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This paper reports a study that has established 
the possibility of improving the effectiveness of the 
method of figurative transformations in order to 
minimize symmetrical Boolean functions in the main 
and polynomial bases. Prospective reserves in the 
analytical method were identified, such as simpli-
fication of polynomial function conjuncterms using 
the created equivalent transformations based on the 
method of inserting the same conjuncterms followed 
by the operation of super-gluing the variables.

The method of figurative transformations was 
extended to the process of minimizing the symmet-
rical Boolean functions with the help of algebra in 
terms of rules for simplifying the functions of the 
main and polynomial bases and developed equiva-
lent transformations of conjuncterms. It was estab-
lished that the simplification of symmetric Boolean 
functions by the method of figurative transforma-
tions is based on a flowchart with repetition, which is 
the actual truth table of the assigned function. This is  
a sufficient resource to minimize symmetrical Boolean 
functions that makes it possible to do without auxilia-
ry objects, such as Karnaugh maps, cubes, etc.

The perfect normal form of symmetrical functions 
can be represented by binary matrices that would 
represent the terms of symmetrical Boolean functions 
and the OR or XOR operation for them.

The experimental study has confirmed that the 
method of figurative transformations that employs 
the 2-(n, b)-design, and 2-(n, x/b)-design combina-
torial systems improves the efficiency of minimizing 
symmetrical Boolean functions. Compared to ana-
logs, this makes it possible to enhance the producti
vity of minimizing symmetrical Boolean functions  
by 100–200 %.

There are grounds to assert the possibility of 
improving the effectiveness of minimizing symmet-
rical Boolean functions in the main and polynomial 
bases by the method of figurative transformations. 
This is ensured, in particular, by using the deve
loped equivalent transformations of polynomial func-
tion conjuncterms based on the method of inserting 
similar conjuncterms followed by the operation of 
super-gluing the variables
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1. Introduction

Given the practical expediency, the special classes of 
Boolean functions are typically preferred, in particular sym-
metrical functions (SFs) [1–3]. Due to their extensive func-
tionality, symmetrical functions simulate a considerable 
number of computational components, in particular, n-input 
1-bit binary code adders or (non)parity schemes, compara-
tors, error detection devices, defective code decoders, etc. On 

the other hand, to synthesize symmetrical functions, special 
partial approaches that are not inherent in the general case 
can be used, which mainly produce better results in the im-
plementation of digital components [4–6].

The importance of such functions was first recognized 
in work [1], in which the basic concepts, definitions, and 
properties of SFs were introduced. In practice, the problems 
of SF decomposition and the problems of synthesizing the 
optimal logical schemes based on them [7–14] are of interest.
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The Boolean function f (x1, x2, …, xn) is symmetric with 
respect to the variables x1, x2, …, xn if, for any substitution:
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the following equality holds:

f x x x x f x x x xk k n j j j jk k n1 1 1 1
,..., , ,..., ,..., , ,..., .+( ) = ( )+

Typically, symmetry refers to the permutations of object 
parameters that leave it unchanged. They give an idea of the 
structure of an object that can be used to facilitate calcu-
lations on it. Permutations can also serve as a guideline for 
maintaining this structure when an object is transformed in 
a certain way. Thus, the symmetry for Boolean functions is 
the permutation of variables with a possible addition, which 
leaves the values of functions unchanged (Fig. 1).
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Fig. 1. Illustration of the Boolean function symmetry

This property of symmetrical functions makes it possible 
to optimize logical synthesis in the design of digital circuits.

The simplest examples of symmetrical functions are 
functions submitted by the disjunction and conjunction of 
non-inverted variables:

f A B A B B A, ;( ) = + = +

f A B AB BA, .( ) = =

The peculiarity of minimizing Boolean functions by the 
method of figurative transformations is the use of binary 
matrices with a list of rules for the equivalent transformation 
of conjuncterms or max terms of the predefined functions. 
The result of simplifying the terms in a binary matrix is some 
universal function, metadata that can explain other data, for 
example, to derive a minimum Boolean function for another 
basis. That defines the eidos (hermeneutics) of logical ope
rations on binary structures, as well as instances of classes 
of functions of logical bases on binary matrices. The eidos 
of logical operations on 2-dimensional binary structures, as  
a clear presence of the abstract, makes it possible to focus on 
what the object does, not how it does it.

The evolution of the visual-matrix form of the analytical 
method is the result of the introduction of new logical operations 
for simplifying logical functions. In particular, these are the ope
rations of super-gluing the variables, incomplete super-gluing 
the variables, doubling the constituents followed by the ope
ration of simple gluing the variables, inserting similar conjunc-
terms followed by the operation of super-gluing the variables.

Those objects (logical operations) still make it possible 
in practice to increase the hardware capabilities of minimiz-
ing symmetrical Boolean functions by analytical method, to 
increase the control function, which warrants the optimal 
result, and to practically bypass, to some extent, without the 
use of automation of the process of minimizing symmetrical 

functions in the main and polynomial bases. The interpre-
tation of the result of using those logical operations is that 
there are no symmetric logical functions (except for minimal 
ones), which cannot be simplified.

Thus, a relevant aspect of theoretical research into the 
minimization of symmetrical Boolean functions by the me
thod of figurative transformations is to identify opportunities 
for improvement and expansion of the apparatus of synthesis 
of arithmetic components based on symmetrical functions 
for their application in digital technologies. Specifically, still 
relevant are theoretical studies on minimizing symmetrical 
Boolean functions, aimed at improving such factors as:

– the visual-matrix methods for minimizing symmetrical 
Boolean functions of the main and polynomial bases; 

– the cost of technology to minimize symmetrical Bool-
ean functions; 

– ensuring the reliability of the result from minimizing 
symmetrical Boolean functions.

2. Literature review and problem statement

The method of synthesis of symmetric logical functions 
generated by schemes in the worst case with a depth of O(log2n) 
was proposed in work [15]. It was noted that the reported me
thod for synthesizing symmetrical functions is the first, which 
is aimed at reducing the depth of logical schemes generated 
for symmetrical Boolean functions. The experimental results 
demonstrated that the approach in question reduces the depth 
of the final implementation of the function to 25.93 % compared 
to other methods of synthesis of symmetrical functions.

The matrix method of parallel decomposition to mini-
mize symmetrical Boolean functions in orthogonal form is 
presented in work [16]. The results obtained when using 
that method, compared to the use of Zhegalkin polynomials, 
demonstrate the improved indicators of the complexity of 
the implementation of schemes of digital devices. Due to the 
polarization of inputs of Boolean functions, the method can 
be used as one of the components of the complete matrix me
thod of parallel decomposition to obtain a complex minimum 
form of Boolean functions, which has better implementation 
indicators compared to classical forms of representation of 
Boolean functions. The peculiarity of the method is the use of 
already prepared extended matrices and tables of a complete 
list of conjunctive sets, which can significantly reduce the 
time of minimization of the predefined function.

Two parallel algorithms for solving the problem of finding 
exact ESOP expressions for an arbitrary Boolean function 
are proposed in work [17]. Since this minimization problem 
is very complex, the solution is only available for the seven 
variables of the assigned function. The processing time of 
some symmetric functions of the seven variables is about  
a week. With the help of the proposed algorithm, which is 
hybrid (OpenMP, MPI), for a cluster of three nodes and with 
four cores, it is possible to achieve more than nine times the 
acceleration of the calculation of the task.

A special metric that motivates Boolean functions is 
multiplicative complexity (MC): the minimum number of 
AND gateways, which is sufficient to implement a Boolean 
function based on {XOR, AND, NOT}. Paper [18] examines 
MC of the symmetrical Boolean functions, the output of 
which is invariant in the reordering of input variables. Based 
on the Hemming weights method, new methods are intro-
duced that allow the synthesis of circuits with fewer logical 
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elements of AND, compared to the upper limit. Work [18] 
presents the generation of schemes for all such functions up 
to 25 variables. As a special focus, the authors report specific 
upper limits for MC of the elementary symmetric functions 

k

n∑  and counting functions 
k

n∑  up to n = 25 input variables. 

In addition, the upper limits of the maximum MC in the class 
of n-variable symmetric Boolean functions for each n to 132 
are demonstrated.

Classic two-variable symmetry plays an important role 
in many EDA applications, ranging from logical synthesis 
to formal verification. Paper [19] proposes a complete cir-
cuit-based method that uses structural analysis, integrated 
modeling, and logical matching for the rapid and scalable 
detection of classic symmetry of fully-set Boolean functions. 
Experimental results demonstrate that the proposed method 
works for Boolean functions with a large number of variables 
for which BDD cannot be constructed.

The algorithm for minimizing the Reed-Muller functions 
at fixed polarity (FPRM) for polynomial time for fully sym-
metrical Boolean functions based on ordered functional de-
cision-making diagrams (OFDD) is presented in paper [20]. 
The generalization of the minimization algorithm for par-
tially symmetrical functions was investigated. The minimi-
zation algorithm is implemented as a Sympathy program. 
The advantages of the proposed algorithm are illustrated by 
examples and experimental results of minimizing symmetric 
functions in the FPRM class.

The new PSDKRO implementation method is considered 
in paper [21]. The Pseudo Kronecker (PSDKRO) expressions 
are the AND/EXOR class of logical functions. The paper 
proves that the exact minimization of PSDKRO for fully 
symmetrical functions can be done over a polynomial time. Ex-
perimental results of simplification of symmetrical functions 
are presented to compare the effectiveness of the approach in 
question with other methods of AND/EXOR minimization.

Abbreviated ordered decision-making binary dia-
grams (ROBDDs) are data structures that are often used to 
present and manipulate logical functions. Because ROBDD 
size is extremely sensitive to ordering variables in a chart, 
many heuristics have been designed to get the optimal or-
der of variables. For a class of partially symmetric Boolean 
functions, paper [22] demonstrates a new general method of 
improving the quality of heuristics of ordering ROBDD va
riables based on the exchange of variables. To demonstrate the 
effectiveness of the approach in question, statistical and con-
trol results of ordering variables on ROBDD are presented.

Symmetrical and partially symmetrical functions are 
studied from an algebraic point of view. Work [23] con-
siders tests for the detection of such properties. A more 
general approach is presented, which includes the concept 
of ρ-symmetrical Boolean functions. The canonical form for 
ρ-symmetrical functions is derived, which leads to synthesis 
procedures that improve Shannon’s results.

Paper [24] proposes a method for identifying types of 
symmetry based on the specified classification (asymmetry, 
simple symmetry, anti-symmetry, poly symmetry, pseudo 
symmetry) in Boolean functions n variables using so-called 
decomposition clones formed by q-separation of specified 
minterms. The theorem on the basis of which it is possible 
to find and identify different types of symmetry of Boolean 
functions by methods easier than known ones is formulated. 
The advantages of the described authentication algorithm 
are illustrated using an example.

The reviewed literary sources [15–24] mainly report me
thods of minimizing symmetrical Boolean functions in the 
Boolean and Reed-Muller bases. There are methods for simpli-
fying symmetrical Boolean functions that use theoretical ob-
jects of contiguous theory as Hemming scales, ordered binary 
decision-making diagrams (ROBDDs), etc. The algorithms for 
the implementation of the considered methods are evaluated 
by polynomial complexity. A mandatory technological point 
for the implementation of those algorithms and methods is 
the need for automated calculations. In the complex search for 
the optimal function, compensation may be an approximate 
synthesis – the tendency of logical synthesis, when some re-
sults of the logical specification change within the permissible 
non-optimality of the digital circuit to be designed.

A method of figurative transformations based on binary 
combinatorial systems with repeated 2-(n, b)-design, 2-(n, x/b)- 
design belongs to the visual-matrix form of the analytical 
method [25] by qualification and does not exclude the manual 
technique for minimizing symmetric Boolean functions.

Thus, the algorithms and methods, the software tools de-
signed for them, covering the general procedure for minimiz-
ing symmetrical Boolean functions [15–24] and the method 
of figurative transformations take different approaches (prin-
ciples of minimization). Therefore, they imply different pros-
pects regarding the possibility of algorithmic minimization of 
symmetrical Boolean functions.

The prospect of the method of figurative transformations, 
as a descendant of the analytical method, regarding the 
proper minimization of symmetric logical functions in the 
Reed-Muller basis is the creation of the necessary algebra in 
terms of the rules for the equivalent transformation of poly-
nomial functions [26]. As well as new developed equivalent 
transformations of conjuncterms in the polynomial normal 
form (PNF) based on the method of inserting similar con-
juncterms with the following operation of super-gluing the 
variables (chapter 5. 1). Thus, the classical analytical method 
still has the prospect of increasing its hardware capabilities 
in relation to the minimization of symmetrical Boolean 
functions. And this is the reason to believe that the software 
and technological base, which is represented by algorithms  
and methods with theoretical objects of adjacent theo-
ries [15–24], is insufficient to conduct theoretical research 
on the optimal minimization of symmetrical Boolean func-
tions, in particular in the Reed-Muller basis.

This predetermines the need for research involving equi
valent figurative transformations in order to minimize sym-
metrical Boolean functions. In particular, with a procedure 
that uses equivalent transformations of PNF conjuncterms 
based on the method of inserting similar conjuncterms of 
polynomial functions with the following operation of super- 
gluing the variables (chapter 5. 1.).

In the practical aspect, a method of figurative transfor-
mations will ensure the expansion of possibilities of tech-
nology design of digital components based on symmetric  
Boolean functions in the main ∨ ∧ ¬{ }, ,  and polynomial 
∧ ⊕{ }, ,1  bases.

3. The aim and objectives of the study

The purpose of this work is to extend the method of figu-
rative transformations to minimize symmetrical Boolean func-
tions in the class of perfect disjunctive normal forms (PDNFs), 
perfect conjunctive normal forms (PCNFs), and perfect 
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polynomial normal forms (PPNFs). This will make it possible  
to simplify, increase the productivity of minimization of sym-
metrical Boolean functions in the main and polynomial bases 
by using the algebraic apparatus of the specified bases.

To accomplish the aim, the following tasks have been set:
– to establish the equivalent transformations of a normal 

polynomial form by inserting similar conjuncterms with the 
following operation of super-gluing the variables;

– to analyze the results of simplification of symmetric 
Boolean functions in the main basis {I, OR, NOT} by the 
method of figurative transformations and examples of mini
mizing symmetric functions in the Boole basis in order to 
compare the cost of implementing the minimum symmetric 
function and the number of procedural steps;

– to analyze the results of simplification of symmetric 
Boolean functions in the Reed-Muller basis by the method of 
figurative transformations and examples of minimizing sym-
metric functions in a polynomial basis in order to compare 
the cost of implementing a minimum symmetric function and 
the number of procedural steps;

– to conduct a comparative analysis of the results of 
simplification of Boolean functions with partial symmetry 
by the method of figurative transformations and decomposi-
tion methods in order to compare the cost of implementing  
the minimum symmetric function and the number of proce-
dural steps;

– to optimize the logical structure of the symmetrical 
4-input binary code adder.

4. The study materials and methods

The peculiarity of minimizing symmetrical Boolean func-
tions is that not all such functions are simplified in a perfect 
disjunctive normal form (PDNF) or in a perfect conjunctive 
normal form (PCNF) of the main basis ∨ ∧ ¬{ }, , .  Using an 
element basis of only one functionally complete system of 
switch functions, in a general case, does not provide condi-
tions for obtaining the optimal combination scheme. As the 
practice of designing logical circuits by combining element 
bases that belong to several functionally complete sys-
tems (for example, {I, OR, NOT} systems) makes it possible 
to build optimal combination schemes (in terms of hardware 
complexity and performance), including the use of symmet-
rical Boolean functions.

Example 1. The Boolean symmetrical function (SF) is  
a function equal to 1 on Cn

a  sets of variables that have exactly 
a unities on all these sets [27]. The number a is termed the 
SF index. The fundamental SF is a function with one index, 
the peculiarity of which is the impossibility of using the ope
ration of gluing the variables for the Boole basis ∨ ∧ ¬{ }, , . 
Thus, the fundamental SF of 3 variables with the index a = 1 
in the Boole basis is written in the following form (1) [27]:

H x x x x x x x x x3 1 2 3 1 2 3 1 2 31( ) = + + . 	 (1)

Symmetrical function (1) represents a 3-level logic whose 
cost of implementation is  k k kl inθ / / / / ,= 3 9 6  where kθ, kl, 
kin is the number of conjuncterms, literals, and inverters, 
respectively [28]. 

However, symmetric function (1) can be simplified on  
a polynomial basis ∧ ⊕{ }, ,1  with the transition to a mixed basis. 
Since function (1) is singular [26], let us dig into the Reed-
Muller algebra. We obtain:

H

x x x x

3

2 3 1

1

1 0 0

0 1 0

0 0 1

0 1 1

0 1 1

1 0 0

0 0 0

0 0

0 1 0

0 0 1

0 0 0

0 1 1

0( ) = = = =
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min

11 2 3 2 3 1 2 3

2 3 1 2 3 2 3 1 2 3

1 2 3

x x x x x x x

x x x x x x x x x x

x x x

= ⊕ =

= ⊕ +( ) = ⊕ =

= +( )⊕ xx x2 3+( ). 	 (2)

The minimum symmetric function (MSF) of the function 
Н3(1) (1) in a mixed base is:

H x x x x x3 1 2 3 2 31( ) = +( )⊕ +( )min
. 	 (3)

MSF (3) represents a 3-level logic whose cost of imple-
mentation is:

 k k kl inθ / / / / ,= 2 5 0

which is four literals less compared to (1) [27].
To simplify function (2), the procedure of inserting 

similar conjuncterms was applied to the polynomial normal 
form (PNF) with the following operation of super-gluing the 
variables [26].

When meditating on MSF (3), we envision that the per-
mutation of the variables x2 and x3 would not change the va
lue of the function. Thus, function (3) has partial symmetry 
for variables with indices 2 and 3. 

The verification of the derived MSF (3) is given in Table 1.

Table 1

MSF (3) verification – x x x x x1 2 3 2 3+( )⊕ +( )

No. x1 x2 x3 Н3(1) (4) x x x x x1 2 3 2 3+( )⊕ +( ) Н3(1)min

1 0 0 1 1 0 0 1 0 11 2 3 2 3+( )⊕ +( ) 1

2 0 1 0 1 0 1 0 1 01 2 3 2 3+( )⊕ +( ) 1

4 1 0 0 1 1 0 0 0 01 2 3 2 3+( )⊕ +( ) 1

Table 1 demonstrates that MSF (3) x x x x x1 2 3 2 3+( )⊕ +( ) 
satisfies the assigned logical function Н3(1) (1).

Example 2. It is required to simplify the Boolean function 
with partial symmetry given in algebraic form (4):

y x x x x x x x x x x x x x x x x

x x x x x x x x x

= + + + +

+ + +

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 11 2 3 4 1 2 3 4x x x x x x x+ . 	 (4)

Permutation of variables x3 and x4 does not change the 
value of function (4).

Solution. 
Simplification of function (4) implies the PPNF repre-

sentation with the transition to the Reed-Muller basis:
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ymin = =
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x x

x x x x x x x x .

The minimum symmetric function (MSF) of function (4) 
in the Reed-Muller basis is (5):

y x x x xmin .= ⊕ ⊕ ⊕1 2 3 4 	 (5)

Function (5) has complete symmetry – permutation of 
any pair of variables does not change the value of the function.

5. Results of minimizing the symmetric Boolean functions 
by the method of figurative transformations

The equivalent figurative transformations when minimiz-
ing symmetric Boolean functions produce the following result:

– they make it possible to set the equivalent transforma-
tions of a normal polynomial form by inserting similar conjunc-
terms with the following operation of super-gluing the variables;

– they provide analysis of the results of simplification of 
symmetrical Boolean functions in the main basis {I, OR, NOT}  
and examples of minimization of symmetrical functions in the 
Boole basis in order to compare the cost of implementing the mi
nimum symmetrical function and the number of procedural steps;

– they provide analysis of the results of simplification of 
symmetrical Boolean functions in the Reed-Muller basis and 
examples of minimizing symmetrical functions in a polynomi-
al basis in order to compare the cost of implementing a mini-
mum symmetric function and the number of procedural steps;

– they provide a comparative analysis of the results of 
simplification of Boolean functions with partial symmetry 
and examples of reducing the complexity of the implementa-
tion of Boolean functions with partial symmetry;

– they provide a comparative analysis of the results of simpli-
fication of Boolean functions with partial symmetry by the me
thod of figurative transformations and decomposition methods;

– they optimize the logical structure of the symmetrical 
4-input binary code adder.

5. 1. Deriving equivalent transformations of a polyno
mial function by the method of inserting similar conjuncterms

The procedure for inserting similar conjuncterms with 
the following operation of super-gluing the variables [26] 
makes it possible to derive equivalent transformations of the 
normal polynomial form of Boolean functions. 

Some equivalent transformations of a normal polynomial 
form are derived as follows:
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Since the fourth matrix is singular, it is necessary to 
proceed to the algebra of the main basis ∨ ∧ ¬{ }, ,  in it and 
perform the operation of semi-gluing the variables. Thus:

x x x x x x x x x x

x x x x x x x
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Since the fourth matrix is singular, we select in it the 
algebra of the main basis ∨ ∧ ¬{ }, ,  and perform the operation 
of semi-gluing the variables. In the fifth matrix, the operation  
of semi-gluing the variables is also carried out. Thus:

x x x x x x x x

x x x x x x

x x x x

1 2 3 4 1 2 3 4

1 2 1 3 1 4

1 2 1

1

⊕ =

= ⊕ ⊕( ) + ⊕( ) + ⊕( ) =

= ⊕( ) + ⊕ 33 1 4

1 2 1 3 1 4 1 2 1 3 1 4

( ) + ⊕( ) =

= ⊕( ) ⊕( ) ⊕( ) = ⊕( ) ⊕( ) ⊕( )
x x

x x x x x x x x x x x x .

The next equivalent transformation is derived by induction.

x x x x x x x x x x

x x x x x x x x
1 2 3 4 5 1 2 3 4 5

1 2 1 3 1 4 1 51

⊕ =

= ⊕ ⊕( ) + ⊕( ) + ⊕( ) + ⊕( ) =

= (( x x x x x x x x

x x x x x x x

1 2 1 3 1 4 1 5

1 2 1 3 1 4 1

⊕( ) + ⊕( ) + ⊕( ) + ⊕( ) =

= ⊕( ) ⊕( ) ⊕( ) ⊕⊕( ) =

= ⊕( ) ⊕( ) ⊕( ) ⊕( )
x

x x x x x x x x

5

1 2 1 3 1 4 1 5 .

Some examples of the equivalent transformations of PNF 
and DNF, based on the results of the procedure for inserting 
similar conjuncterms with the following operation of super- 
gluing the variables, are given in Tables 2, 3, respectively.

Algebraic expressions in the left column in Table 2 are 
singular [26], so the latter can be represented in the main 
basis ∨ ∧ ¬{ }, ,  (Table 3).

When meditating on Tables 2, 3, we envision that the 
logical operation of the x x x x1 2 1 2+  equivalence is a partial 
case on a set of similar equivalent transformations of Boolean 
expressions. 

Example 3. It is required to simplify the Boolean function 
set in canonical form (6) [29]:

f x x x x1 2 3 4 0 1 6 8 11 14 15, , , , , , , , ,( ) = ( ) 	 (6)

by applying the method of inserting similar conjuncterms 
with the following operation of super-gluing the variables. 

Solution. 
When simplifying function (6), work [29] reported the 

following result:

Y ⊕ ⊕
= − − −( ) − − −( ) −( ) ( ){ }1 0 10 1 0111, , , . 	 (7)

We shall apply to the conjuncterms – 10 1 0111 1 2 4 1 2 3 4−( ) ( ){ } = ⊕
⊕

, x x x x x x x 
10 1 0111 1 2 4 1 2 3 4−( ) ( ){ } = ⊕

⊕
, x x x x x x x  of function (7) a method of inserting 

similar conjuncterms with the following operation of super- 
gluing the variables:

1 0 1
0 1 1 1

1 0 0 1
1 0 1 1
0 1 1 1

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1
0 0 1 0
0 0 1 0
0 0 1 1
0 0 1 1
0 1 0 0

= =

=

00 1 0 0
0 1 0 1
0 1 0 1
0 1 1 0
0 1 1 0
0 1 1 1

1 0 0 0
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 0
1 11 0 1
1 1 0 1
1 1 1 0
1 1 1 0
1 1 1 1
1 1 1 1

1

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
1 0 0

= ⊕
00

1 0 1 0
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

1

0 0
0 1 0 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1

1

0 0
0 1 0

=

= ⊕ = ⊕ 00 1 1 0
1 0 0
1 1

1

0 0
0 1 0
0 1 0
1 0 0
1 1

1

0 0
1 0
1 0

1 0
1 1

1

0 0
1 0
1 0

1 0
0 0

1 1

1

=

= ⊕ = ⊕ =

= ⊕ = ⊕⊕ =

= ⊕ = ⊕ ⊕( ) + +( ) =

= ⊕ + + =

0 0
1 0

0
1 0
1 1

1

0 0
1 0

0
1 1

1 1 2 2 3 4

1 2 2 3 4

x x x x x

x x x x x xx x x x x

x x x x x

1 2 2 3 4

1 2 2 3 4

⊕( )( ) =

= ⊕( ) +( ) .

Table 2
Table of some equivalent transformations of PNF conjuncterms

x x x x1 2 1 2⊕ x x1 2⊕( )
x x x x x x1 2 3 1 2 3⊕ x x x x1 2 1 3⊕( ) ⊕( )
x x x x x x1 2 3 1 2 3⊕ x x x x1 2 2 3⊕( ) ⊕( )
x x x x x x x x1 2 3 4 1 2 3 4⊕ x x x x x x1 2 1 3 1 4⊕( ) ⊕( ) ⊕( )
x x x x x x x x1 2 3 4 1 2 3 4⊕ x x x x x x1 2 1 4 2 3⊕( ) ⊕( ) ⊕( )
x x x x x x x x1 2 3 4 1 2 3 4⊕ x x x x x x1 2 1 3 1 4⊕( ) ⊕( ) ⊕( )
x x x x x x x x x x1 2 3 4 5 1 2 3 4 5⊕ x x x x x x x x1 2 1 3 1 4 1 5⊕( ) ⊕( ) ⊕( ) ⊕( )
x x x x x x x x x x x x1 2 3 4 5 6 1 2 3 4 5 6⊕ x x x x x x x x x x1 2 1 3 1 4 1 5 1 6⊕( ) ⊕( ) ⊕( ) ⊕( ) ⊕( )

Table 3
Table of some equivalent transformations of DNF minterms

x x x x1 2 1 2+ x x1 2⊕( )
x x x x x x1 2 3 1 2 3+ x x x x1 2 1 3⊕( ) ⊕( )
x x x x x x1 2 3 1 2 3+ x x x x1 2 2 3⊕( ) ⊕( )
x x x x x x x x1 2 3 4 1 2 3 4+ x x x x x x1 2 1 3 1 4⊕( ) ⊕( ) ⊕( )
x x x x x x x x1 2 3 4 1 2 3 4+ x x x x x x1 2 1 4 2 3⊕( ) ⊕( ) ⊕( )
x x x x x x x x1 2 3 4 1 2 3 4+ x x x x x x1 2 1 3 1 4⊕( ) ⊕( ) ⊕( )
x x x x x x x x x x1 2 3 4 5 1 2 3 4 5+ x x x x x x x x1 2 1 3 1 4 1 5⊕( ) ⊕( ) ⊕( ) ⊕( )
x x x x x x x x x x x x1 2 3 4 5 6 1 2 3 4 5 6+ x x x x x x x x x x1 2 1 3 1 4 1 5 1 6⊕( ) ⊕( ) ⊕( ) ⊕( ) ⊕( )
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Since the sixth matrix is singular, in it we choose the al-
gebra of the main basis ∨ ∧ ¬{ }, ,  and perform the operation of 
semi-gluing the variables. The result of semi-gluing the vari-
ables is written to the seventh matrix. In the seventh matrix, 
the operation of semi-gluing the variables is also carried out.  
The result is written to the eighth matrix. In matrices 8, 9, the 
operation of generalized gluing of variables was carried out.  
In matrix 10, the operation of absorption of variables was car-
ried out. The result of the absorption of variables is recorded 
to matrix 11.

Post-simplification x x x x x x x1 2 4 1 2 3 4⊕  conjunctures take 
the following form (8):

x x x x x1 2 2 3 4⊕( ) +( ) . 	 (8)

Thus, expression (8) includes two literals less compared 
to the expression of conjuncterms x x x x x x x1 2 4 1 2 3 4⊕ . The 
verification of the result in (8) is given in Table 4.

When meditating on Table 4, we envision that the sim-
plified expression (8) – x x x x x1 2 2 3 4⊕( ) +( ) . satisfies the as- 
signed conjuncterms x x x x x x x1 2 4 1 2 3 4⊕  of function (7). Re-
placing the conjuncterms x x x x x x x1 2 4 1 2 3 4⊕  of function (7) 
with expression (8) produces the minimum function in the 
mixed basis:

Y x x x x x x x= ⊕ ⊕ ⊕( ) +( )3 2 1 2 2 3 4,

which includes two literals less compared to (7) [29].

5. 2. Minimizing the symmetrical Boolean functions in 
the main basis by the method of figurative transformations

In a general case, SF can have several indexes. For exam-
ple, the following SF:

H x x x x x x x x x

x x x x x x x x x

3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2,

,

( ) = + + +

+ + + 	 (9)

has two indexes: a = 1 and a = 2. Here, the variable sets 
x x x1 2 3; x x x1 2 3; x x x1 2 3  have one 1, and the variable sets 
x x x1 2 3; x x x1 2 3;  x x x1 2 3  have two 1’s. Since the SF inde
xes (9) differ by unity, the operation of gluing the variables 
in the main basis ∨ ∧ ¬{ }, ,  is possible [27].

Example 4. Use the method of figurative transformations 
to simplify the symmetric function H3(1,2) (9) [27]:

Solution. 
Represent the equivalent binary matrix of the function 

H3(1,2) in lexicographic order and simplify H3(1,2) in the 
PPNF representation with the transition to the mixed basis.

H

x x x

3

1 2

1 2

0 0 1

1 1 0

0 0 1

1 1 0

0 1

0 1

1 0

1 0

0 1 0

0 1 1 0 1

1 0 0

1 0 1

1 0
,

min( ) = = =

= = ⊕ + 11 3⊕ x . 	 (10)

In the first matrix (10), simple gluing of variables was 
carried out, the result of the gluing is recorded in the second 
matrix. In the second matrix (10), the semi-gluing of vari-
ables was carried out, the result of semi-gluing the variables 
is written to the third matrix.

The MFS of function H

x x x x
3

1 2 1 3

1 2,

.
min( ) =

= ⊕ + ⊕

(1,2) 
(10) in the mixed basis is (11):

H

x x x x
3

1 2 1 3

1 2,

.
min( ) =

= ⊕ + ⊕ 	 (11)

MSF (11) presents a 2-level 
logic whose cost of implementa-
tion is:

 k k kl inθ / / / / ,= 2 4 0

which is two literals less compa
red to [27].

Considering MSF (11), it is clear that the permutation 
of the variables x2 and x3 would not change the value of the 
function. Thus, the minimum function (11) in the mixed ba-
sis has a partial symmetry of the variables x2 and x3.

Example 5. Use the method of figurative transformations 
to simplify the symmetric function H4 2 3

0 0 1 1
0 1 0 1

0 0 1 1
0

0 1 1 0
0 1 1 1
1 0 0 1

1 1 0 1

1 0 1 0
1 0 1 1
1 1 0 0

1 1 1 0

,
min( ) =

= =

11 0 1
0 1 1
0 1 1
0 1 1
1 0 1
1 0 1
1 1 0

0 1 1

1 0 1

0 1 1

0 1 1

1 0 1

1 1

1 0 1

0 1 1

1 1 0

1 0 1
1 1 0

= =

= =

11 1

1 1

1 1

1 1
1 1

4 1 3 3 1 2 2 1 4

=

= + ⊕( ) +⊕( ) ⊕( )x x x x x x x x x .

(2,3) set by a Karnaugh 
map (Fig. 2) [27].

We shall represent the equivalent binary matrix of func-
tion H4 2 3

0 0 1 1
0 1 0 1

0 0 1 1
0

0 1 1 0
0 1 1 1
1 0 0 1

1 1 0 1

1 0 1 0
1 0 1 1
1 1 0 0

1 1 1 0

,
min( ) =

= =

11 0 1
0 1 1
0 1 1
0 1 1
1 0 1
1 0 1
1 1 0

0 1 1

1 0 1

0 1 1

0 1 1

1 0 1

1 1

1 0 1

0 1 1

1 1 0

1 0 1
1 1 0

= =

= =

11 1

1 1

1 1

1 1
1 1

4 1 3 3 1 2 2 1 4

=

= + ⊕( ) +⊕( ) ⊕( )x x x x x x x x x .

(2,3) (Fig. 2) in lexicographic order and simplify  
H4 2 3

0 0 1 1
0 1 0 1

0 0 1 1
0

0 1 1 0
0 1 1 1
1 0 0 1

1 1 0 1

1 0 1 0
1 0 1 1
1 1 0 0

1 1 1 0

,
min( ) =

= =

11 0 1
0 1 1
0 1 1
0 1 1
1 0 1
1 0 1
1 1 0

0 1 1

1 0 1

0 1 1

0 1 1

1 0 1

1 1

1 0 1

0 1 1

1 1 0

1 0 1
1 1 0

= =

= =

11 1

1 1

1 1

1 1
1 1

4 1 3 3 1 2 2 1 4

=

= + ⊕( ) +⊕( ) ⊕( )x x x x x x x x x .

(2,3) (Fig. 2) in the PPNF representation with a transi-
tion to the mixed basis:

H4 2 3

0 0 1 1
0 1 0 1

0 0 1 1
0

0 1 1 0
0 1 1 1
1 0 0 1

1 1 0 1

1 0 1 0
1 0 1 1
1 1 0 0

1 1 1 0

,
min( ) =

= =

11 0 1
0 1 1
0 1 1
0 1 1
1 0 1
1 0 1
1 1 0

0 1 1

1 0 1

0 1 1

0 1 1

1 0 1

1 1

1 0 1

0 1 1

1 1 0

1 0 1
1 1 0

= =

= =

11 1

1 1

1 1

1 1
1 1

4 1 3 3 1 2 2 1 4

=

= + ⊕( ) +⊕( ) ⊕( )x x x x x x x x x . 	 (12)

Table 4
Verification of expression x x x x x1 2 2 3 4⊕( ) +( )  (8)

No. x1 x2 x3 x4 x x x x x x x x x x x x1 2 3 4 1 2 3 4 1 2 3 4⊕ ⊕ x x x x x1 2 2 3 4⊕( ) +( ) x x x x x1 2 2 3 4⊕( ) +( )

9 1 0 0 1 1 1 0 0 0 11 2 2 3 4⊕( ) +( ) 1

11 1 0 1 1 1 1 0 0 1 11 2 2 3 4⊕( ) +( ) 1

7 0 1 1 1 1 0 1 1 1 11 2 2 3 4⊕( ) +( ) 1
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00 01 11 10
0 0 1 0
0 1 1 1
1 1 0 1
0 1 1 1

01
11
10

00

1 2x x 3 4x x
x1x2 

x3x4 

Fig. 2. Karnaugh map for the symmetric function H4(2,3)

In the first matrix (12), the simple gluing of variables 
was carried out, the result of the gluing is recorded in the 
second matrix. In the second matrix (12), the semi-gluing of 
variables was carried out, the result of semi-gluing the vari-
ables is written to the third matrix. In the fourth matrix, we 
execute a transition to the mixed basis.

The MSF of function H4(2,3) (Fig. 2) [27] in the mixed 
basis is:

H x x x x x x x x x4 4 1 3 3 1 2 2 1 42 3, .
min( ) = ⊕( ) + ⊕( ) + ⊕( ) 	 (13)

MSF (13) represents a 3-level logic whose cost of imple-
mentation is:

 k k kl inθ / / / / ,= 3 9 0

which is three literals less compared to [27]. 
The permutation of variables x1 and x2 in MSF (13) 

yields the following function (14):

H x x x x x x x x x4 4 2 3 3 1 2 1 2 42 3, .
min( ) = ⊕( )+ ⊕( ) + ⊕( ) 	 (14)

The permutation of variables x3 and x4 in MSF (13) pro-
duces the following function (15):

H x x x x x x x x x4 3 1 4 4 1 2 2 1 32 3, .
min( ) = ⊕( ) + ⊕( ) + ⊕( ) 	 (15)

Both functions (14) and (15) do not change the value of 
function (13). This means that MSF (13) is symmetrical with 
respect to the variables x1, x2, and x3, x4. A similar symmetry 
of MSF (13) is expected with respect to the pairs of variables 
x1, x3; x1, x4; x2, x3, and x2, x4.

Example 6. Use the method of figurative transformations 
to simplify the Boolean function f(x1, x2, x3) with partial 
symmetry given in algebraic form [30]:

f x x x x x x x x x x x x

x x x x x x x x x

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

, ,

.

( ) = + + +

+ + + 	 (16)

Solution. 
Function (16) is partially symmetrical. The permutation of 

variables х1 and х3 does not change the value of the function.
We shall represent the equivalent binary matrix of func-

tion f(x1, x2, x3) (16) in lexicographic order and simplify  
f(x1, x2, x3) (16) in the PDNF representation with a transition 
to the mixed basis:

f x x x

x

1 2 3

1

0 0 0

1 0 0

0 00 0 1

1 1 0

0 0 1

1 1 0

0 0
0 0

1 1
1 1

0 1 1

1 1 1

1 1

, ,
min( ) =

= = = = ⊕ xx x x2 3 4( ) + ⊕( ).

The MSF of function f(x1, x2, x3) (16) [30] in the mixed 
basis takes the following form (17):

f x x x x x x x1 2 3 1 2 3 4, , .
min( ) = ⊕( ) + ⊕( ) 	 (17)

MSFS (17) represents a 3-level logic whose cost of im-
plementation is:

 k k kl inθ / / / / ,= 2 4 2

which is two literals and one term less compared to [30]. 
Function (17) remains partially symmetrical. The per-

mutation of variables with indexes (1,3) does not change the 
value of the function.

5. 3. Minimizing the symmetric Boolean functions in the 
polynomial basis by the method of figurative transformations

Example 7. Use the method of figurative transformations 
to simplify the Boolean function with partial simple symme-
try given in the following algebraic form (18) [31]:

f x x x x x x x x x x x x x1 2 3 4 1 2 3 4 2 3 4 1 2, , , .( ) = ⊕ ⊕ ⊕( ) + 	 (18)

Solution.

f x x x x x x x x x x x x x

x x x x x x x
1 2 3 4 1 2 3 4 2 3 4 1 2

1 2 1 2 2 3 4

, , ,( ) = ⊕ ⊕ ⊕( ) + =

=
⊕ ⊕ ⊕ xx x x

x x x x x x x x
x x x x x x

x x x x x

2 3 4

1 2 3 4 1 2 3 4
1 2 3 1 2 3

1 2 3 1

⊕
⊕ ⊕







+ + =

=
⊕ 22 3 1 2 3 1 2 3

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4

x x x x x x x
x x x x x x x x x x x x
x x x x x

⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ ⊕ 11 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1

x x x x x x x

x x x x x x x x x x x x x

⊕















+

+ + + + xx x x

x x x x x x x x x x x x x x x x
x x x x x x

2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1

=

=

⊕ ⊕ ⊕ ⊕
⊕ ⊕ 22 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

1 2

x x x x x x x x x x
x x x x x x x x x x x x
x x

⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕
⊕ xx x x x x x x x x x

x x x x x x x x x x
3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1

⊕ ⊕



















+

+ + + 22 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2

x x x x x x

x x x x x x x x x x x x x x x x
x x

+ =

=
⊕ ⊕ ⊕ ⊕

⊕ xx x x x x x x x x x x x x x

x x x x x x x x
3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

⊕ ⊕ ⊕






+

+ + + xx x x x x x x x
x x x x x x x x x x x x x x x x
x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

+ =
= + + + +
+ 11 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1

x x x x x x x x x x x x x x x
x x x x x x x x x x

+ + + +
+ + + 22 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2

x x x x x x
x x x x x x x x x x x x x x x x
x x

+ =
= + + + +
+ xx x x x x x x x x x

x x x x x x x x x x x x
3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

0 0 0 0
0

+ + +
+ + + =

=

11 0 1
0 1 1 1

0 0 0 0
0 1 0 1
0 1 1 1
1 0 0 0

1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

1 0 0 0
1= 00 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

1

0 0 0 0
0 1 0 1
0 1 1 1
1 0 0 0

0 0 0
0 1 1
1

1

= = =

= x ++( )⊕x x x x x2 4 2 3 4.
	

	 (19)
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In the first matrix (19), the procedure for inserting 
similar PNF conjuncterms with the following operation of 
super-gluing the variables [26] was applied. The result of the 
procedure is written to the second matrix (19). 

The MSF of function (18) [31] in the mixed basis takes 
the following form (20):

f x x x x x x x x x x1 2 3 4 1 2 4 2 3 4, , , .
min( ) = +( )⊕ 	 (20)

MSF (20) represents a 3-level logic whose cost of imple-
mentation is:

 k k kl inθ / / / / ,= 2 6 3

which is three literals less compared to (18). 
Considering MSF (20), it is clear that the permutation of 

variables x2 and x4; x2  and x4  would not change the value of 
the function.

Therefore, function (20) has a partial simple symmetry 
with respect to the variables x2 and x4 and x2  and x4.

Example 8. It is required to simplify a partially sym-
metrical Boolean function given in the following canonical  
form (21) [32]:

f = ( )0 3 5 6 7 8 9 10 12 15, , , , , , , , , , 	 (21)

by applying the method of inserting similar conjuncterms 
with the following operation of super-gluing the variables. 

Solution. 
In the polynomial format, by applying a Karnaugh map, 

the authors of work [32] simplified function (21) to the fol-
lowing form:

f x x x x x x x x x x x x x x x= ⊕ ⊕ ⊕ ⊕ ⊕1 2 3 2 4 3 4 1 2 3 4 1 2 3 4,

whose cost of implementation is k klθ / / .= 6 15
In paper [29], the same function (21) was simplified to 

the following form:

f x x x x x x x x x x x x x x= ⊕ ⊕ ⊕ ⊕ ⊕1 2 2 3 4 1 3 4 1 2 3 1 2 4,

whose cost of implementation is k klθ / / .= 6 14
Function (21) in article [26] was simplified to the fol-

lowing form:

Y x x x x x x x x x x x xPNF = ⊕ ⊕ ⊕ ⊕ ⊕1 2 3 4 1 2 3 4 1 2 3 4.	 (22)

whose cost of implementation is k klθ / / .= 6 12
We shall apply to the conjuncterms x x x x x x x x1 2 3 4 1 2 3 4⊕  

of function (22) the method of inserting similar conjunc-
terms with the following operation of super-gluing the va
riables; we obtain:

x x x x x x x x x x x x x x1 2 3 4 1 2 3 4 1 2 1 3 1 4⊕ = ⊕( ) ⊕( ) ⊕( ).

The function (22) minimization can be continued:

Y x x x x x x x x x x x x

x x x x x x x

PNF = ⊕ ⊕ ⊕ ⊕ ⊕ =

= ⊕ ⊕ ⊕ ⊕ ⊕( ) ⊕

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 1 xx x x

x x x x x x x x

x x x x

3 1 4

3 4 1 2 1 3 1 4

3 4 1 2

( ) ⊕( ) =

= ⊕ ⊕ ⊕( ) ⊕( ) ⊕( ) =

= ⊕( )⊕ ⊕( ) xx x x x1 3 1 4⊕( ) + ⊕( )( ).

The MSF of function (21) will take the following form (23):

Y x x x x x x x xPNF = ⊕( )⊕ ⊕( ) ⊕( ) + ⊕( )( )3 4 1 2 1 3 1 4 . 	 (23)

The cost of implementing the MSF of (23) is:

 k k kl inθ / / / / ,= 2 8 3

which is seven literals less compared to [32].
The result of the direct simplification of the conjunc-

terms x x x x x x x x1 2 3 4 1 2 3 4⊕  of the function

Y x x x x x x x x x x x xPNF = ⊕ ⊕ ⊕ ⊕ ⊕1 2 3 4 1 2 3 4 1 2 3 4

by the method of inserting similar conjuncterms with the fol-
lowing operation of super-gluing the variables is the expres-
sion x x x x x x1 2 1 3 1 4⊕( ) ⊕( ) ⊕( ). Next, the polynomial absorp-
tion of the variables x x1 2⊕  and x x x x x x1 2 1 3 1 4⊕( ) ⊕( ) ⊕( )  is 
carried out [26], the result of which is the logical expression –  
x x x x x x1 2 1 3 1 4⊕( ) ⊕( ) ⊕( ).

5. 4. Comparing the method of figurative transforma-
tions with the methods of decomposition in the simplifica-
tion of Boolean functions

It is believed that Boolean functions that depend on  
a large number of variables are not minimized optimally [33]. 
In this regard, there is a problem with the decomposition of 
Boolean functions. The solution is to break the source func-
tion into a minimum number of Boolean functions, each of 
which depends on a smaller number of variables compared to 
the original function. There is a decomposition dividing the 
variables of the source function [34] and one that does not 
separate the variables [35].

Example 9. Use the method of figurative transformations 
to simplify the Boolean function given in the disjunctive 
normal form [34]:

F abd bcd ac d ab c= + + + . 	 (24)

Solution.
Function (24) is partially symmetrical. The permutation 

of variables with indexes (2,4) does not change the value of 
function (24):

Fmin = = =

= =

0 1 1
0 1 1 1
0 1 0 1

1 1 1
1 0 0

1 1 1
1 0 0

0 1 0 1
1 1 1

1 0 0
1 0 0 1

1

1 0 0 1 0 0 0
1 0 0 1

00 1
1 1 1

1 0 0
1 0 1

1 1
1 0

=

= = ⊕ac bd .

The minimum function remains partially symmetrical. 
The permutation of variables with indexes (2,4) does not 
change the value of the minimum function.

The results of function (24) simplification by the method 
of figurative transformations and the method of decom
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position coincide but the method of figurative transforma-
tions in a given example is simpler.

Example 10. Use the method of figurative transforma-
tions to simplify the Boolean function given in the disjunc-
tive normal form [35].

f x x x x x x x x x1 2 3 1 2 3 1 2 3, , .( ) = + 	 (25)

Solution. 
Function (25) is symmetrical. The permutation of vari-

ables with any pair of indexes does not change the value of 
function (25).

According to the equivalent transformations of PNF con-
juncterms of Boolean functions (chapter 5. 1.) (Table 2), we 
find the minimum function:

f x x x x x x x x x x x x x1 2 3 1 2 3 1 2 3 1 2 1 3, , .( ) = + = ⊕( ) ⊕( ) 	 (26)

The minimum function remains partially symmetrical. 
The permutation of variables with indexes (2,3) does not 
change the value of the minimum function. 

The results of the simplification of function (25) by the 
method of figurative transformations and by the method of 
decomposition, which does not separate the variables, coin-
cide but the method of figurative transformations in a given 
example is simpler. The logical structure of minimum func-
tion (26) coincides with the logical structure of a two-block 
decomposition, which does not separate the variables [35].

5. 5. Synthesizing a symmetrical 4-input adder of bina-
ry operands

The symmetrical 4-input adder of binary codes is set by 
the truth table (Table 5).

Table 5

Truth table of 4-input symmetric adder

Input Output

No. a1 a2 a3 a4 S2 S1 S0

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 1

2 0 0 1 0 0 0 1

3 0 0 1 1 0 1 0

4 0 1 0 0 0 0 1

5 0 1 0 1 0 1 0

6 0 1 1 0 0 1 0

7 0 1 1 1 0 1 1

8 1 0 0 0 0 0 1

9 1 0 0 1 0 1 0

10 1 0 1 0 0 1 0

11 1 0 1 1 0 1 1

12 1 1 0 0 0 1 0

13 1 1 0 1 0 1 1

14 1 1 1 0 0 1 1

15 1 1 1 1 1 0 0

According to Table 5, adding any single operand a1, a2, 
a3, a4 gives the same value of the amount – 001; adding 
any two pairs of operands a3a4, a2a4, a2a3, a1a4, a1a3, a1a2 
gives the same value of the sum – 010; adding any trio of 
operands a2a3a4, a1a3a4, a1a2a4, a1a2a3 gives the same value 
of the sum  – 011; adding four operands gives the value of 
the sum – 100. Thus, any permutation π  of variable values 
does not change the value of the function, and, therefore the  
4-input adder, given in Table 5, is symmetrical.

The system of equations of a 4-input symmetric adder in 
PDNF is as follows:

S x x x x x x x x x x x x

x x x x x x x x x x x x

0 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

= + + +

+ + + +

++ +

= + +

+ +

x x x x x x x x

S x x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4

1 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3

;

44

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3

+

+ + +

+ + +

+ +

x x x x x x x x

x x x x x x x x

x x x x x x x x44

2 1 2 3 4

;

.S x x x x=


























	 (27)

There are two approaches to minimizing the systems of  
Boolean functions depending on n variables [36, 37]. We shall 
minimize the system of functions (27) separately for each function.

Minimizing the function S0.
The S0 function is singular [26]; to minimize S0, we select 

Reed-Muller’s algebra. We use identities (28) and (29) [26]:

x x x x x x x x1 2 1 2 1 2 2 1⊕ = ⊕ = ⊕ . 	 (28)

xy x y x y x y x y x y⊕ = ⊕ = ⊕ = ⊕ = ⊕ . 	 (29)

S0

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

0 0 1

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 1

1

= =

11 1

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

3

=

= ⊕( )⊕ ⊕( )⊕

⊕ ⊕( )⊕ ⊕( ) =

= ⊕

x x x x x x x x

x x x x x x x x

x xx x x x x

x x x x x x

x x x x x x

4 1 2 1 2

3 4 1 2 1 2

3 4 1 2 3 4

( ) ⊕( )⊕

⊕ ⊕( ) ⊕( ) =

= ⊕( ) ⊕( )⊕ ⊕(( ) ⊕( ) =

= ⊕( )⊕ ⊕( ) =

= ⊕ ⊕ ⊕

x x

x x x x

x x x x

1 2

1 2 3 4

1 2 3 4.
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Minimizing the function S1:

S1

0 0 1 1

0 1 0 1

0 1 1

0 1 1

0 1 1 0

1 1 0 0

1 1 0

0 1 1 1

1 0 1 1

1 1 1

1 0 0 1

1 0 1 0

1 0

1 1 0 1

1 1 1 0

= =
11

1 0 1

1 1 1

1 1 0

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 2 3 4 1 3 1 4 2 3 2

= =

⊕ ⊕ ⊕ ⊕ ⊕x x x x x x x x x x x xx

x x x x x x x x x x

x x x x x x x x

4

1 2 3 4 1 3 4 2 3 4

1 2 3 4 3 4 1 2

=

= ⊕ ⊕ ⊕( )⊕ ⊕( ) =

= ⊕ ⊕ ⊕( ) ⊕(( ).  

S x x x x x x x x1 1 2 3 4 3 4 1 2= ⊕ ⊕ ⊕( ) ⊕( ).

S x x x x x x x x

x x x x x x x x

x

1 1 2 3 4 3 4 1 2

1 2 3 4 3 4 1 2

1

= ⊕ ⊕ ⊕( ) ⊕( ) =

= ⊕( ) ⊕( ) ⊕( ) +

+ xx x x x x x x2 3 4 3 4 1 2⊕ ⊕( ) ⊕( ).

x x x x x x x x

x x x x x x x x

x x

1 2 3 4 3 4 1 2

1 2 3 4 3 4 1 2

1 2

⊕( ) ⊕( ) ⊕( ) =

= ⊕( ) ⊕ + ⊕( ) =

= ⊕ xx x x x x x x x x x

x x x x x x x x
x x x x

3 4 3 4 3 4 1 2 1 2

1 2 3 4 1 2 3 4
3 4 3 4

( ) ⊕ + ⊕( ) =

= +( ) + xx x x x

x x x x x x x x

x x x x x x x

3 4 3 4

1 2 1 2 1 2 1 2

1 2 3 4 1 2

+

+ +













=

= +( ) + +( ) 33 4

3 4 3 4 3 4 3 4

1 2 1 2 1 2 1 2

x

x x x x x x x x

x x x x x x x x

( )×

×
+( ) + +( ) +

+ +( ) + +( )












=

= + + +( )×

×
+ + +

x x x x x x x x x x x x

x x x x x x x x

1 2 3 1 2 4 1 3 4 2 3 4

3 4 3 4 3 4 3 44

1 2 1 2 1 2 1 2

1 2 3 1 2 4 1 3 4 2 3 4

+

+ + + +









 =

= + + +

x x x x x x x x

x x x x x x x x x x x x(( )×

× + + +( ) =

= + + +

x x x x x x x x

x x x x x x x x x x x x x x

3 4 3 4 1 2 1 2

1 2 3 4 1 2 3 1 2 3 4 1 2 44

1 3 4 1 2 3 4 2 3 4 1 2 3 4

1 1 0 0

1 1 0

1 1 0 0

1 1 0

0 1 1

0 0 1 1

+

+ + + + =

=

x x x x x x x x x x x x x x

00 1 1

0 0 1 1

1 1 0

1 1 0 0

1 1 0

0 1 1

0 0 1 1

0 1 1

1 1 0

1 1 0

0 1 1

0 1 1

1 2 3 4 3

= = =

= +( ) +x x x x x xx x x

x x x x x x x x x x x x

4 1 2

1 2 3 4 3 4 1 2 1 2 3 4

+( ) =

= + = ⊕ .

x x x x x x x x

x x x x x x x x x x x x x x

1 2 3 4 3 4 1 2

1 2 3 4 1 2 3 4 3 4 3 4 1

⊕ ⊕( ) ⊕( ) =

= ⊕( ) +( ) 22 1 2

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4

+( ) =

= +( )×

× +

x x

x x x x x x x x x x x x x x x x

x x x x x11 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2

x x x x x x x x x x x

x x x x x x x x

x x x

+ +( ) =

=
+( ) +

+ + + 33 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

+( ) +( ) +( )












×

× + + +

x x x x x

x x x x x x x x x x x x xx x x x

x x x x x x x x

x x x x x x x x

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 3 1 4

( ) =

=
+ + +( ) +

+ + + +( ) + ++ +( )












×

× + + +

x x x x

x x x x x x x x x x x x x x x x

2 3 2 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4(( ) =

= + + +( ) + + +( ) ×

× +

x x x x x x x x x x x x

x x x x x x x x

1 2 3 4 1 3 1 4 2 3 2 4

1 2 3 4 1 2 3 4 ++ +( ) =

=

+ + + + + +

+

x x x x x x x x

x x x x x x x x x x x x x x

1 2 3 4 1 2 3 4

1 3 1 4 2 3 2 4 1 2 3 1 2 4

xx x x x x x x x x x x x x x

x x x x x x x x x x

2 3 2 4 1 3 1 3 4 2 3 2 3 4

1 3 4 1 4 2 3 4 2 4

+ + + + +

+ + + +

















×

× + + +( ) =

=

x x x x x x x x x x x x x x x x1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0 0

0 0

0 0

00 0

0 0 0

0 0 0

0 0

0 0

0 0

0 0 0

0 0

0 0 0

0 0 0

0 0

0 0 0

0 0

1 2 3 4 1 2 3 4

1 2 3

x x x x x x x x

x x x

+ +

+ xx x x x x

x x x x x x x x

x x x x x

4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1

0 0

0 0

0 0

0 0

+









 =

=
+ +

+ + xx x x

x x x x

x x x x

x x x x x x x x

2 3 4

1 4 1 3

2 3 2 4

1 2 3 4 1 2 3 4









 =

=
+ +

+ +











+ ++

+ +









 =

= + + +

x x x x x x x x

x x x x x x x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 22 3 4

1 2 3 4 1 2 3 4

3 4

0 1 1 0

0 1 0 1

1 0 0 1

1 0 1 0

x x

x x x x x x x x

x x x

=

= = ⊕( )+ ⊕( ) =

= ⊕( ) 11 2 1 2 1 2 3 4x x x x x x x+( ) = ⊕( ) ⊕( ).
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Thus,

S x x x x x x x x1 1 2 3 4 1 2 3 4= ⊕( ) + ⊕( ) ⊕( ).

The system of equations (27) takes the following form:

S x x x x

S x x x x x x x x

S x x x x

0 1 2 3 4

1 1 2 3 4 1 2 3 4

2 1 2 3 4

= ⊕ ⊕ ⊕

= ⊕ + ⊕( ) ⊕( )
=








;

.
; 	 (30)

Based on the system of equations (30), we build a scheme 
of a 4-input symmetrical adder of binary codes (Fig. 3).

 

1
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Fig. 3. Symmetrical 4-input binary code adder

The scheme of a 4-input symmetrical adder in Fig. 3 is op-
timal; it complies with the verification truth table (Table 5); it 
has less complexity compared to the schemes of open patents 
back in the USSR [38–45] about symmetrical 4-input adders.

6. Discussion of results of minimizing the symmetric 
Boolean functions by the method of figurative 

transformations

The mathematical apparatus of minimizing the Boolean  
functions by the method of figurative transformations was 
considered in works [25, 26, 37, 46–49, 51], and others. 

The technology of the method of figurative transformations 
is given in Table 6.

A new component in the technology for minimizing Boolean 
functions by the method of figurative transformations (MFT)  
are equivalent transformations of the polynomial normal 
form (PNF) (chapter 5. 1.). The form of equivalent transforma-
tions (chapter 5. 1., Tables 2, 3) is similar to the decomposition 
of an analytical function into multipliers, in a given case, by 
inserting similar conjuncterms with the following operation of 
super-gluing the variables.

Equivalent transformations of PNF (chapter 5. 1., Table 2) 
can be an object for comparison, to a certain extent, with the 
rules of minimization based on the splitting of conjuncterms in 
a polynomial theoretic-multiple format (PTMF) [29] (Table 7).

The peculiarity of applying the theoretical-multiple rules 
for splitting the PNF conjuncterms [29] is that the lower- 
ranked conjuncterms formed by the splitting procedure can 
be simplified according to the rules of equivalent transforma-
tion with other conjuncterms of the assigned function. In this 
case, the Boolean function will be optimized [29].

Table 7 demonstrates that the conjuncterms in the fol-
lowing form:

000

111






⊕

,  
0000

1111






⊕

,  
0000

0111






⊕

	 (31)

are not simplified directly by the method of splitting the 
conjuncterms.

Conjuncterms (31) can be simplified by inserting similar 
conjuncterms with the following operation of super-gluing 
the variables (chapter 5. 1., Table 2). The resulting logical ex-
pressions, after such a procedure, can be simplified according 
to the rules of equivalent transformation with other terms of 
the assigned function (chapter 5. 3., example 8). Identifying 
this algorithm is a reserve for increasing the hardware capa-
bilities in minimizing the symmetrical Boolean functions by 
a visual-matrix form of the analytical method.

Table 6
Figurative transformation method technology

1 Binary combinatorial systems with repeated 2-(n, b)-design, 2-(n, x/b)-design

2 Verbal and figurative representation of information

3 Logical operation of super-gluing the variables

4 Logical operation of incomplete super-gluing the variables

5 Hermeneutics of logical operations on binary equivalents of logical functions

6 Figurative transformation protocols

7 Attribute of a minimum logical function

8 Minimizing Boolean functions on a complete truth table

9 Algorithm of analytical method and its automation

10 Expanding the analytical method to other logical bases

11 Algebra of equivalent transformation in the class of perfect normal forms of Schaeffer algebra functions

12 Algebra of equivalent transformation in the class of perfect implicit normal forms

13 Relatively complex algorithms for the use of logical absorption operations and super-gluing the variables

14 Stack of logical operations

15
Algorithms for simplifying a function with the procedure of inserting two identical PNF conjuncterms with the following operation 
of super-gluing the variables

16 Singular function

17 Algebra of equivalent transformation in the class of polynomial normal forms of Boolean functions

18 Mixed basis
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A method of splitting the conjuncterms can be used 

to simplify conjuncterms in the form 
000

0110

−





⊕

 (Table 7)  

by using the logical operation of polynomial absorption of 

variables [26]:

x x x x

x x x x x x x x x x x x

1 2 3 4

1 2 1 3 1 2 3 4 1 2 1

0 0 0

0 1 1 0

0 0

0 1

0 1 1 1

− =
− −

− − =

= ⊕ ⊕ = ⊕ 33 2 4

1 2 1 3 2 4 1 2 3 2 4

x x

x x x x x x x x x x x

=

= ⊕ +( ) = ⊕ +( )( ).

The result of such a simplification of expression 
000

0110

−





⊕

 

is 5-level logic whose cost of implementation is:

 k kl in/ / .= 5 4

In turn, the expression x x x x x1 2 3 2 4⊕( ) +( )  (Table 7), ob-
tained from the procedure of inserting similar conjuncterms 
with the following operation of super-gluing the variables, 
represents a 3-level logic whose cost of implementation is:

 k kl in/ / .= 5 4

MFT provides for the mini-
mization of symmetrical Boolean 
functions in the main basis ∨ ∧ ¬{ }, ,  
(chapter 5. 2., examples 4–6). How-
ever, not all symmetrical functions 
in PPNF or PCNF are minimized 
in the Boole basis. In this case, 
one needs to try to optimize the 
assigned function in a polynomial  
basis ∧ ⊕{ }, , ,1  using the Reed-
Muller algebra [26] (chapter 5. 3., 
examples 7, 8).

MFT implies the analysis of 
a stack of logical operations [25], 
which is a certain analog and dif-
ference from decomposition (chap-
ter 5. 4.).

The stack makes it possible to 
select a promising simplification 
option for the assigned function. 

According to data at our dis-
posal (examples 9 and 10), it can 
be noted that the results of sim-
plification of functions by the 
method of figurative transforma-
tions and decomposition methods 
coincide but the MFT is much 
simpler. Minimizing by two me
thods for a larger, to a certain 
extent, number of variables would 
lead to their corresponding con-
clusions. Work [25] reports the 
minimization of a Boolean func-
tion by the method of figura-
tive transformations into 64 input  
variables.

The proper derivation of the model of a symmetric 4-input 
adder of binary codes (chapter 5. 5., system of equations 30)  
by the analytical method is ensured by the introduction of 
the apparatus of equivalent figurative transformations to 
minimize Boolean functions. The order of mutual arrange-
ment of the elements in a binary matrix, the same as the 
algebraic approach, plays an essential role in the visual per-
ception of two-dimensional data. The logical scheme of the 
4-input symmetric adder in Fig. 3 is optimal; it has less com-
plexity compared to the schemes in the open patents back in 
the USSR [38–45] related to symmetrical 4-input adders.

Table 8 gives the results of minimizing symmetrical Bool-
ean functions borrowed from works by other authors and by 
the analytical method.

The peculiarity of the method of figurative transforma-
tions is that the method is based on the binary combinatoric 
systems with repeated 2-(n, b)-design, 2-(n, x/b)-design, 
which are essentially the truth tables of the given functions, 
for example, Tables 1, 4, 5. The specified objects 2-(n, b)-de-
sign, 2-(n, x/b)-design are a sufficient hardware resource to 
minimize symmetrical Boolean functions, which makes it pos-
sible to do without auxiliary objects, such as Karnaugh maps, 
Weich diagrams, acyclic graph, non-directed graph, cover ta-
bles, cubes, etc. The visual representation of 2-dimensional bi-
nary matrices allows the manual simplification of symmetrical 
Boolean functions (using a mathematical editor, for example, 
MathType 7.4.0 (USA), within up to 64 input variables [25] 
for the PDNF (PCNF) representation of a function.

Table 7 

Modern equivalent transformations of conjuncterms in a polynomial format

Function
Theoretical-multiple rules for splitting the PNF con-

juncterms
Equivalent transformations 
of MFT PNF conjuncterms

000

111






⊕ 00

0 1

11

00

01

1 1

0 0

10

11

0 0

0

−
−

−















−
−
−















−
−

−















−
, , , 11

11

00
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The use of MFT to minimize symmetrical functions 
in the Boole basis and in the Reed-Muller basis brings, to 
some extent, the task of simplifying symmetrical Boolean 
functions to the level of a well-researched problem in the 
class of disjunctive-conjunctive normal forms (DCNF) of 
Boolean  functions.

The use of an element basis of only one functionally 
complete system of switch functions, in a general case, 
does not provide conditions for obtaining an optimal com-
bination  scheme. In this regard, it is advisable to apply  
a mixed  basis. 

Example 11. Use the method of figurative transforma-
tions to simplify the Boolean function with partial symmetry, 
which is given in the following canonical form (32) [50].

f = ( )5 6 7 8 9 10 11, , , , , , . 	 (32)

Solution. 
Function (32) is partially symmetrical. The permutation 

of variables with indexes (3,4) does not change the value of 
function (32). 

The simplification of function (32) will be performed in  
a conjunctive normal form [51].

fmin = =

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

1 1 1 11

1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

1 1

1 0 1 1

0 0

1 1

1 1 1

0 0

1

=

= = =

= +x x22 1 3 4 1 2

1 2 1 2 1 3 4 1 2 1 3

( ) + +( ) +( ) =

= +( ) + +( ) = ⊕( ) + +

x x x x x

x x x x x x x x x x x xx4( ).

fmin in the mixed basis takes the following form (33):

f x x x x xmin .= ⊕( ) + +( )1 2 1 3 4 	 (33)

Function (33) represents 2-level logic. The cost of imple-
menting fmin (33) in the mixed basis is:

 k k kl inθ / / / / ,= 2 5 0

which is one literal less compared to [50].
The minimum function (33) remains partially symmetrical.  

The permutation of variables with indexes (3,4) does not 
change the value of the minimum function.

Limiting the use of the method of figurative transforma-
tions are those cases where the switch function is represented 
in a mixed basis. In this case, the function must be represent-
ed by one logical basis.

The weak side of the method in question is in its small 
practical application to minimize symmetrical Boolean func-
tions, followed by the design and manufacture of appropriate 
computational components. The negative internal factors 
of the MFT are associated with additional time costs for 
establishing protocols for simplifying the symmetrical logical 
functions in the Boole basis and in the Reed-Muller basis, 
followed by the creation of a library of protocols that have an 
illustration of the corresponding figurative transformations.

The prospect of further research may be the search for 
new rules for the transformation of majoritarian logical func-
tions and their minimization.

7. Conclusions

1. We have established the results of the equivalent trans-
formations of a polynomial normal form of Boolean functions 
by inserting similar conjuncterms followed by the operation 
of super-gluing the variables. The expressions obtained for the 
specified transformations can be objects for comparison, to a 
certain extent, with the rules of minimization based on the split-
ting of conjuncterms in a polynomial theoretical-multiple for- 
mat (PTMF). The difference between the equivalent transforma-
tions of PNF of Boolean functions by inserting similar conjunc-
tures and known methods is that such transformations make it 
possible to summarize the result of minimization and derive new 
equivalent transformations based on the induction apparatus.

The effectiveness of the method of inserting similar conjunc-
terms with the following operation of super-gluing the variables 
to minimize symmetric Boolean functions has been confirmed 
by examples 3, 8 of minimizing 4-bit Boolean functions.

2. The peculiarity of minimizing symmetrical Boolean 
functions is that not all such functions are simplified in PPNF 

Table 8

Comparative table of the examples of minimization of symmetrical Boolean functions borrowed from works 	
by other authors and the visual-matrix form of the analytical method

Example No. Minimization method title Number of input variables Minimization result Analytical method result

3 Conjuncterm splitting method [29] 4 9 literals 7 literals

4 Analytical method [27] 3 6 literals 4 literals

5 Karnaugh map [27] 4 12 literals 9 literals

6 Analytical method [30] 3 6 literals 4 literals

8 Karnaugh map [32] 4 15 literals 8 literals

9 Decomposition method [34] 3 Minimization results coincide

10 Decomposition method [35] 3 Minimization results coincide

11 Karnaugh map [50] 4 6 literals 5 literals
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or PCNF of the main basis ∨ ∧ ¬{ }, , . In the absence of mini-
mization of the given function in the main basis, attempts 
should be made to optimize the function in the polynomial 
basis ∧ ⊕{ }, , ,1  using the Reed-Muller algebra.

The difference between the method of figurative transfor-
mations is that the method is based on the binary combinato-
rial systems with repeated 2-(n, b)-design, 2-(n, x/b)-design, 
whose mathematical apparatus is a sufficient resource to 
minimize symmetrical Boolean functions. This makes it pos-
sible to do without auxiliary objects, such as Karnaugh maps, 
Weich diagrams, acyclic graph, non-directed graph, coverage 
tables, cubes, etc. The interpretation of the result is that 
there are no symmetrical logical functions (except minimal) 
that cannot be simplified.

The effectiveness of the method of figurative transfor-
mations to minimize symmetric Boolean functions is mainly 
confirmed by examples 4, 6 (the minimization of 3-bit par-
tially symmetric Boolean functions); example 5 (minimizing 
the 4-bit partially symmetric Boolean function).

3. The algebraic apparatus of polynomial basis makes 
it possible to implement the method of figurative transfor-
mations to minimize symmetrical Boolean functions in the 
Reed-Muller basis ∧ ⊕{ }, , .1  The peculiarity of simplifying 
the symmetrical Boolean functions in the polynomial basis 
is that the function must be singular unless it is specified 
in another way. The difference between the minimization of 
symmetric polynomial functions by MFT and known me
thods is the existence of the procedure for inserting similar 
conjuncterms with the following operation of super-gluing 
the variables. That expands optimization options, which 
increases the efficiency of the procedure for minimizing 
symmetrical Boolean functions of PNF by the method of 
figurative transformations. The interpretation of the result is 
that the technology of simplification of polynomial functions 
makes it possible during the equivalent transformations to 
transfer from the Reed-Muller algebra to the Boole algebra, 
and vice versa.

An illustrative (figurative) description is visual, which 
makes it possible to simultaneously represent a system of 
relations between individual variables of the problem. Thus, 
the figurative form of information in the form of combina-
torial objects provides a greater chance to determine the 
algorithm for minimizing Boolean functions. Combinatoric 
objects, in this case, are the 2-dimensional binary matrices 
2-(n, b)-design, or incomplete 2-(n, x/b)-design, and, in es-
sence, of the combinatoric images themselves. As a result, the 
verbal procedures of algebraic transformations are replaced 
by equivalent figurative transformations.

The effectiveness of the method of figurative transforma-
tions to minimize symmetric Boolean functions in the poly-
nomial basis has been confirmed by examples 7, 8 (the mini
mization of 4-bit partially symmetric Boolean functions).

4. The results of simplifying the functions in the compa
rative examples by the method of figurative transformations 
and decomposition methods coincide but the procedure for 
figurative transformations is much simpler. Interpretation 
of the result of simplification of the Boolean function, in 
particular, is the presence of a method for inserting similar 
conjuncterms with the following operation of super-gluing 
the variables.

The effectiveness of the method of figurative transfor-
mations, in comparison with the decomposition methods, to 
minimize symmetric Boolean functions has been confirmed 
by example 9 (the minimization of a 4-bit partially symmet-
ric Boolean function; example 10 (the minimization of 3-bit 
partially symmetrical Boolean function).

5. Proper optimization of the logical structure of the 
symmetrical 4-input adder of binary codes by the analytical 
method has been confirmed by the introduction of an appa-
ratus of equivalent figurative transformations to minimize 
Boolean functions. The obtained logical scheme of the 4-in-
put symmetrical adder is optimal; it has less complexity com-
pared to the schemes given in the open patents of the USSR 
related to symmetric 4-input adders.
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