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1. Introduction

Electromyograms (EMG) are recordings of electrical 
signals from muscles and nerves that control muscles [1]. 
Electromyogram plots provide a high level of diagnostic 
information [2]. Modern electromyography uses computer 
mathematical systems to process EMG [3].

Real entries at first glance look like complicated and 
chaotic fluctuations. These sequences are characterized by 
considerable variability. Changes in the statistical charac-
teristics of a signal during its receipt determine the essence 
of variability [4].

Generally accepted means of processing may not take 
into consideration the subtle features that vary in time. 
Meanwhile, these missed details may contain import-
ant diagnostic signs, so a correct and thorough read-
ing of electromyograms is a serious problem in thera-
py. This problem is also common for all complex time  
sequences [5].

Poincaré plots (PP) are a special tool that ensures accel-
eration and visualization of the results of analysis of variabil-
ity of time series [4–9]. The PP displays the complete EMG 
record on one 2D plot. A classic PP is a diagram of scattering 
of sequence terms relative to their predecessors, that is, a 
kind of delay map with a single offset (the so-called lag) [4].

Poincaré plots are widely used to process medical sig-
nals [5–9]. First of all, they are a way of preliminary visualiza-
tion, however, they can provide quantitative results to assess 
variability. The authors of [8] proposed basic numerical de-
scriptors for Poincaré plots: two standard deviations (SD1 and 
SD2) and their ratio SD1/SD2 ratio. Determine them as in [9]:

( )1 2 ,SD SD a= ⋅

( )2 2 ,SD SD b= ⋅
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The main attention is paid to the analysis of 
electromyogram (EMG) signals using Poincaré 
plots (PP). It was established that the shapes of the plots 
are related to the diagnoses of patients. To study the fractal 
dimensionality of the PP, the method of counting the 
coverage figures was used. The PP filtration was carried 
out with the help of Haar wavelets. The self-similarity 
of Poincaré plots for the studied electromyograms was 
established, and the law of scaling was used in a fairly 
wide range of coverage figures. Thus, the entire Poincaré 
plot is statistically similar to its own parts. The fractal 
dimensionalities of the PP of the studied electromyograms 
belong to the range from 1.36 to 1.48. This, as well as the 
values of indicators of Hurst exponent of Poincaré plots 
for electromyograms that exceed the critical value of 0.5, 
indicate the relative stability of sequences.

The algorithm of the filtration method proposed in this 
research involves only two simple stages:

1. Conversion of the input data matrix for the PP using 
the Jacobi rotation. 

2. Decimation of both columns of the resulting matrix 
(the so-called "lazy wavelet-transformation", or double 
downsampling).

The algorithm is simple to program and requires less 
machine time than existing filters for the PP. 

Filtered Poincaré plots have several advantages 
over unfiltered ones. They do not contain extra points, 
allow direct visualization of short-term and long-term 
variability of a signal. In addition, filtered PPs retain 
both the shape of their prototypes and their fractal 
dimensionality and variability descriptors. The detected 
features of electromyograms of healthy patients with 
characteristic low-frequency signal fluctuations can be 
used to make clinical decisions
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tional, and its purpose is to show the possibilities of using PP 
in the processing and visualization of medical signals using 
standard descriptors SD1 and SD2. 

Paper [8] is also an example of using the Poincare plots 
to process biomedical signals. It explores the effectiveness of 
the use of the PP in processing and observation of changes in 
the heart rhythm caused by changes in the load.

In addition, an example of the use of PP in the processing 
of medical signals is article [9]. It shows the methods of Poin-
care plots filtering. In addition, a comparison was made with 
the method of discrete Fourier transform, which showed the 
advantages of the PP method.

The above papers [2–9] show the importance of using 
Poincaré plots in processing and presenting medical sig-
nals and demonstrate their value in the ability to reflect 
non-linear aspects of a data sequence. At the same time, 
methods of Poincare plot filtering have only recently begun 
to develop [9] and are sometimes overly complex [10–12] 
for clinicians. Filtration, which is accompanied by data sift-
ing (downsampling), initiates the question of possible frac-
tality (statistical self-similarity) of Poincaré plots. However, 
this problem remains practically unexplored.

3. The aim and objectives of research

The purpose of this research is to identify the self-similar-
ity of Poincaré plots for electromyograms by checking if the 
scaling law is true for them. This enables the separation of data 
of healthy patients and patients with myopathy or neuropathy.

To achieve the set aim, the following tasks were set:
– to explore classic Poincaré plots and their variability 

descriptors for electromyograms;  
– to study modified (filtered) Poincaré plots and their 

variability descriptors for electromyograms; 
– to check if the law of scaling is true for PP electromyo-

grams and to identify the ranges of scales in which it is true.

4. Materials and methods of research

4. 1. Research data 
The data from the PhysioNet portal were used in the 

research. To obtain all electromyograms, concentric needle 
electrodes (25 mm), placed on the patient’s tibial muscle, 
were used. A patient gently bent the foot, overcoming some 
resistance, and then relaxed it [1]. 

The sampling rate for all records was 4 kHz. The signal 
magnitude is assigned in mV. Table 1 shows additional infor-
mation contained in the files [1].

Table	1

Brief	information	about	a	patient	[1].

Gender
Age, 
years

Brief diagnosis
Full duration 
of record, sec

Male 44
Absence of neuromuscular dis-

ease in history – control patient
12.71500

Male 57
Myopathy due to long history 

of polymyositis
27.56425

Male 62
Chronic lower back pain and 
neuropathy associated with 

right-hand radiculopathy L5
36.96450

1 ;
2

n n
n

s s
b ++= 2,3,.., ,n N=  (1)

where SD(s) designates the operator of a standard deviation 
from time sequence { }1

.
N

nS
The first descriptor SD1 determines the short-term vari-

ability of the time series, the second SD2 – the long-term 
variability. The first can be called high-frequency (SD1), 
and the second – low-frequency variability indicator (SD2). 
Their ratio assesses the effect of random factors on a sig-
nal [8]. The method of Poincaré plots is widely used in the 
area of examination of heart rate variability [5, 6, 8, 9]. 
However, its scope is much wider [7].

Variability of most medical and physiological signals, in-
cluding electromyograms, is one of the manifestations of the 
state of dynamic equilibrium of living organisms in the envi-
ronment of the so-called homeostasis. Digital analysis meth-
ods, one of which is the Poincaré plot method, look especially 
promising in the concepts of the Internet of Things (in par-
ticular smart medical sensors) and personalized medicine, 
which indicates the relevance of corresponding research.

2. Literature analysis and problem statement 

Paper [2] describes the techniques of analysis of electro-
myograms data, namely, determining, processing, classifica-
tion. electromyogram signals received from muscles require 
modern and progressive methods for their detection, decom-
position, processing, and classification. The paper illustrates 
various methodologies and algorithms for analyzing EMG 
signals to provide effective and instrumental ways to un-
derstand a signal and its nature. Certain implementations 
of hardware complexes using EMG, focusing on applications 
related to hand prosthetics, grip recognition, and human 
interaction with the computer, are also highlighted. There is 
also a comparative study to show the effectiveness of various 
methods for analyzing EMG signals. However, the purpose 
of the research was to review the information on EMG with-
out detailed attention to the processing of this type of signal.

Research [3] describes the methods for computer pro-
cessing of electroneuromyography signals using the system 
of Maple computer mathematics. It also contains the results 
of frequency and statistical analyses of electroneuromyogra-
phy records for a healthy person and a patient with myopa-
thy. However, this work does not answer questions about the 
self-similarity of electromyograms.

Article [5] uses the method of dynamic density delay 
map to visualize the behavior of complex systems. Anima-
tions based on this method visualize the values of dynamic 
properties of complex systems that are not visible in plots 
of time series or in standard Poincare plots. However, this 
method for processing and visualization may not take into 
consideration the subtle features that vary in time.

A new descriptor is proposed, called the value of complex 
correlation for quantifying the time aspect of Poincaré plots, 
was proposed in research [6]. The authors claim that this de-
scriptor is effective in detecting arrhythmia and stagnation 
heart failure compared to a normal heart rate. However, the 
authors did not conduct a study of the effectiveness of using 
this descriptor to process electromyogram signals.

In paper [7], the authors show the use of Poincare plots 
to process biomedical signals. The paper itself is observa-
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The Jacobi orthogonal rotation matrix, which can diago-
nalize the aforementioned matrix (3), takes the following form:

( )
( )

( )
( )

cos sin
.

sin cos
uθ

 θ − θ
=  θ θ 

 (4)

The angle of rotation θ is from the obvious condition:

( )2 2 ,T Tu P P u Dθ θ =  (5)

where the right-hand part (5):

 1

2

0

0
D

λ 
=  λ 

 

is a diagonal  matrix of eigenvalues of the matrix (3). Then 
the angle of rotation can be determined from the condition 
of zero non-diagonal elements (5) and is a well-known ex-
pression [16]:

( )
2 2

2 ,1
arctg .

2

 α β
θ =  β − α 

 (6)

Since vector-column α differs from β only by the first and 
last terms, α2 and β2 are very close to each other, especially 
for long sequences (N>>1). That is why the real-time series 
satisfy such the strong inequality:

( )
2 2

,
1.

α β
>>

β − α
 (7)

Satisfaction of strong inequality (7) is the main as-
sumption for the use of filtering by Haar wavelets, which is 
described below.

If (7) is satisfied,

4
πθ → ±

and determines the orthonormalized basis, two vectors of 
which are approximately colinear and normal to the identity 
line, this determines the main directions for the majority of 
real Poincare plots. Then the simplified Jacobi rotation ma-
trix (4) within the Principal Component Analysis method 
for typical PP will take the following form:

4

1 1

2 2 .
1 1

2 2

uπ

 − 
 =
 
 
 

 (8)

 A few comments should be made:
1) vector-columns (8) can have opposite directions, so 

one can use four versions of the Jacobi matrix, which differ 
in algebraic characters in columns; 

2) orthogonal matrix (8) contains columns that are right 
singular vectors of the data matrix (2); 

3) if condition (7) is not met, it is possible to use ma-
trix (4) instead of (8). The expression (1) in this case must 
be replaced with a more general one:

( )1 ;SD SD a=

( )2 ;SD SD b=

Complete records, as opposed to [3–7], which used sig-
nal fragments, were studied. Thus, the signal length varied 
from 50860 to 147858 countdowns. 

Maple 2020 (Canada) [13] was used for the computer 
processing of all data. The authors of [14] explained the con-
version of binary files from PhysioNet to Maple. Statistics of 
shortened EMG were described in [3]. Their real probability 
densities were quite far from the standard Gaussian ones.

4. 2. The principal component method and filtration 
by Haar wavelets

Each Poincaré plot represents the implementation of a 
time sequence in a 2D space, that is, onto a projective plane. 
Take the time sequence of length N: { }1

.
N

nS . Next, it is pos-
sible to select all possible pairs of sequential terms: (sn–1, sn) 
where 2≤n≤N. Each of these ordered pairs is a vector that 
determines the point of the Poincaré plot. 

The data matrix, which represents the entire Poincaré 
plot, is [15]:

1 2

2 3
2

1

.
... ...

N N

s s

s s
P

s s−

 
 
 =  
   

 (2)

Matrix (2) is obviously of the Hankel type (p1,2=pi+1,1; 
1≤i≤N–1).

Columns of the data matrix are usually quite strongly 
correlated. The reason for this correlation is obvious: the 
columns of the data matrix (2) are taken from the same series 
by a single time delay (lag). The size of this lag is determined 
by the sampling rate.

The method of Principal Component Analysis (PCA) can 
be formulated in four equivalent ways [15], one of which guar-
antees zero correlation of the columns of the new data matrix 
in the orthonormalized basis of principal components. The 
first principal component (basis vector) assigns the direction 
of the maximum standard deviation on the plot of scattering 
of columns-vectors in a two-dimensional projective plane [15]. 
This scattering plot is actually a Poincaré plot. The second 
principal component is normal to the first.

The data matrix (2) can be depicted as a 2D scattering plot, 
marking the data of the first column on the vertical axis, and 
those of the second one - on the horizontal axis. Each row of 
the data matrix (2) sets two coordinates of a separate point of 
PP (Fig. 1). The points of the plot are closely grouped around the 
so-called identity line, which is the bicep of the projective plane. 
A separate point belongs to this line, provided that sn–sn-1=0.  
Moreover, for the points that are above this line, the difference 
is positive, and it is negative if the point gets below the line.

The orientation of the principal components depends 
on the structure of the data matrix (2) and can be any for 
arbitrary time series. However, the question arises: are the 
principal components so arbitrarily oriented to the PP ma-
trix (2), which has two strongly correlated vector columns? 

It is possible to show that principal components for any 
PP can be found using the algorithm of Jacobi eigenval-
ues [16]. Let us assume that the vector-columns of the data 
matrix (2) have values α, β. Then the corresponding covari-
ation matrix is symmetrical and has a dimensionality of 2×2:

( )
( )

( )
( )2 2 2

, ,1
.

, ,
TP P

N

 α α α β
=  β α β β 

 (3)
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( ) ( )1cos sin ,n n na s s −= θ − θ

( ) ( )1cos sin ;n n nb s s −= θ + θ  2,3,.., .n N=  (9)

The columns of the matrix of rotation (8) are proportion-
al to the Haar digital filters with multiplication coefficient 

2:  this is the filter of low frequencies (first column) and 
the filter of high frequencies (second column) [17, 18]. Thus, 
converting the data matrix (2) into the basis of principal 
components leads to filtering by Haar digital filters, if the 
normalization factor is equal to 2.  If strong inequality (7) 
is met, of course.

Filtering requires an additional step after Jacobi rotation, 
namely excluding all even rows or all odd rows from the con-
verted data matrix. Such an operation is known as decimation, 
or “Lazy wavelet-transformation” (LWT), or double downsam-
pling because it does not require complex mathematics. 

The data matrix (2) was transformed by the simplified 
Jacobi rotation matrix (4), that is, projecting principal com-
ponents into the basis, considering the angle close enough to 

:
4
π

θ = −

1 2 2 1

2 3 3 2

2 2
4

1 1

2 2

2 .2 2
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2 2
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+ − 
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 (10)

Matrix (10) is a data matrix on the basis of principal 
components, provided that inequality (7) is satisfied. 

Standard deviations of matrix columns (10) are deter-
mined by descriptors (1). Thus, descriptors (1) and (9) show 
standard deviations along both vectors of principal com-
ponents under conditions of compliance or non-compliance 
with inequalities (7) respectively.

Expression (10) also clearly indicates the need for LWT 
when filtering. Almost every term of the sequence is rep-
resented twice in two rows of the matrix (10), and in this 
case, the Hankel type of data matrix (10) is the main reason 
for this doubling. The LWT eliminates this redundancy. In 
addition, columns (10) after the LWT can be considered as 
Haar wavelet coefficients to describe the range of low fre-
quencies and high frequencies, respectively.

On the other hand, matrix (10) without LWT is a matrix 
of the same PP as matrix (2), but within the new basis of 
principal components. If we compare a plot of column scatter-
ing, it is the same PP, but rotated clockwise by angle π/4. In 
addition, after the LWT we get filtered PP with half points 
from the initial set.

5. Results of the study of Poincaré plots for 
electromyograms

5. 1. Classic Poincaré plots and variability descriptors
Classic, that is, unfiltered, Poincare plots were con-

structed for all database entries [1] (Fig. 1). These plots 
are plots of scattering for two columns of the source data 
matrices (2). The columns display numeric sequences [1] 

with a single time lag, the magnitude of which is assigned by 
discretization rate (4 KGC). Each row of the data matrix (2) 
contains two coordinates of a separate point of the PP. Data 
matrices were obtained as described in paragraph 4. 2. 

c 
 

Fig.	1.	Classic	Poincare	plots	for	electromyograms:		
a	–	of	a	healthy	patient;	b	–	of	a	patient	with	myopathy;		

c	–	of	a	patient	with	neuropathy

b

a
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The points are united into clouds around the identity 
line, which is the diagonal of the plane of the plot [5‒8]. 
Standard descriptors are standard deviations of points along 
this line (SD1) and normal to them (SD2) [8]. The results 
of calculations of descriptors by expression (1) are given  
in Table 2.

Table	2

Variability	descriptors	and	their	ratio	for	classic	Poincaré	
plots

Descriptors 
and their ratio

Healthy 
patient

Patient with 
myopathy

Patient with 
neuropathy

SD1, mV 0.02605 0.05632 0.22222
SD2, mV 0.11238 0.12513 0.56325
SD1/SD2 0.23177 0.45013 0.39453

As one can see, the shapes of the clouds of Poincare plots 
are different and they can be conventionally called “comet”, 
“ellipse” and “jet plane” due to similarity. It is worth noting 
that different scales of scattering along the identity line will 
be observed for each PP, despite their subjective names.

It is possible that the shapes and descriptors of classic 
PP can give qualitative signs for practical diagnostics. The 
values of descriptors increase in the series “Healthy” – “My-
opathy” – “Neuropathy”. Thus, the average variability of 
signals also increases in the same order. The SD1/SD2 ratio 
estimates randomness in time sequences [7]. The obtained 
results prove the conclusions [3, 7] concerning the minimum 
randomness in EMG for a healthy patient. In addition, this 
ratio can be useful for clinical sorting “norm – pathology”.

5. 2. Filtered Poincare plots and descriptors
The two known shortcomings of the classic PP are the 

following:
1. Each classic PP makes up about double surplus in 

the total number of points. Almost every term of the se-
quence (sn) is represented there twice. The point appears 
in pair (sn–1,sn) and then in the next pair (sn,sn+1). The only 
exceptions are the first and last terms. Thus, any classic PP 
contains a surplus of data.

2. Classic PP provides only implicit visualization of 
low-frequency and high-frequency signal parts. Critics of 
this type of Poincare plot are presented in [5, 6].

Haar digital filtering divides the signal into two halves. 
Each half belongs to its frequency range: either low-frequen-
cy or high-frequency. The plot of scattering high-frequency 
half in relation to low-frequency half visualizes the sift-
ed (decimated) data matrix (10), which contains low-fre-
quency and high-frequency halves of the signal in the first 
and second columns, respectively.

The following scattering plots were obtained for all 
records (Fig. 2). Next, they will appear as filtered PP. Scat-
tering plots in Fig. 1, 2 have similar shapes, which represent 
“comet”, “ellipse” and “jet aircraft”, although in a different 
orientation. At the same time, filtered PPs have twice few-
er points. That is filtered PP (Fig. 2) retain the shapes of 
their own classic prototypes from Fig. 1 and look like their 
fractal parts. Why does this happen? Is it an accident or a 
regularity?

Variability descriptors for filtered PP are shown  
in Table 3. They are well coordinated with the correspond-
ing classic PP. Thus, filtered PPs retain not only shapes but 
also variability descriptors.

In addition, filtered PPs ensure explicit visualization of the 
signal variability resulting from the conversion of classical PP 

 

а

c 
 

Fig.	2.	Filtered	Poincare	plots:	a	–	of	a	healthy	patient;		
b	–	patient	with	myopathy;	c –	patient	with	neuropathy

b
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in the method of Principle Component Analysis. Now, short-
term (high-frequency) variability is associated with vertical 
scattering of points, while long-term (low-frequency) – with 
their horizontal scattering.

Table	3

Variability	descriptors	and	their	ratio	for	filtered	Poincaré	plots

Descriptors 
and their ratio

Healthy 
patient

Patient with 
myopathy

Patient with 
neuropathy

SD1, mV 0.02591 0.05618 0.22640

SD2, mV 0.11242 0.12519 0.56156

SD1/SD2 0.23177 0.44878 0.40316

Fig. 1, 2 were created with Maple 2020. In addition, the 
rotation matrices for all three sequences were obtained using 
the Maple software package “PCA” [13]. For example, the 
calculated Jacobi rotation matrix (4) for a healthy patient 
is as follows:

1

1.0000009 0.99999911
,

0.9999991 1.00000092
u

− 
=  

 
 (11)

which is very well consistent with matrix (8). Absolute de-
viations between the other two calculated rotation matrices 
and (8) do not exceed 5·10-6. Key inequalities (7) are very 
well met for all three EMG, so,

.
4
π

θ →

Correlation factors between the columns of the source 
data matrices (2) were predictably high: 0.8981, 0.6630, and 
0.7306 (in Table 1). However, they practically turn into zero 
after conversion to an axis of principal components and do 
not exceed 10-7. These results prove that the identity line is 
practically the most commonly collinear to the vector of the 
first principal component, as discussed earlier.

5. 3. Self-similarity of Poincaré plots for electromyo-
grams

The similarity of the classical Poincaré plots (Fig. 1) and 
their corresponding filtered fragments (Fig. 2) is a sign, but 
not a proof of the fractal nature of the PP. The scaling law 
is the main proof of self-identity, provided that it describes 
filtered PP. This law implies the following ratio for fractal 
structures [19, 20]:

( ) const ,dN a a−= ×  (12)

where N(a) is the number of coverage figures, a is their char-
acteristic linear size (scale), d is the fractal dimensionality of 
the structure. The coverage figure, in this case two-dimen-
sional, should provide full coverage of the Poincaré plot or 
its fragment. The law of scaling (12) determines the linear 
dependence between ln(N) and ln(a). The slope of the line 
determines fractal dimensionality d [20].

Fig. 3 shows the plots ln(N) relative to ln(a) for all PP. The 
magnitudes of the number of coverage figures and the scale (ai) 
were obtained according to the procedure given in [19]. The 
good linearity of dependences in Fig. 3 proves that the law 
of scaling (12) is true in the specified scale ranges for the PP 
under study. The ranges were: a=(0.025-0.6) mV for a healthy 
patient and a patient with myopathy and a=(0.15-2.0) mV for a 

patient with neuropathy. These ranges are determined from the 
approximate areas occupied by each PP in Fig. 2.

Fig.	3.	The	law	of	scaling	in	double	logarithmic	axes	as	a	result	
of	the	method	of	coverage	figures.	Line	1	–	denotes	Poincare	
plot	for	a	healthy	patient	(circle);	line	2	–	Poincaré	plot	for	a	
patient	with	myopathy	(squares);	Line	3	–	Poincare	plot	for	a	

patient	with	neuropathy	(rhombuses)

Table 4 gives fractal dimensionalities, their standard 
deviations (that is estimates of the accuracy of calculation 
of fractal dimensionalities), and adjusted determinant coef-
ficients for trend lines in Fig. 3.

Table	4

Fractal	dimensionalities,	indicators	of	Hurst	exponent,	and	
determination	factors	for	PP

Indicator
Healthy 
patient

Patient with 
myopathy

Patient with 
neuropathy

Fractal dimensionality (d) 1.41 1.48 1.36

Standard deviation 0.05 0.03 0.02

Hurst Indicator 0.59 0.52 0.64
Determination factor R2 0.993 0.998 0.998

Hurst exponential indicator (H) is obtained from a 
well-known formula: H=2–d. Here it is advisable to cite 
the authors of paper [21]: “The assumption of statistical 
self-affinity implies a linear relationship between the fractal 
dimensionality and the Hurst exponential factor and thus 
connects these two phenomena”. 

The adjusted determination factors (R2) are close to 
unity, which indicates almost perfect compliance with the 
scaling law (12) for the studied PP. Thus, thereby self-simi-
larity of Poincaré plots for EMG is proved.

6. Discussion of the results of studying Poincare plots for 
electromyograms

The filtration method proposed in this work differs from 
those proposed in [9‒12]. The algorithm [10–12] includes 
the following steps:

1) decomposition of the singular value of the data ma-
trix (2) with finding singular vectors and values; 
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2) decomposition of the two-range matrix (2) into the 
sum of two single-range matrices using the Eckart-Young 
theorem;

3) antidiagonal averaging (hankelization) of both sin-
gle-range matrices; 

4) decimation (LWT) of both parts of the restored se-
quence.

The filtration technique proposed in this paper includes 
simple stages, namely: Jacobi rotation and subsequent deci-
mation (LWT). Thus, now there is no need to know either 
the method of singular decomposition of the data matrix or 
its own values and vectors, which is a significant advantage 
compared to the method [9–12].

 The PP self-similarity for EMG, revealed through the 
proposed filtration method, and by verifying the implemen-
tation of the scaling law, was proved in this paper. Filtered 
Poincare plots retain the shape, descriptor values, and frac-
tal dimensionality for the proposed Haar filtering process.

The fractal structure of signals is not new for diagnosis 
in medicine. The law of fractal scaling of cardio intervals is 
known from the dissertation [22]. Later, the fractal prop-
erties of the variability of the heart rate were discussed in 
many articles, such as [23–27]. The fractal Higuchi dimen-
sionality of Poincare plots for cardio intervals may vary, for 
example, due to the physiological activity of a patient [26] 
or depending on the diagnosis [23, 25]. On the contrary, the 
fractal dimensionalities of Poincaré plots for electromyo-
grams (Table 4) do not look sensitive to the diagnosis.

One of the generally accepted methods used for fractal 
analysis is the detrended fluctuation analysis (DFA). The 
specific DFA metric, so-called alpha-1 exponent, is strong-
ly correlated with the SD1/SD2 ratio for Poincaré plots. 
The authors [27] report a positive high correlation rate of 
about 0.78. These ratios (Tables 2, 3) clearly differ between 
healthy and sick patients in EMG records according to the 
results [3, 7]. The values of relationships are certainly higher 
for pathological cases.

In addition, the authors tested preliminary results [3], 
which stated that only data on a healthy patient show peaks 
in power spectra belonging to the low-frequency range. Power 
spectra of full EMG were restored using Maple 2020 tools. 
They are generally consistent with the spectra [3]. Howev-
er, the main peak for a healthy patient shifts to the range of 
16–22 Hz, as opposed to the 5–10 Hz range reported in [3].

The existence of low-frequency oscillations in the sig-
nal of a healthy patient can be used for pre-recognition 

of pathology along with the shape of PP and the ratio of 
descriptors. 

The method of PP filtration by Haar wavelets, proposed 
in this work, is limited to condition (7), which in practice is 
almost always well met, especially for long enough time se-
ries. It can simply be extended to other medical signals, that 
is, it is not specific only to EMG.

However, for short time sequences, condition (7) may 
not be met well enough. In this case, it is possible to devise 
a similar filtering method using expressions (9), but then, of 
course, we cannot say about Haar digital filters.

7. Conclusions

1. Classic Poincare plots (PP) for electromyo-
grams (EMG) are self-similar. The law of scaling is well met 
in a fairly wide range of scales. Fractal dimensionalities (in 
the range 1.36–1.48) and Hurst exponential value (≥0.52) 
of PP for the EMG indicate relative stability of sequences. 
A simple way of filtering by Haar wavelets was designed 
for classic PP, in this case, those filtered by Haar wavelets 
retained shape, fractal dimensionality, and variability de-
scriptors of classic PP. This non-changeability is the result 
of self-similarity.

2. Modified (filtered) PPs have two advantages over the 
classic ones. Firstly, filtered PPs are not excessive. Secondly, 
filtered PPs allow clear visualization and direct evaluation of 
two types of variability: low-frequency and high-frequency.

3. Detected signs of EMG of healthy patients, specific 
shape, and a low ratio of variability descriptors (≤0.25) to-
gether with low-frequency signal oscillations (in the range 
of 5–25 Hz) can be used to make clinical decisions.
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