is also worth noting
that all corner points of the space were checked in all cases.
This feature arises because of the use of Gaussian processes
that predict increased variance at the boundaries of the area
under study.

The results of the experiments performed demonstrate
that the expected effects from the use of the proposed modifi-
cation were successfully achieved. Regardless of the choice of
starting points, the Bayesian optimization with modification
has turned out to be either more profitable to use than with-
out it, or, in some cases, of the same efficiency. The changes
were less noticeable for smaller datasets and a simpler model.

Mathematics and Cybernetics – applied aspects

53

The quality of the sets of hyperparameters found in less time
practically coincided with the quality of the sets obtained by
the classical method.

cdecay = 3 and cscale = 1e-3 can be considered optimal pa-
rameters of the function (16) (in this case, cscale, obviously,
changes with other rating scales). Parameters of the rest of
the optimization components do not differ from those when
using the original core.

The simplicity of modification implementation is its sepa-
rate advantage. Since the calculation of the diagonal variance
matrix at unvisited points is often taken out in a separate
procedure for performance reasons, it is enough to redefine it.

The following can be highlighted as the factors limiting
the applicability of the study results.

Firstly, the specific area of the most effective applica-
tion of the proposed optimization method remains an open
question. There are various modifications of the SVD and
SVD++ algorithms. In addition, other datasets may have
meta-characteristics different from Movielens: by the ratio of
the number of users and objects, the sparseness of the rating
matrix, variety of interaction patterns, etc. The application
of the described method makes sense if the loss function of
the models trained on them has a similar form in a similar
hyperparameter configuration space.

As regards modifications of the SVD and SVD++ algo-
rithms, it can be assumed that the considered optimization
method will remain effective if the minimized loss function is
similar to (4) and (6). Since the complexity of calculation is
always growing with the number of factors and the regulari
zation method does not change, it can be expected that the
key properties of the loss function will not be changed and the
initial study of the regularization constants with smaller f re-
mains justified. It is not possible to give an answer regarding
other data sets without experimental testing. However, the
results presented in the current study show that it is possible
to check the optimization efficiency for a large dataset by us-
ing only a part of it. It should retain all characteristic features
of the initial set and the model training time on the selected
part should be at least several tens (or hundreds) of seconds.
In this case, when performing at least 2cdecay optimization
iterations, it will be possible to assess how applicable the
method is for the dataset under consideration.

Second, the study was conducted using exclusively the
Matern 5/2 function as the original core, and UCB as the
point extraction function. Using other covariance functions
as a core is likely to lead to the same results. This assumption
is substantiated by the fact that the described modification
introduces the same changes in values of any valid covariance
function. The use of other point extraction functions will
change the contribution made by the variance of the predic-
tions at a given point to the probability of its selection. Since
the shape of the loss function does not change, the initial
investigation of model errors with fewer factor numbers re-
mains beneficial. In both cases, differences can only be in the
parameters of the function (16). Nevertheless, experimental
verification is necessary for a definite answer.

Thus, the potential development of the study presented
in this article may be as follows. Additional experimental
testing can be performed, which will make it possible to
clarify limits of applicability of the described method, as well
as optimal values of the parameters of function (16) in indi-
vidual cases. It may also be of interest to test the proposed
method for solving the optimization problem for a wider set
of hyperparameters. The main obstacle to doing additional

experiments is the need to perform a lot of resource-intensive
computations.

In addition, the results can be improved if the modi
fication (15) is performed by a function other than the
sigmoid (16). In a more general case, the possibility of de-
veloping similar modifications for surrogate models other
than Gaussian processes is of interest. In these cases, the
theoretical component of the study should be significantly
expanded. The difficulty lies in the fact that other models
may not provide similar ways of changing the priorities of
selecting points for testing.

7. Conclusions

1. An analysis of the limitations of using classical Baye
sian optimization to optimize model hyperparameters based
on matrix factorization was made. The main disadvantage
limiting its effectiveness in solving this problem consists in
the use of only a posteriori information about the form of
the loss function and the cost of its testing. For matrix fac-
torization algorithms, it is possible to speed up the search for
hyperparameters without losing quality by examining values
of the regularization constant with fewer numbers of factors
at first iterations. Main requirements to the developed spe-
cial method were identified. They concern the prioritization
of a smaller number of factors only at first iterations, the lack
of strict fixation of values, and also the consideration of an
initial random selection of points.

2. To ensure the sought changes in the process of op-
timization, a modification of the Gaussian process core
was proposed. It is used as a surrogate model for the loss
function in Bayesian optimization. The sought modification
at first iterations insignificantly increases the variance of the
values predicted by the surrogate model in the region of the
search space corresponding to a smaller number of factors f.
It was theoretically substantiated that this behavior would
lead to the desired investigation of the values of all hyper-
parameters, except for f, in the vicinity of smaller f. At the
same time, all requirements specified for the special method
were fulfilled. The proposed covariance function was mathe-
matically described. Its correctness and applicability as the
Gaussian process core have been confirmed. The changes
introduced by the application of the modified core, depend-
ing on the current iteration, were graphically demonstrated.

3. The developed method of optimizing the hyperpa
rameters was implemented in software. Its effectiveness was
tested on common datasets. The source code of the modified
core and the experiments performed have been published.
It has been experimentally confirmed that all the specified
requirements for a special method are met. A statically
significant reduction in overall optimization time of up to
16 % has been demonstrated on larger datasets. In the worst
case, the timing was the same as for the original core. The
expected error in rating the predictions practically coincided
in the models with their hyperparameters found using the
classical Bayesian optimization method and the developed
method. Consequently, the quality of optimization was not
reduced while reducing the time spent which confirms the
achievement of the study objective. It has also been demon-
strated that the use of core modification can be beneficial in
a limited time environment. The results show that the larger
the dataset and the more complex the model, the more effec-
tive the method is.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (113) 2021

54

References

1.	 Ricci, F., Rokach, L., Shapira, B., Kantor, P. B. (Eds.) (2011). Recommender Systems Handbook. Springer, 842. doi: https://doi.org/

10.1007/978-0-387-85820-3

2.	 Rendle, S., Zhang, L., Koren, Y. (2019). On the Difficulty of Evaluating Baselines: A Study on Recommender Systems. arXiv.org.

Available at: https://arxiv.org/abs/1905.01395

3.	 Dacrema, M. F., Cremonesi, P., Jannach, D. (2019). Are we really making much progress? A worrying analysis of recent neu-

ral recommendation approaches. Proceedings of the 13th ACM Conference on Recommender Systems. doi: https://doi.

org/10.1145/3298689.3347058

4.	 Aggarwal, C. C. (2016). Recommender Systems. Springer, 498. doi: https://doi.org/10.1007/978-3-319-29659-3

5.	 Fathan, G., Bharata Adji, T., Ferdiana, R. (2018). Impact of Matrix Factorization and Regularization Hyperparameter on a Re

commender System for Movies. Proceeding of the Electrical Engineering Computer Science and Informatics, 5 (5), 113–116.

doi: https://doi.org/10.11591/eecsi.v5i5.1685

6.	 Harper, F. M., Konstan, J. A. (2016). The MovieLens Datasets. ACM Transactions on Interactive Intelligent Systems, 5 (4), 1–19.

doi: https://doi.org/10.1145/2827872

7.	 Galuzzi, B. G., Giordani, I., Candelieri, A., Perego, R., Archetti, F. (2020). Hyperparameter optimization for recommender systems through

Bayesian optimization. Computational Management Science, 17 (4), 495–515. doi: https://doi.org/10.1007/s10287-020-00376-3

8.	 Nechaev, A. A., Meltsov, V. Yu. (2021). Investigating the hyperparameter configuration space of matrix factorization recommenda-

tion models. Nauchno-tekhnicheskiy vestnik Povolzh’ya, 5, 96–100. Available at: https://elibrary.ru/item.asp?id = 46124660

9.	 Tran, T., Lee, K., Liao, Y., Lee, D. (2018). Regularizing Matrix Factorization with User and Item Embeddings for Recommendation.

Proceedings of the 27th ACM International Conference on Information and Knowledge Management. doi: https://doi.org/

10.1145/3269206.3271730

10.	 Feurer, M., Hutter, F. (2019). Hyperparameter Optimization. The Springer Series on Challenges in Machine Learning, 3–33.

doi: https://doi.org/10.1007/978-3-030-05318-5_1

11.	 Snoek, J., Larochelle, H., Adams, R. P. (2012). Practical Bayesian Optimization of Machine Learning Algorithms. arXiv.org. Avail-

able at: https://arxiv.org/abs/1206.2944

12.	 McLeod, M., Osborne, M. A., Roberts, S. J. (2018). Practical Bayesian Optimization for Variable Cost Objectives. arXiv.org. Avail-

able at: https://arxiv.org/abs/1703.04335

13.	 Chen, Y., Chen, B., He, X., Gao, C., Li, Y., Lou, J.-G., Wang, Y. (2019). λOpt. Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. doi: https://doi.org/10.1145/3292500.3330880

14.	 Xian, Z., Li, Q., Li, G., Li, L. (2017). New Collaborative Filtering Algorithms Based on SVD++ and Differential Privacy. Mathema

tical Problems in Engineering, 2017, 1–14. doi: https://doi.org/10.1155/2017/1975719

15.	 Shi, W., Wang, L., Qin, J. (2020). User Embedding for Rating Prediction in SVD++-Based Collaborative Filtering. Symmetry,

12 (1), 121. doi: https://doi.org/10.3390/sym12010121

16.	 Cline, A. K., Dhillon, I. S. (2006). Computation of the Singular Value Decomposition. Handbook of Linear Algebra, 45-1–45-13.

doi: https://doi.org/10.1201/9781420010572-45

17.	 Nechaev, A. (2021). Speeding up Bayesian Optimization of Matrix Factorization Recommender Models Hyperparameters. GitHub.

Available at: https://github.com/dapqa/speeding-up-bo-for-cf-public

18.	 Zhao, E. (2018). Optimized-for-speed Eigen implementations of SVD, SVD++ and TimeSVD++ algorithms. Available at: https://

github.com/dapqa/svdistic

19.	 Nogueira, F. (2014). Bayesian Optimization: Open source constrained global optimization tool for Python. Available at:

https://github.com/fmfn/BayesianOptimization

