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1. Introduction

The condition monitoring of direct current (DC) mo-
tor is essential for early warning of potential failures in 
machines and industrial applications. Engineers and aca-
demics, particularly in industries, have found monitoring a 
spinning machine to be a difficult undertaking. Vibration 
analysis is a useful tool for determining the current machine 
state, detecting problems of inoperative equipment, and 
monitoring overall machine health. Exact vibration deter-
mination, bearing condition determination and Fast Fourier 
Transform (FFT) analysis are the three components of full 
vibration analysis [1, 2].

The reasons for faults can be classified into two clusters: 
1) Failures due to mechanical causes that include me-

chanical unbalance, misalignment, end rings or fractured 
rotor bars, bearing fatigue, loss of cooling, improper lubrica-
tion, overheating; 

2) Failures due to electrical causes that include im-
pedance and resistance unbalancing, poor power quality, 
insulation breakdown, and excessive current and loading. 
The distribution of DC motor major faults can be listed as 
bearing (69 %), stator winding (21 %), rotor bar (7 %), and 
shaft/coupling (3 %) faults [3].

Motor Power Pattern Analysis (MPPA) is a technology 
that analyzes the current and voltage provided to an electric 
motor using particular patterns and protocols to identify the 
operational state of the motor without disrupting production. 
Machine diagnostic choices are made using MPPA, as well as 
vibration and temperature analysis. MPPA is based on the idea 
that an induction motor circuit functions as a transducer. Vari-
ations in motor current can be noticed by clamping a Hall-Ef-
fect current sensor on either the primary or secondary circuit.

Many diagnostic techniques have been developed in the 
past to detect such fault-related patterns. These methods 
for detecting the aforementioned potential failures of mo-
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Early detection of faults in DC motors extends their 
life and lowers their power usage. There are a vari-
ety of traditional and soft computing techniques for 
detecting faults in DC motors. Many diagnostic tech-
niques have been developed in the past to detect such 
fault-related patterns. These methods for detecting 
the aforementioned potential failures of motors can 
be utilized in a variety of scientific and technological 
domains. Motor Power Pattern Analysis (MPPA) is a 
technology that analyzes the current and voltage pro-
vided to an electric motor using particular patterns 
and protocols to assess the operational status of the 
motors without disrupting production. Engineers and 
researchers, particularly in industries, face a diffi-
cult challenge in monitoring spinning types of equip-
ment. In this work, we are going to explain how to use 
the motor power pattern/signature analysis (MPPA) 
of a power signal driving a servo to find mechanical 
defects in a gear train. A hardware setup is used to 
simplify the demonstration of obtaining spectral met-
rics from the power consumption signals. A DC motor, 
a set of metal or nylon drive gears, and a control cir-
cuit are employed. The speed control circuit was elim-
inated to allow direct monitoring of the DC motor’s 
current profiles. Infrared (IR) photo-interrupters with 
a 35 mm diameter, eight-holed, standard servo wheel 
were employed to gather the tachometer signal at the 
servo’s output. The mean value of the measurements 
was 318 V for the healthy profile, while it was 330 V 
for the faulty gears power data. The proposed power 
consumption profile analysis approach succeeds to 
recognize the mechanical faults in the gear-box of a 
DC servomotor via examining the mean level of the 
power consumption pattern as well as the extraction of 
the Power Spectral Density (PSD) through comparing 
faulty and healthy profiles
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tors could utilize a variety of scientific and technological 
domains. According to the studies [4–7], it is possible to 
classify the fault diagnosis as depicted in Fig. 1.

Therefore, noninvasive motor-current signature analysis 
is by far the most popular technique for diagnosing prob-
lems, according to diverse research. However, to separate 
the significant frequency components from others that may 
be present due to time harmonics, machine saturation, or 
mechanical difficulties, modeling and measurement-driven 
methods of machine defects are required.

2. Literature review and problem statement

Several studies discussed fault detection and diagnosis 
by analyzing the current or power consumption signatures/
patterns. The paper [8] analyzed the motor model parameters 
like torque (τm), speed (ω), and motor current (I) to the back 
electromotive force (EMF) (e) relationships for a DC servo-
motor dynamic model. This study provides useful information 
on the electrical components (resistance (Ra) and armature 
inductance (La)) and the mechanical components (viscous 
friction and damping, and shaft inertia). However, there were 
unresolved issues related to the information describing the 
potential faults on DC motors individually, it reported an 
analysis for a robotic system including 6 DC motors instead. 
The study [3] adopted three methods (recurrent networks, 
support vector machine, and convolutional networks) to 
handle the challenges of Fault Detection and Isolation (FDI) 
of incipient errors of a DC motor. Although the experimental 
results of the study revealed that the convolutional networks 
achieve a better diagnosis, the study didn’t discuss the model 
parameters like torque (τm), speed (ω), motor current (I), 
and the back electromotive force (EMF) (e) relationships. 
The authors in [9] developed a statistical-based model for 
fault diagnosis to detect motor windings short-circuit faults 
and provide also an estimation for a fault severity. This work 
estimated fault severities to make proper decisions in reaction 
to the fault conditions. However, the study lacked from prov-
ing a mathematical model with experiments. The paper [10] 
presented a method based on the characteristics of acquired 

Hall-vector stages and through a Clark-vector transformation 
of the Hall signal to identify Hall fault type by detecting their 
phase change of a motor. The work investigated the impact of 

various faults on the accuracy of rotor 
position estimations, and two fault-tol-
erant management techniques were pro-
posed. However, this study discussed 
only two faults on AC induction motor.

In the work [11], the fault diagnosis 
unit was set up to gather fault data. A 
residual matching technique is used 
to find the problem when the actua-
tor defect is identified by comparing 
the residual signal to a predetermined 
threshold. A least-squares filter can be 
used to further estimate defection pro-
cesses. A fault-tolerant controller was 
designed based on the fault estimation 
to ensure the DC motor system’s stabil-
ity and control performance. However, 
this method is too complicated and 
time-consuming when implemented.

The study [12] presented a fault diag-
nosis for a DC motor via thermal pattern 
instead of current recognition using ex-
periments employing a data logger with 

a K-type thermocouple. Although temperature measurements 
were performed on 4 parts of a DC motor including casing, 
brush, bearing, and permanent magnet, the dependency on 
thermal measurements is not sufficient to predict all potential 
faults of DC motors. A way to overcome these difficulties can be 
another technique for fault diagnosis, which is proposed by [13], 
where wavelet examination with starting transient current was 
used to quantify and classify the bearing and armature winding 
faults in a DC motor. However, this work investigated only two 
types of faults, while leaving other potential failures. All this 
suggests that it is advisable to conduct a study on building a 
platform for mechanical fault diagnosis of DC motors through 
power consumption pattern recognition.

3. The aim and the objectives of the study

The study aims to build a platform for mechanical fault 
diagnosis of DC motors through power consumption pattern 
recognition.

To achieve this aim, the following objectives are accom-
plished:

– to recognize the mechanical faults in the gear-box of a 
DC servomotor via the power consumption pattern and its 
mean value;

– to identify frequencies of interest by computing nom-
inal RPM;

– to extract data of Power Spectral Density (PSD) after 
constructing the band of frequency that may contain fault 
indication.

4. Materials and methods 

4. 1. DC servomotor mathematical model
The manufacturers provide some of the initial physical 

parameters, such as motor torque T, armature current i, and 
constant factor (Kt), as follows [1, 2]:

Fig.	1.	Fault	diagnosis	techniques
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  .tT K i= ⋅

The back-EMF (e) is proportional to the angular velocity 
of the shaft ω by a constant factor (Ke):

  .ee K= ⋅ω

In SI units, the motor torque and back-EMF constants 
are equal, that is,

    .K Kt Ke= =

The system is modeled by summing the torques that act 
on the rotor inertia and integrate the angular acceleration of 
the rotor to provide the velocity and integrate the velocity 
to obtain the position. Kirchhoff’s laws are also applied to 
the armature circuit. First, a modeling of the integrals of the 
rotor acceleration and the rate change of armature current is 
calculated [3, 4], as follows:

2

2 d d ,d dt t
dtdt

θ θ
= = θ∫

d .di t i
dt

=∫

Next, Newton’s and Kirchhoff’s laws are applied to the 
motor system to generate the following equations:

2 2

2 2

1       ,t
d d d dJ T b K i b

dt J dtdt dt
θ θ θ θ = − ⇒ = −  

1          .b
di di dL Ri V e Ri V K
dt dt L dt

θ = − + − ⇒ = − + −  

4. 2. Experimental setup
In this work, we are going to explain how to use the motor 

power pattern/signature analysis (MPPA) of a power signal 
driving a servo to find mechanical defects in a gear train. 
MPPA is proven as a method for diagnosing flaws that produce 
torque or speed fluctuations in motor fault investigation. It is 
difficult to detect mechanical gear faults with typical vibration 
instruments, especially when the gear train isn’t conveniently 
accessible for instrumentation with accelerometers or other 
vibration sensors. This method demonstrates how to use cur-
rent-voltage signature analysis to derive spectral metrics to de-
tect problems in servomotor drive gears. The hardware setup to 
simplify the demonstration of obtaining spectral metrics from 
the power consumption signals is shown in Fig. 2.

A typical Futaba-S3003 servomotor was modified for 
continuous rotary motion, and the electrical current data 
was received from it. Servos translate the internal DC mo-
tor’s high speed to high torque at the output. A DC motor, 
a set of metal or nylon drive gears, and a control circuit 
are employed. The speed control circuit was eliminated to 
allow direct monitoring of the DC motor’s current profiles. 
Infrared (IR) photo-interrupters with a 35 mm diameter, 
eight-holed, standard servo wheel were employed to gather 
the tachometer signal at the servo’s output.

The DC servomotor was set to constant 5 V, and the 
output shaft speed was roughly 50 RPM due to four pairs of 
gears that supplied a 278:1 speed reduction. By monitoring 
the voltage drop across a 0.5 Ohm resistor, the current con-
sumption was determined using Ohm’s law. The current data 

was amplified using a single-supply sensor interface amplifier 
since the change in current measurement values was too small 
to observe. The amplified current signals were then noise-free 
and smoothed using a 5th order elliptic low-pass filter (LPF) 
or Bode-equations vector-fitting (BEVF) filter [14] before be-
ing sent to an Arduino microcontroller via an ADC converter. 

As seen in Fig. 3, the Futaba-S3003 servomotor is made 
up of four pairs of gears.

The stepped gear G1 meshes with the pinion P1 on the 
motor shaft. The pinion P2, which meshes with the stepped 
gear G2, is a cast component of the stepped gear G1. The 
stepped gear G3 meshes with the pinion P3, which is a cast 
component of the gear G2. The pinion P4, which is cast 
with G3, meshes with the output gear-spline attached final 
gear G4. G1 and P2, G2 and P3, and G3 and P4 are free 
spinning gear sets, meaning they are not connected to their 
respective shafts. When the motor is operated at 5 volts, the 
set of drive gears reduces the motor speed from 13901 RPM 
to around 50 RPM at the output.

Before the defects in the stepped gears, G2 and G3 are 
applied, a total of 10 healthy data sets are acquired. Because 
the gears are made of nylon, they are given simulated frac-
tures by cutting holes in the tooth spacing using a normal 
knife. The tooth spacing is the distance between every two 
consecutive teeth measured around the spur gear’s pitch cir-
cle. The depths of the slots were around 70 % of the gear ra-
dius. After the defects in the gears, G2 and G3 were applied, 
a total of 10 incorrect data sets were collected.

Constructing frequency bands is a necessary step in cal-
culating spectral metrics. First, we calculate the frequencies 
of interest using the tooth count of the drive gears in the gear 
train and the nominal RPM. The methodology diagram can 
be represented as shown in Fig. 4.

Fig.	2.	Experimental	setup

Fig.	3.	Futaba-S3003	servomotor
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As illustrated in the flowchart, the current signal is 
first boosted and filtered with an amplifier and a filter. The 
ADC of the Arduino microcontroller is used to record the 
current measurements at 1.5 kHz, together with tachom-
eter pulses, to a PC as serial data at 115200 baud-rate. A 
MATLAB-based code is used to obtain serial data from the 
Arduino microcontroller to write and save to a CSV file. The 
CSV file is processed and read to get the spectrum metrics.

A 10×2 table is obtained with each timetable corre-
sponding to one dataset. The 1st column of this table con-
sists of 10 healthy data, whereas the 2nd column consists 
of 10 faulty data timetables, and each dataset comprises 
about 11 seconds of 1.5 kHz sampled data.

5. Results of the proposed approach

5. 1. Results of power consumption profile recognition
The tachometer signal is in the 1st column of each gen-

erated 10×2 table, while the power consumption data is in 
the 2nd column that can be visualized with the tachometer 
pulses over time in Fig. 5.

The power consumption profile of healthy and faulty 
data shows a significant difference in the pattern mean 
level and shape.

Fig.	4.	Methodology	diagram

start 

Current & 
voltage data 

Amplifier 

Filter (BEVF) 

Tacho records 
ADC converter 1.5 kHz 

Serial data from Arduino 

Store 
CSV data 

Read CSV data 

Extract PSD 
Construct 
fault bands 

Compute spectrum metrics 

END 

Display results 

Fig.	5.	Time-based	profile	measurements	of:		
a –	healthy	gears	power	consumption;	b –	faulty	gears	power	
consumption;	c –	healthy	gears	tachometer	pulse;	d –	faulty	

gears	tachometer	pulse

0 0.5 1 1.5 2 2.5 3
sec

260

280

360

340

320

300

Po
w

er
(m

W
)

Power consumption - Healthy Gears

Power data
Smoothed power data
Mean of power data

0 0.5 1 1.5 2 2.5 3
sec

250

300

350

400

Po
w

er
(m

W
)

Power consumption - Faulty Gears

Power data  
Smoothed power data
Mean of power data

0 0.5 1 1.5 2 2.5 3
s

0.8

0.6

0.4

0.2

0

1

Pu
lse

s,
8/

re
v

Tachometer Pulse - Healthy Gears

0 0.5 1 1.5 2 2.5 3
s

0.8

0.6

0.4

0.2

0

1

Pu
lse

s,
8/

re
v

 

Tachometer Pulse - Faulty Gears

a

0 0.5 1 1.5 2 2.5 3
sec

260

280

360

340

320

300

Po
w

er
(m

W
)

Power consumption - Healthy Gears

Power data
Smoothed power data
Mean of power data

0 0.5 1 1.5 2 2.5 3
sec

250

300

350

400

Po
w

er
(m

W
)

Power consumption - Faulty Gears

Power data  
Smoothed power data
Mean of power data

0 0.5 1 1.5 2 2.5 3
s

0.8

0.6

0.4

0.2

0

1

Pu
lse

s,
8/

re
v

Tachometer Pulse - Healthy Gears

0 0.5 1 1.5 2 2.5 3
s

0.8

0.6

0.4

0.2

0

1

Pu
lse

s,
8/

re
v

 

Tachometer Pulse - Faulty Gears

b

0 0.5 1 1.5 2 2.5 3
sec

260

280

360

340

320

300

Po
w

er
(m

W
)

Power consumption - Healthy Gears

Power data
Smoothed power data
Mean of power data

0 0.5 1 1.5 2 2.5 3
sec

250

300

350

400

Po
w

er
(m

W
)

Power consumption - Faulty Gears

Power data  
Smoothed power data
Mean of power data

0 0.5 1 1.5 2 2.5 3
s

0.8

0.6

0.4

0.2

0

1

Pu
lse

s,
8/

re
v

Tachometer Pulse - Healthy Gears

0 0.5 1 1.5 2 2.5 3
s

0.8

0.6

0.4

0.2

0

1

Pu
lse

s,
8/

re
v

 

Tachometer Pulse - Faulty Gears

c

0 0.5 1 1.5 2 2.5 3
sec

260

280

360

340

320

300

Po
w

er
(m

W
)

Power consumption - Healthy Gears

Power data
Smoothed power data
Mean of power data

0 0.5 1 1.5 2 2.5 3
sec

250

300

350

400

Po
w

er
(m

W
)

Power consumption - Faulty Gears

Power data  
Smoothed power data
Mean of power data

0 0.5 1 1.5 2 2.5 3
s

0.8

0.6

0.4

0.2

0

1

Pu
lse

s,
8/

re
v

Tachometer Pulse - Healthy Gears

0 0.5 1 1.5 2 2.5 3
s

0.8

0.6

0.4

0.2

0

1

Pu
lse

s,
8/

re
v

 

Tachometer Pulse - Faulty Gears

d



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/5 ( 113 ) 2021

18

5. 2. Results of Computing Nominal RPM
In order to identify frequencies of interest, we calculated 

the nominal speed of the gear-box to appropriately match 
them with the power spectrum frequencies that are more 
demonstrated by visualizing the tachometer RPM records 
at the 1.5 kHz sampling frequency, for the healthy tachom-

eters as shown in Fig. 6 whereas these results for the faulty 
tachometer are shown in Fig. 7.

It’s worth noting that the speed of the output shaft of 
the healthy and faulty data sets differs just a little. The the-
oretical value of 50 RPM is also close to the actual nominal 
RPM value. 

Fig.	6.	Healthy	results	of: a –	computing	the	nominal	speed	at	the	gear-box; b –	tachometer	RPM	records
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Fig.	7.	Faulty	results	of: a –	computing	the	nominal	speed	at	the	gear-box;	b –	tachometer	RPM	records
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As a result, for both the healthy and faulty 
signal analysis, we used the same value of 
49.9 RPM.

5. 3. Results of extracting Power Spec-
tral Density (PSD)

The actual output speed values in Hz that 
are close to the theoretical values are the fre-
quencies of interest. These values including 
the teeth count, potential output speed, gear 
mesh frequencies, and cumulative gear reduc-
tion at each gear mesh are listed in Table 1 
below.

Then, using Matlab’s function called 
“faultBands”, we created frequency bands for 
all of the output speeds, which included the 
following frequencies of interest:

– fS1 at 231.7 Hz, 0:1 sidebands of fS2, with 
the 1st two-harmonics;

– fS2 at 37.4 Hz, 0:1 sidebands of fS3, with 
the 1st two-harmonics;

– fS3 at 7.47 Hz with the 1st two-har-
monics;

– fS4 at 2.14 Hz with the 1st two-har-
monics.

Here, we calculated and displayed the 
faulty and healthy data’s power spectrum. 
The drawing of the interested frequencies 
on the spectrum plot is shown in Fig. 8.

The blue plot represents the healthy 
data spectrum, whereas the red plot rep-
resents the faulty data spectrum. By ob-
serving the increase in fault frequency 
amplitudes in the graph, the following 
points can be remarked: 1fS1 at 231.7 Hz, 
the corresponding sidebands, and its 2nd 
harmonic 2fS1 at 463 Hz.

The remaining frequencies were ob-
tained by zooming in from 0–100 Hz as 
shown in Fig. 9.

Fig. 9 shows the rise in amplitudes at 
the frequencies:

– 1fS2 at 37.3 Hz and its corresponding sidebands;
– 1fS3 at 7.47 Hz and its 2nd harmonic 2fS3 at 14.9 Hz;
– 1fS4 at 2.14 Hz and its 2nd harmonic 2fS4 at 4.2 Hz.
Fig. 9 also shows how the faulty and healthy patterns or 

datasets are shifted in different levels of the power spectrum 
plot. As a result, by examining the power consumption pat-
tern of a servomotor, we can categorize faulty and healthy 
signals.

6. Discussion of the study results of power consumption 
pattern recognition

From analyzing the results of power consumption, shown 
in Fig. 5, it is observed that the power consumption profile of 
healthy and faulty data shows a significant difference in their 
pattern mean levels and shapes.

The mean of the power consumption mea-
surements on the healthy gears operation was 
318 V, while the mean value of the faulty gears 
power consumption measurements was 330 V. 
Furthermore, the power consumption profile 
of healthy and faulty data shows a significant 
difference in the pattern mean level and shape.

Referring to the results shown in Fig. 6, 7, 
there is just a little difference in computing 
the Nominal RPM between the speed of the 
output shaft at the healthy and faulty dataset 
conditions. In addition, the theoretical value was 
50 RPM, which is also close to the actual nom-
inal RPM value. Therefore, we perform more 
analysis to verify the difference. 

Fig.	8.	Power	spectrum	of	healthy	and	faulty	data

Fig.	9.	(0–100)	Hz	zoom	Power	spectrum	of	healthy	and	faulty	data

Table	1

Theoretical	values	calculated	from	tooth	count	assuming	50	RPM	at	the	
output	shaft

Pin-
ion

Gear
Pinion 
Teeth

Gear 
Teeth

Output Speed Gear Mesh Fre-
quency (Hz)

Cumulative 
Gear Reduction(RPM) (Hz)

P1 No 10 Nt 13901.6 231.69 Nm 1

P2 G1 10 62 2242.2 37.37 2316.9 6.2

P3 G2 10 50 448.5 7.47 373.7 31

P4 G3 16 35 128.1 2.14 74.7 108.5

No G4 Np 41 50 0.83 34.2 278

Note: No, Nt, Np, and Nm refer to non-corresponding (gear, pinion teeth, gear mesh 
frequency), respectively.



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/5 ( 113 ) 2021

20

The result of extracting Power Spectral Density (PSD) 
shown in Fig. 8, 9 is obtained after getting the data of 
constructing frequency bands. The PSD profiles show how 
the faulty and healthy patterns or datasets are shifted in 
different levels of the power spectrum plot. As a result, by 
examining the power consumption pattern of a servomotor, 
we can categorize faulty and healthy signals.

The study is limited to investigating the mechanical faults 
of the DC servomotor, which can be considered a disadvan-
tage. The drawback is recommended as a future work by in-
volving armature and other electrical faults in this approach.

7. Conclusions

1. The proposed power consumption profile analysis 
approach succeeds to recognize the mechanical faults in the 

gear-box of a DC servomotor via examining the mean level 
of the power consumption pattern.

2. The analysis of identifying the frequencies of inter-
est by computing nominal RPM indicates that the speed 
of the output shaft of the healthy and faulty datasets 
differs very little and is very close to the theoretical value 
of 50 RPM.

3. The extraction of the Power Spectral Density in-
dicates that it is possible to categorize faulty and healthy 
signals by comparing faulty and healthy PSDs.
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