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In the paper, the method of straight lines approximately solves 
one class of optimal control problems for systems, the behavior of 
which is described by a nonlinear equation of parabolic type and  
a set of ordinary differential equations. Control is carried out using 
distributed and lumped parameters. Distributed control is included  
in the partial differential equation, and lumped controls are con­
tained both in the boundary conditions and in the right-hand side of 
the ordinary differential equation. The convergence of the solutions 
of the approximating boundary value problem to the solution of the 
original one is proved when the step of the grid of straight lines tends 
to zero, and on the basis of this fact, the convergence of the appro­
ximate solution of the approximating optimal problem with respect to 
the functional is established.

A constructive scheme for constructing an optimal control by  
a minimizing sequence of controls is proposed. The control of the 
process in the approximate solution of a class of optimization prob­
lems is carried out on the basis of the Pontryagin maximum principle 
using the method of straight lines. For the numerical solution of the 
problem, a gradient projection scheme with a special choice of step 
is used, this gives a converging sequence in the control space. The 
numerical solution of one variational problem of the mentioned type 
related to a one-dimensional heat conduction equation with boun­
dary conditions of the second kind is presented. An inequality-type 
constraint is imposed on the control function entering the right-hand 
side of the ordinary differential equation. The numerical results 
obtained on the basis of the compiled computer program are presen­
ted in the form of tables and figures.

The described numerical method gives a sufficiently accurate 
solution in a short time and does not show a tendency to «dispersion».  
With an increase in the number of iterations, the value of the func­
tional monotonically tends to zero
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1.  Introduction

The foundations of theoretical researches and practical 
development in the field of distributed-parameter systems 
were first laid down in [1] more than half a century ago. Since 
then, over the years, control theory for distributed-parameter 
systems has been enriched with new ideas and results. Year by 
year, more and more works are published in its various sections.  
However, many important questions of the theory are not 
fully developed for optimal control problems for systems con-
taining links with distributed parameters, the processes in 
which are described by boundary value problems for partial 
differential equations.

Optimal control theory is one of the main areas of prac-
tical use of mathematics. The rapid development of control 
theory for lumped-parameter systems is largely associated 
with the use of Pontryagin’s maximum principle, Bellman’s 
optimality principle, and Krasovsky’s method of moments. 
At the same time, many real control objects have to be con-
sidered as distributed-parameter systems. The variety of 
spheres of application of the theory of distributed systems 
control, its methods and results is evidenced by its close 
connection with technical problems, with game theory and 

problems of positional control, with inverse problems of the 
dynamics of controlled systems. 

There is no doubt that the Pontryagin maximum prin
ciple is one of the main mathematical tools for solving op-
timal control problems with lumped parameters. However, 
when considering a number of practically important prob-
lems, we have to examine distributed-parameter systems, 
where the process is described by boundary value problems 
for various types of partial differential equations. Such 
problems arise in the study of controlled processes of heat 
conduction, diffusion, filtration, etc. Despite the large flow of 
work on the control of distributed-parameter systems, many 
important questions still remain open. A review of works in 
the field of theory and applications of distributed-parameter 
control systems is described most extensively in [2]. This 
review covers the literature on numerical and approximate 
optimal control methods dating back to the 1960s. Of course, 
due to the large number of publications in this area, the bib-
liography of the presented paper is not exhaustive.

The results of the study can be used, in particular, in 
determining the optimal technological mode of gas well ope
ration, subject to the depletion of the formation by a given 
time. Particular interest in this problem is presented for the 
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operation of offshore fields, the service life of which is limited 
by the service life of the bottoms, that is, preliminarily preset.

2.  Literature review and problem statement

The paper presents the results of certain system’s study 
that provides a sequence of control actions for a certain class 
of control objects, which ensure the optimum of a given set 
of system quality criteria. Note that in most works devoted to 
the study of optimal control problems for systems containing 
objects with distributed parameters, the issues of numerical 
solution have not been sufficiently studied. In addition to the 
nonlinearity of boundary value problems, accounting various 
constraints imposed on the control actions and on the phase 
variables of the system necessitates the use of approximate 
optimization methods using computers.

It should be noted that the expediency of considering 
optimal control problems for systems containing links with 
distributed parameters is associated with the fact that con-
trol of an object with distributed parameters in real systems 
is carried out by control devices with lumped parameters.  
A cycle of papers [3–5] is devoted to the theoretical study of 
this type of optimal control problems.

In [3, 4], the problem of damping oscillations of a system 
described by a combination of a wave equation and an ordi-
nary differential equation of the second order is considered, 
under the assumption that the control function and the object 
with lumped parameters act, respectively, on the left and right 
ends of the object with distributed parameters. The func-
tions of the system states are related through the boundary 
conditions for the wave equation. The problem of oscillation 
control and the results are formulated, which determines the 
general solution of the boundary value problem. In [4], which 
is a continuation of [3], a solution of the boundary value prob-
lem was constructed and the control problem was solved. Fur-
ther, using the method of straight lines, a finite-dimensional 
approximation of the boundary value problem is constructed 
and a criterion for the controllability of the system is found. 

In [5], the problem of damping oscillations of a network 
consisting of m objects with distributed parameters is solved, 
in which a controlled object with lumped parameters acts 
through the boundary conditions at the point of connection 
of objects. The solution of the boundary value problem is 
constructed and the control problem is solved. Numerical 
calculations were not carried out, the work is presented as  
a purely theoretical study.

In [6], the problem of optimal control of the thermal 
regime of heated buildings is considered. The necessary op-
timality conditions are obtained, formulated in the form of 
the maximum principle. Computational aspects are analyzed 
and a method of approximate realization of optimal control  
is indicated. However, according to the method of successive 
approximations proposed in this work, which makes it possi-
ble to find the control action in the class of piecewise conti
nuous and bounded functions, no calculations were carried 
out for specific initial data.

In [7], the problem of optimal control of processes de-
scribed by a parabolic equation and sets of ordinary differen-
tial equations with controls of moving sources was investigat-
ed. Note that one of the main features of systems with control 
of moving sources is their nonlinearity with respect to the 
control that determines the motion law of the source. For the 
considered problem, the theorem of existence and uniqueness 

of optimal control is proved, necessary conditions of optima
lity are obtained in the form of point and integral maximum 
principles. Sufficient conditions for the Fr chet differentia-
bility of the performance criterion are found and an expres-
sion for its gradient is obtained, however, the results are not 
applied to a specific applied problem of the type considered.

In [8], an approximate method is proposed for solving 
optimal control problems for one class of distributed sys-
tems, based on the use of perturbation theory. For a number 
of examples, the results of calculations of optimal processes 
are given. In this case, in order to construct an infinitesimal 
variation of controls, in addition to integrating the direct and 
adjoint boundary value problem, it is also necessary to solve 
linear programming problems. All the calculation formulas 
used in the construction of computational algorithms have 
been proved, although the convergence found by the pro-
posed method of approximate solution has not been proven.

In [9], by regulating the bottomhole pressure in a certain 
interval, the technological mode of gas well operation was 
determined. The problem is reduced to the problem of opti-
mal control of systems, the behavior of which is described by  
a one-dimensional equation of gas filtration in a porous media 
and an ordinary differential equation. Due to the nonlinea
rity of the gas filtration equations, it is not possible to prove 
the maximum principle and the use of the method of straight 
lines, the problem is reduced to a variational problem related 
to a system of ordinary differential equations. The calcula-
tion results are presented.

It should be noted that the above types of optimal control 
problems, especially in the case when the process is described 
by a set of nonlinear partial and ordinary differential equa-
tions, have been little studied. The main results obtained are 
related to the deduction of the necessary optimality condi-
tions, the derivation of formulas for the gradient, and the proof 
of existence theorems. The practical use of these conditions, 
even in the simplest cases, leads to boundary value problems 
for partial differential equations, the exact solution of which 
cannot be obtained. Therefore, some authors, for example [10], 
usually restrict themselves to indicating some procedure for 
finding approximate solutions and it is not always proved that 
the approximate solution converges to the exact solution.

In this regard, when solving practically important above- 
mentioned types of optimal control problems using compu-
tational tools, it is very effective to use various approximate 
methods, in particular, the method of straight lines. This 
approach was used in [11], where, when approximating the 
heat conduction equations in phase variables, the problem 
associated with the choice of lumped, starting and distribu
ted controls was reduced to solving a variational problem for 
systems of ordinary differential equations. In this paper and 
in the papers [6, 8, 10], the authors restricted themselves to 
indicating a method of approximate realization of the optimal 
control, while the convergence of the approximate solution 
was not proved. This suggests that it is advisable to analyze 
the above types of optimal control problems using computers.

It is also important to note that when studying optimal 
control problems for mixed nonlinear systems described by 
a set of ordinary and partial differential equations, it is not 
always possible to obtain optimality conditions in the form of 
the maximum principle. Moreover, when solving the problem 
approximately, the question of convergence of solutions with 
respect to control often remains open. The main mathematical 
difficulties in this case are directly related to the nonlinearity 
of boundary value problems for partial differential equations.
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3. The aim and objectives of the study

The main goal of this study is the approximate solution 
of the optimal control problem for systems, the processes in 
which are described by rather general nonlinear boundary 
value problems of parabolic type in combination with the 
Cauchy problem for ordinary differential equations. Achieve-
ment of this goal makes it possible to choose such a solu- 
tion (i.e., such a set of control functions) from all the solutions 
of the control problem that would be, in a sense, the most 
advantageous. Such systems have the best (in some way) 
properties compared to any other systems from a certain class.

This aim’s achievement brings new challenges of solving 
the following objectives:

– to prove the convergence of the approximate solution 
of the approximating boundary value problem to the solution 
of the original one;

– to prove the convergence of the approximate solution 
of the approximating optimal problem in terms of the func-
tional and to propose a constructive scheme for constructing 
a minimizing sequence of controls;

– to carry out the analysis of the numerical solution of 
the problem.

4. Materials and methods

In problems solved on high-speed computers, systems of 
nonlinear differential equations, either ordinary or partial, 
are most often encountered. The methods for the numerical 
solution of systems of ordinary differential equations are well 
developed, whereas the intensive creation of methods for solv-
ing partial differential equations began only after the advent 
of computers. In this paper, the method of straight lines –  
a universal method for solving systems of nonlinear partial dif-
ferential equations is applied. The main idea of the method of 
straight lines is to reduce partial differential equations to solv-
ing a system of ordinary differential equations. This is the dif-
ference from the grid method, which directly reduces the solu-
tion of systems of partial differential equations to the solution 
of systems of algebraic equations. The method of straight lines 
can be used to solve partial differential equations of any type, 
but is mainly used to solve elliptic and parabolic equations.  
The adequacy of methods for the numerical solution of ordi-
nary differential equations lies in the fact that they are well 
developed, while such methods for solving partial differential 
equations, which reduce them approximately to systems of or-
dinary differential equations (including the method of straight 
lines), acquire great practical importance. In the classical 
method of straight lines, the region of integration is divided 
into strips, usually by fixed straight lines, and the derivatives 
in one of the directions are replaced by finite-difference rela-
tions (usually linear). As a result, a system of ordinary differen-
tial equations is obtained, which is solved numerically. In the 
work, the numerical solution of the problem is accompanied by 
the development of appropriate software, which is correct, that 
is, ensures the solution of the problem. Using a computer, a nu-
merical solution was obtained for one problem of this type re-
lated to thermal processes in a homogeneous rod. The method 
for solving the problem is based on the approximation of par-
tial differential equations by ordinary differential equations.

A number of practically important problems lead to the need 
of studying optimal control problems for systems, the behavior 
of which can be described by various boundary value problems 

for nonlinear parabolic partial differential equations. Such 
problems, in particular, include the problems of optimal control 
of heating massive bodies [8], the problems of determining the 
technological mode of gas well operation, where the process is 
described by a nonlinear equation of unsteady gas filtration in 
porous media [9], and many others. In this case, the main difficul-
ty, even in the presence of restrictions on the phase variables, is 
directly related to the nonlinearity of boundary value problems.  
Therefore, obtaining a numerical solution of such problems for 
both theoretical and practical purposes is of certain interest.

Now then, let in the area Q x t T= £ £ £ £{ }0 1 0,  some 
controlled processes be described by the boundary value 
problem of the following form:

u a x t u u

F x t u u x t a x t u a

t xx

x

= ( ) +

+ ( )( ) ( ) ≥ = >

, ,

, , , , , , , , ,α 0 0const 	 (1)

u t t u t y t tx
o o o0 0, , , , , ,( ) = ( ) ( ) ( )( )j β  t > 0, 	 (2)

u t t u t y t tx 1 11 1 1, , , , , ,( ) = ( ) ( ) ( )( )j β  t > 0, 	 (3)

u x u x, ,0 0( ) = ( )  0 1£ £x , 	 (4)

where a x t p, , ,( )  F x t p q, , , , ,α( )  k = 0 1,  are given continuous 
and sufficiently smooth functions with a collection of their 
arguments, and besides a, ap, F, Fp, Fqx

,  Fα, j p
k ,  jy

k , jβ
k  are 

uniformly bounded and continuous by t. The function charac-
terizing the initial state of a distributed object is continuous. 
Distributed and lumped controls take values from some closed 
areas, defined, for example, by the inequalities α β£ £1 1, .k  
The functions y y tk= ( ) satisfy the differential equations:

y f t u k t y t tk k k k= ( ) ( ) ( )( ), , , , ,β 	 (5)

with the initial conditions:

y yk
o
k0( ) = , 	 (6)

where the right-hand sides of equations (5) satisfy the same 
conditions as functions on the right-hand sides of condi-
tions (2) and (3), and yo

k  are given constants.
The top three functions P x t a x t t to, , , ,( ) = ( ) ( ) ( )( )β β1  will 

be called admissible control if:
– distributed and lumped controls take values from the 

respective areas;
– lumped controls have a finite number of discontinuity 

points of the first kind; 
– distributed control has a finite number of non-inter-

secting smooth discontinuity lines in the area Q.
The problem of finding the function u(x, t), yk(t) from 

conditions (1)–(6) with a fixed control is called a direct 
problem. We will assume that each admissible control cor-
responds to a unique solution of the direct problem (1)–(6), 
and a small change in control corresponds to a small change 
in its solution.

It is required to find such an admissible control 
P x t x t t to, , , ,( ) = ( ) ( ) ( )( )α β β1  and the corresponding solution 
of the problem (1)–(6), so that the functional:

S P x t G x u x T x y T y To

o

, , , , ,( )( ) = ( )( ) + ( ) ( )( )∫ d j 1
1

	 (7)

took the smallest possible value, where G(x, p), j(y0, y1) are 
given continuously differentiable functions of their arguments.



Mathematics and Cybernetics – applied aspects 

29

Necessary optimality condition in the problem (1)–(7), 
in the case when the coefficient in front of the second-order 
derivative in (1) is constant. Boundary value problems simi
lar to (1)–(6) describe many processes, including heating  
a massive body in an inertial furnace, processes of underground 
fluid dynamics and many others [6–9]. There is no doubt, that 
the problem of optimal control of systems, the behavior of 
which can be described by a set of ordinary and partial diffe
rential equations with additional conditions, represents a cer-
tain theoretical interest, especially for practical presentation.

The solution of the above problem implies the solution  
of the following tasks, which we have identified in sepa-
rate subsections.

5. Results of research of optimal control problems  
for nonlinear distributed-parameter systems 

The main difference between the considered problem and 
the previously presented ones is that in order to prove the 
convergence of the approximate solution, at least in terms of 
the functional, this paper shows, first of all, the convergence 
of the approximating boundary value problem to the solution 
of the original one.

5. 1. Convergence of the approximate solution of the 
approximating boundary value problem to the solution of 
the original one

In this section, the uniform convergence of the approxi-
mate solution of the approximating boundary value problem 
to the solution of the original one will be proven.

In order to approximately solve the problem (1)–(7), the 
method of straight lines is used. Let ωh  be a uniform grid of 
straight lines in a given segment of the spatial variable with 
nodal points x ihh

i = ,  i n= 0 1, ,..., ,  nh = 1. Let us denote by jh
i t( ) 

the value of an arbitrary function in the nodes xh
i  of the grid ωh ,  

and, at the nodes of this grid, we replace the direct prob-
lem (1)–(6) with the system of differential-difference equations:
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with the initial conditions:

u u xh
i

h
i0 0( ) = ( ),  i n= 0 1, ,..., ,  y yh

k k0 0( ) = ,  k = 0 1, . 	 (9)

Thus, the considered problem (1)–(7) is reduced to the 
choice of the function P t t t th

i
h
i

h h( ) = ( ) ( ) ( )( )α β β, ,0 1  from the 
conditions for the minimum of the functional:
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subject to constraints (8), (9).
Let us denote by:

δh
i

h
i
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h
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lem (1)–(6), and u th
i ( ), y th

k ( ) is the solution of the differen-
tial-difference problem (8), (9), and introduce the n+3-di-
mensional vector νh(t) with the components:
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Substituting the exact solution u x th
i , ,( )  y tk ( ) of the 

direct problem (1)–(6) into (8), (9) and subtracting (8), (9) 
from the obtained relations, compose the system of linear 
inhomogeneous equations for errors:
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with zero initial data:
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where the sign «~» denotes the values of derivatives at 
intermediate points. Applying the known a priori estimate 
for solutions of a system of linear inhomogeneous ordinary 
differential equations for the solution of the system (11), 
(12), we have:

max ,
0 2

1
£ £ +

( ) £
( )

− i n h
i CTt

O h

C
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From this estimate, we find that the solution of the diffe
rential-difference problem (8), (9) for h→0 converges at  
a rate O(h) to the solution of the direct problem (1)–(6).
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5. 2. Convergence of the approximate solution of the 
approximating problem by the functional and construction 
of a minimizing sequence

In this subsection, the convergence of the approximate 
solution of the approximating optimal problem with respect 
to the functional will be proven and the assumption that the 
sequence of controls constructed according to the proposed 
scheme is minimizing will be clearly established.

If we denote:

S S P S P th
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that is, functional convergence takes place.
THEOREM. Let:
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be the optimal control in the approximating problem (8)–(10),  
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the grid ωh  for the whole area Q. Then the sequence 
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tional (7) in the problem (1)–(7).

PROOF. Let hm be some sequence of positive numbers 
that tends to zero as m→∞, and
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Let us prove that the sequence:

P x t x t t th
i

h
i

h hm m m m
, , , , ,( ) = ( ) ( ) ( )( )α β β0 1

as m→∞ is minimizing for the functional (7).
For definiteness, we assume that the functional (7) has  

a finite infimum on the set of admissible controls. Let:

P x t x t t tm m m m, , , , ,( ) = ( ) ( ) ( )( )α β β0 1

be some minimizing sequence for the functional (7), that is:

lim , inf .
m m P

S P x t S P
→∞

( )( ) = ( ) < +∞ 	 (14) 

In the approximating optimal problem (8)–(10) instead of:

P t t t th
i

h
i

h h( ) = ( ) ( ) ( )( )α β β, , ,0 1

substitute P x t x t t tm h
i

m h
i

m mm m
, , , , .( ) = ( ) ( ) ( )( )α β β0 1

Considering that:

P t t t th
i

h
i

h hm m m m
( ) = ( ) ( ) ( )( )α β β, ,0 1

is the optimal control for the problem (8)–(10), we have:

S P t S P x th h
i

h m h
i

m m m m
( )( ) £ ( )( ), . 	 (15)

Since the solution of the problem (8), (9) converges 
uniformly to the solution of the direct problem (1)–(6), the 
value of the approximating functional (10) converges to the  
value of (7). Therefore, for any small positive number, we can 
specify a natural number such that for any natural number 
greater than the indicated one, the following inequalities hold:

S P t S P x th h
i

h
m m m( )( ) − ( )( ) <, ,ε 	 (16)

S P x t S P x th m h
i

mm m
, , ,( )( ) − ( )( ) < ε 	 (17)

Considering in equality:

S P x t S P x t S P x t

S P t S P t

h m h

h h
i

h h
i

m m

m m m m

, , ,( )( ) − ( )( ) = ( )( ) −

− ( )( ) + ( ))( ) − ( )( )S P x tm , ,

relation (15)–(17) for any m>N, we have:

S P x t S P x th mm
, , .( )( ) £ ( )( )+ 2ε 	 (18)

Inequality (18) is valid for an arbitrary minimizing 
sequence; therefore, this implies that P x thm

,( ) is also a mini-
mizing sequence of controls for (7) in the problem (1)–(7), 
which is what we wanted to prove.

Thus, it has been proven that the sequence of controls 
constructed according to the proposed scheme is minimizing.

Comment. Note that similar results are also valid in the 
case of the first boundary value problem, if the boundary 
conditions for the functions states of a distributed object are 
taken as:

u k t t y t
k k, , ,( ) = ( )( )j  k = 0 1, ,  t > 0, 	 (19)

and yk(t) satisfies the equations:

y f t y t tk k k k= ( ) ( )( ), , .β 	 (20)

The outlined scheme remains applicable in the case 
when in the boundary conditions (2) and (3) the values of 
the states of the distributed object are set at one end of the 
segment, and the values of its change in the phase variable –  
at the other one.

Thus, the method of straight lines makes it possible to re-
place the original control problem with a variational problem 
for systems of ordinary differential equations.

5. 3. Analysis of the numerical solution of the heat 
transfer problem

This subsection provides a numerical solution to one 
variational problem related to thermal processes in a homo-
geneous rod.

Consider a problem that can be formulated in thermo-
physical terms as follows. Let there be a homogeneous rod 
with uniform length, the left end of which is heat insulated, 
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and at the right end there is heat exchange with the external 
environment, and there are no heat sources in the rod. The 
temperature in the rod changes depending on the time and 
position of its coordinates. Let the ambient temperature be 
controlled by fuel consumption, which is related to the am-
bient temperature by virtue of a linear ordinary differential 
equation. It is assumed that the temperature distribution in 
the rod at the initial moment of time t = 0 is equal to zero.  
It is required to the end of the process, by controlling the fuel 
consumption, without taking it beyond the maximum and 
minimum possible, to make the temperature distribution in 
the rod as close as possible to the given distribution.

The problem is mathematically reduced to the choice of 
the flow rate functions from the condition of the minimum of 
the quadratic functional:

S u x T u x xβ( ) = ( ) − ( ) ∫ , ,* 2

0

1

d 	 (21)

under the following restrictions:

u ut xx= ,  0 1< <x ,  0 < £t T , 	 (22)

u x, ,0 0( ) =  0 1£ £x , 	 (23)

u tx 0 0, ,( ) =  0 < £t T , 	 (24)

u t y t u tx 1 1, , ,( ) = ( ) − ( ) α  0 < £t T ,  α = >const 0, 	 (25)

ν β′ + = ( )y y t ,  0 1£ ( ) £β t ,  0 < £t T ,  ν = >const 0, 	 (26)

y 0 1( ) = . 	 (27)

Note that this example is taken from [10], where a ma
thematical programming method is presented as applied to 
the problem (22)–(27). In [8], based on the use of the results 
of perturbation theory, a numerical solution of this problem 
was given without and with taking into account the con-
straints of the system phase coordinate.

When the boundary value problem (22)–(27) is ap-
proximated by the method of straight lines, the problem is 
reduced to solving a variational problem related by ordinary 
differential equations:

dz
dt h

z zh
h h

0

2
0 12

= − +  ,

dz
dt h

z z zh
i

h
i

h
i

h
i= − + 

− +1
22

1 1 ,  i n= −1 2 1, ,..., , 	 (28)

dz
dt h

z h z hzh
n

h
n

h
n

h
n= − +( ) + 

− +2
12

1 1α α ,

dz
dt

t zh
n

h
n

+
+= ( ) − 

1
11

ν
β ,

with zero initial conditions:

zh
i 0 0( ) = ,  i n= 0 1, ,..., ,  zh

n+ ( ) =1 0 1.	 (29)

Here z z z z zh h h h
n

h
n= ( )+0 1 1, ,..., ,  is the n+2-dimensional vector 

with the components z t u th
i

h
i( ) = ( ), i n= 0 1, ,..., , z t y th

n
h

+ ( ) = ( )1 , 
and u th

i ( )  are approximate values of u x th
i ,( )  on the straight 

lines x ihh
i = ,  i n= 0 1, ,..., .  

It is required to choose fuel consumption so that the sum:

S h z T u xh h
i

h
i

i

n

β( ) = ( ) − ( ) 
=

−

∑ *

0

1 2

	 (30)

takes a minimum value.
According to the usual presentation of the Pontryagin 

maximum principle, we compose the system of conjugate 
equations:

d
dt

H
z h

h

h
h h

ψ
ψ ψ

0

0 2
0 11

2= −
∂
∂

= − − +  ,

d
dt

H
z h

h

h
h h h

ψ
ψ ψ ψ

1

1 2
0 1 21

2 2= −
∂
∂

= − − +  ,

d
dt

H
z h

h
i

h
i h

i
h
i

h
iψ

ψ ψ ψ= −
∂
∂

= − − + 
− +1

22
1 1 1 , i n= −2 3 2, ,..., ,	(31)

d
dt

H
z h

h
n

h
n h

n
h
n

h
nψ

ψ ψ ψ
−

−
− −= −

∂
∂

= − − + 
1

1 2
2 11

2 2 ,

d
dt

H
z h

hh
n

h
n h

n
h
nψ

ψ α ψ= −
∂
∂

= − − + 
−1

2 12
1 ( ) ,

d
dt

H
z h

h
hh

n

h
n h

n
h
nψ

α ψ
ν

ψ
+

+
+= −

∂
∂

= − −










1

1 2

2
11

2 ,

where H is the Hamilton-Pontryagin function of the prob-
lem (28)–(30).

It is important to note that the system of equations (28) 
can be obtained by approximating the boundary value prob-
lem conjugate to (22)–(27) by the method of lines:

ψ ψt xx= − , 0 1< <x ,  0 £ <t T ,

ψ x T u x T u x, , ,*( ) = ( ) − ( ) 2  0 1£ £x ,

ψ x t0 0, ,( ) =  t > 0, 	 (32)

ψ αψx t t1 1 0, , ,( )+ ( ) =  α = >const 0,  t > 0,

νj j ανψ′ − = − ( )1, ,t  ν = >const 0,  0 £ <t T ,

j T( ) = 0,

that is, the system of equations (28) can be composed in two 
ways. Boundary conditions for the system of equations (31) 
and ∂ ∂H β  have the form:

ψh
i

h
i

h
iT h z T u x( ) = ( ) − ( ) 2 * ,  i n= −0 1 1, ,..., ,

ψ ψh
n

h
nT T( ) = ( ) =+1 0. 	 (33)

∂ ∂ =
+

H h
n

β
ψ

ν

1

. 	 (34)

For the numerical solution of the problem (28)–(30), the 
gradient projection scheme was used. In this case, the transi-
tion from βk(t) to the next iteration is carried out according 
to the rule:

β

β δβ β δβ

β δβk

k k k

k kt

t t t t

t t+ ( ) =

( ) − ( ) £ ( ) − ( ) £

( ) − ( ) >1

0 1

1 1

k if

if

, ,

, ,,

, ,0 0if β δβk kt t( ) − ( ) <










	 (35)
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based on the construction of infinitesimal variations of con-
trols, chosen by the formula:

δβ λ
β
β

k
k

k
t

H

H
( ) = ⋅

∂ ∂
∂ ∂0

,  k = 0 1, ,... ,	 (36)

where the denominator of the fraction in formula (36) is the 
maximum element of the array consisting of the values of the 
derivative of the Hamilton functions with respect to control 
in a given time interval. 

From the conditions ψh
n T+ ( ) =1 0  and expressions (35), 

(36), it follows that in the given example, variations of controls 
at the right end of the time interval are equal to zero. There-
fore, when calculating by the formulas (35), (36), approximate 
optimal control of the values of the flow functions at the right 
end of the time interval during iterations will not change.

Some calculations were carried out according to schemes 
(35), (36) on the basis of programs written in the QBasic 
language. In our calculations, it was assumed that α = 10, 
T = 0 2. , h = 0 25. ,  ν = 0 04. .  The system of equations (28), (29) 
and the conjugate system (31), (33) were integrated by the 
Runge-Kutta method with a constant step. For the initial 
approximation, a linear function β0(t) was taken. To check 
the optimality of the optimal control found according to the 
scheme (35), (36), as u xh

i* ( )  the solution of the problem (28), 
(29) was taken for a given control. In this case, the value of 
the minimum of the functional is equal to zero. In this case, the 
found approximately optimal control excluding the end of the 
time interval 0 £ £t T  coincides with the given optimal con-
trol. This is due to the fact that for all iterations ψh

n T+ ( ) =1 0.
Fig. 1 shows the results of calculations of the prob-

lem (21)–(27) with the following functions β*(t), β(t),  
u(1, t), y(t).

  
Fig. 1. Calculations of the problem (21)–(27)

The convergence of the process is as follows (Table 1).
Calculations were also carried out in the case when as 

u xh
i* ( ) the solution of the problem (28), (29) was taken with 

relay optimal control with one switching point:

β* , . ,

, . . .
t

t

t
( ) =

£ £
< £





0 0 0 1

1 0 1 0 2

if

if

At the same time, the qualitative picture of the results did 
not change, the values of the functional decreased in approxi
mately the same way as in the table. After 70 iterations, the 
value of the functional turned out to be practically zero, and 

the approximate optimal control obtained in this case, as can 
be seen from the given graphs (Fig. 2), with an increase in 
the number of iterations approaches the given relay control.

Table 1
Convergence of the process

No. of iteration Sh( ) min(∂H/∂ )

0 1.7870∙10–2 –0.61718

1 1.7167∙10–2 –0.60452

5 1.4496∙10–2 –0.55383

10 1.1146∙10–2 –0.49029

20 6.4572∙10–3 –0.36235

30 2.8531∙10–3 –0.23250

40 6.9710∙10–4 –0.10100

50 7.3066∙10–5 –0.01401

60 1.3448∙10–6 –0.00077

   
Fig. 2. Approximately optimal control

Note that in the process of solving the problem (28)–(30), 
it turned out that ∂ ∂ £H β 0,  therefore, to avoid looping,  
as ∂ ∂H0 β  in formula (36), the minimum element of the  
array ∂ ∂H β  was taken by its absolute value for 0 £ £t T  [11].

6. Discussion of the results of studying the solvability  
of one class of nonlinear optimization problems

In this paper, we considered a range of problems related 
to the direct problems of studying controlled distributed- 
parameter systems. Here, the direct problem was understood 
as a problem in which it was required to find controls pro-
viding a certain quality of changes in some dynamic system 
or its states. These tasks were based on numerous practical 
problems; they found ever wider application in solving various 
scientific, technical and national economic problems. This is 
due to the expanding possibilities of more adequate modelling 
of real processes, as well as the variety and depth of theoretical 
developments. The study of the solvability of nonlinear optimi-
zation problems and the development of constructive methods 
for their solution is one of the urgent problems, based on the 
theory of optimal control of distributed-parameter systems.

A discussion (or, in any case, a mention with an indica-
tion of the relevant literature) of methods for solving such 
problems is given, an analysis of their distinctive features and 
capabilities is carried out. 
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In addition to the result (formulated as a theorem) given 
for the case of ordinary differential equations, the following 
results are also reflected:

1. The approach based on the reduction of the original 
control system to the control problem described by ordinary 
differential equations seems to be promising as applied to the 
optimization of problems similar to (1)–(7). In this case, it is 
not very important to consider the conjugate boundary value 
problem for partial differential equations. It is important that 
the solution of the approximating boundary value problem 
converges to the solution of the original one, on the basis of 
which it is possible to prove the convergence of the approxi-
mate solution with respect to the functional.

2. In contrast to the linearity of the boundary value prob-
lem, which describes the control process when considering 
nonlinear boundary value problems, it is necessary to save its 
solutions in the RAM of the machine, since the integration of 
the adjoint system is impossible without this. 

3. For problems in which the functional of the final state of 
the system is minimized, the gradient projection method gives 
a converging sequence even for ill-posed optimal problems.

In conclusion, we highlight some unsolved problems that 
may be of interest to researchers in this scientific field.

1. With the exception of some special cases, the boundary 
value problem (1)–(6), apparently, has not been studied in 
general form, and questions of its solvability for any admis
sible control are of interest.

2. The proof of the questions of convergence of the solu-
tion of the approximating optimal control problem is not 
always successful and is of particular interest in solving those 
applied problems where, in addition to the minimum of the 
objective functions, the control action itself is sought. 

3. Obtaining the necessary optimality condition in the form 
of the Pontryagin maximum principle for the problem (1)–(7).

7. Conclusions

1. Uniform convergence of solutions of the approximat-
ing boundary value problem, expressed by differential-dif-
ference equations, to the solution of the direct problem was 
proven. This fact is of paramount importance in proving the 
convergence of an approximate solution, at least in terms of 
the functional.

2. The convergence of the approximate solution of the 
approximating optimal problem with respect to the func-
tional was proven and the assumption that the sequence 
of controls constructed according to the proposed scheme 
was minimizing had been clearly established. In this case, 
the method of constructing distributed control over com-
ponents αh

i t( )  depends on the class of admissible controls. 
For example, if distributed control is sought in the class of 
functions that have the first derivative with respect to phase 
variables, then linear interpolation can be used to construct 
distributed control. 

3. The analysis of the numerical solution of the control 
problem associated with the temperature distribution in  
a homogeneous thin rod was carried out. When the equations 
were approximated by the method of straight lines, the prob-
lem was reduced to solving a variational problem related to 
ordinary differential equations. For its numerical solution,  
a gradient projection scheme, based on the construction of 
infinitesimal variations of controls, was applied. With the 
variation of the initial data, the qualitative picture of the 
results did not change, and the gradient method for ill-posed 
optimal control problems gives a converging minimizing se-
quence. After 60 iterations of the gradient projection method, 
the value of the functional turned out to be ~1.3∙10–6, and the 
found approximately optimal control excluding the end of 
the time interval coincides with the specified optimal control.
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