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1. Introduction

Underlying the development of the economy of any state 
is the introduction and use of advanced technical solutions 
in various areas of production. Devising and implementing 
them pose new more complex theoretical and practical tasks 
for researchers that need to be solved. That necessitates the 
development of new, more effective approaches to obtaining 
the result and identifying simplifying generalizations in the 
process of solving the problem itself.

Such generalizations include the conditions for the exis-
tence of solutions to different types of differential equations 
of continuum mechanics, for example, in the form of differ-
ential invariant Cauchy-Riemann relations. This result is 
achieved by using a complex variable function argument 
method. A positive factor is that the presented method has 
the prospect of advancement in such areas of continuum me-
chanics as the theory of plasticity, elasticity, dynamic prob-
lems of the theory of elasticity. In this case, we are talking 
about finding more complex analytical solutions that could 
help abandon a series of simplifications in the problems, ob-
tain a series of resolving functions that satisfy more complex 
and diverse boundary conditions.

2. Literature review and problem statement

One of the first works in this area was a publication on 
the theory of plasticity [1], which set out the basic approach-
es to solving the problem. In the future, there were develop-
ments using a combination of methods of argument functions 
and functions of a complex variable [2], invariant differential 
generalizations in the polar coordinate system [3]. It should 
be emphasized that the result obtained by simplification in 
those works is correlated with the results of the solutions by 
other authors.

It is of interest to consider studies in the literature that 
address defining generalizations in solving problems of con-
tinuum mechanics. 

Determining the stressed state in the zones of elastic 
loading was reported in monograph [4]. Generalizations of 
the structure of numerical and analytical solutions to prob-
lems of the theory of elasticity [5], the method of integrated 
relations for estimating kinematic perturbations [6], based 
on variational inequalities, are considered.

The analysis of changes in the nature of loading by the 
thickness of the sample under the action of compact tension 
is shown in [7]. The maximum zone is located closer to the 

Copyright © 2021, Authors. This is an open access article under the Creative Commons CC BY license

How to Cite: Chigirinsky, V., Naumenko, О. (2021). Advancing a generalized method for solving problems 

of continuum mechanics as applied to the cartesian coordinate system. Eastern-European Journal of 

Enterprise Technologies, 5 (7 (113)), 14–24. doi: https://doi.org/10.15587/1729-4061.2021.241287

ADVANCING A 
GENERALIZED METHOD 

FOR SOLVING PROBLEMS 
OF CONTINUUM 

MECHANICS AS APPLIED 
TO THE CARTESIAN 

COORDINATE SYSTEM
V a l e r i y  C h i g i r i n s k y 

Doctor of Technical Sciences, Professor
Department of Metallurgy and Mining

Rudny Industrial Institute
50 Let Oktyabrya str., 38, Rudny, 
Republic of Kazakhstan, 111500

O l e n a  N a u m e n k o 
Corresponding author

Senior Lecturer
Department of Structural, Theoretical 

and Applied Mechanics
Dnipro University of Technology
Dmytra Yavornytskoho ave., 19, 

Dnipro, Ukraine, 49005
E-mail: naumenko.o.h@nmu.one

Solving the problem of continuum mechanics has revealed the 
defining generalizations using the function argument method. The aim 
of this study was to devise new approaches to solving problems of con-
tinuum mechanics using defining generalizations in the Cartesian coor-
dinate system.

Additional functions, or the argument of the coordinates function of 
the deformation site, are introduced into consideration. The carriers of 
the proposed function arguments should be basic dependences that sat-
isfy the boundary or edge conditions, as well as functions that simplify 
solving the problem in a general form.

However, there are unresolved issues related to how not the solu-
tions themselves should be determined but the conditions for their exis-
tence. Such generalized approaches make it possible to predict the 
result for new applied problems, expand the possibilities of solving 
them in order to meet a variety of boundary and edge conditions.

The proposed approach makes it possible to define a series of func-
tion arguments, each of which can be a condition of uniqueness for a 
specific applied problem. Such generalizations concern determining 
not the specific functions but the conditions of their existence. From 
these positions, the flat problem was solved in the most detailed way, 
was tested, and compared with the studies reported by other authors.

Based on the result obtained, a mathematical model of the flat 
applied problem of the theory of elasticity with complex boundary con-
ditions was built. Expressions that are presented in coordinateless form 
are convenient for analysis while providing a computationally conve-
nient context. The influence of the beam shape factor on the distribution 
of stresses in transition zones with different intensity of their attenua-
tion has been shown.

By bringing the solution to a particular result, the classical solu-
tions have been obtained, which confirms its reliability. The mathemat-
ical substantiation of Saint-Venant’s principle has been constructed in 
relation to the bending of a beam under variable asymmetric loading

Keywords: generalized approaches, function argument, Cartesian 
coordinates, Laplace equations, Cauchy-Riemann relations

UDC 539.3
DOI: 10.15587/1729-4061.2021.241287

Received date 09.08.2021

Accepted date 12.10.2021

Published date 28.10.2021



Applied mechanics

15

surface, which indicates the unevenness of the stressed state 
of the material. Taking into consideration the heterogene-
ity of the stressed-strained state of the alloy, in theory, is 
characterized by the introduction of coordinate functions 
into the consideration, or, in a given case, the argument of 
functions.

The local load problem at the discontinuity base is con-
sidered using a general approach determined by the state of 
the medium [8]. Repeated heterogeneity of the stressed state 
or a change in obvious conditions show the need to use coor-
dinate functions in the solution in combination with periodic 
dependences. In the case of a method of argument functions, 
it is a combination of basic functions, including a trigono-
metric function, and a corresponding argument function.

Variable stresses and strains during loading are the main 
reasons for the decrease in the strength and durability of 
products [9]. That makes it relevant to solve applied prob-
lems characterizing the stressed state of articles using the 
approaches of classical equations from the theory of contin-
uum mechanics.

The search for new methods for solving elastic and 
elastic-plastic problems is also relevant. The application of 
the mathematical apparatus of the theory of functions of a 
complex variable makes it possible to derive an analytical 
solution to the flat problem of the theory of elasticity.

It is shown in [10] that there are transition conditions 
for introducing into consideration additionally separated 
variables (an analog of the argument functions) when refor-
matting one type of differential equations into another. The 
very idea of transition is productive but the emergence of ad-
ditional solutions does not mean determining the conditions 
for the existence of solutions.

The problem [11] presents the ability to predict one of the 
basic functions. The trigonometric function is implemented 
in the structural statement of a practical task. The solution 
does not consider the argument function as a closing compo-
nent of the overall result.

The cyclic load in the case of a simple shift has been de-
termined, which finds the corresponding response of internal 
stresses [12]. As before, the basic trigonometric function is 
introduced into consideration. Its use at different loads is 
shown. The possibilities of combining it with the argument 
functions are not given. An important aspect of the proposed 
solution is the choice of the basic trigonometric function, al-
though a closing solution is not considered. The change in the 
external load causes a reaction from the medium according to 
the exponential law [13]. This is comparable to using a fun-
damental substitution in the method of argument functions. 
However, the functional purpose of the proposed dependence 
in the cited works is different, which does not make it possible 
to apply one of the argument functions in the solution.

In combination with basic functions, operating stress-
es are characterized during the loading of the part. In 
work [14], the method of R-functions is proposed, which, in 
terms of functionality, echoes the method of argument func-
tions. However, the application of the R-function method 
does not lead to the establishment of certain ratios; they are 
involved in other schemes of finding solutions (for example, 
using variational principles).

As a result, it is shown that there are tendencies to use 
generalizing approaches in solving problems of continuum 
mechanics, and, in particular, the theory of elasticity. A 
significant field of problems united by some approaches in 

the formulation and solution of theoretical, practical tasks 
is covered: the use of the same basic functions; some addi-
tional dependences that can produce the result; selection of 
approaches in the implementation of predictive functions.

However, there are unresolved issues related to how 
not the solutions themselves should be determined but the 
conditions for their existence. Such generalized approaches 
make it possible to predict the result for new applied tasks, 
expand the possibilities of solving them in order to meet a 
variety of boundary and edge conditions in the problems of 
continuously changing production.

An option for overcoming such difficulties is the use of a 
complex variable function argument method, which has demon-
strated its capabilities in solving diverse problems of continuum 
mechanics [15]. Those general regularities that have been iden-
tified make it possible to pose and solve new problems in the 
theory of elasticity: for example, the study of the stressed state 
in Cartesian coordinates using argument functions for more 
complex models of theoretical and applied problems.

3. The aim and objectives of the study

The aim of this study is to advance a generalizing meth-
od for solving problems of continuum mechanics, including 
the theory of elasticity, taking into consideration and using 
defining generalizations in the Cartesian coordinate system.

To accomplish the aim, the following tasks have been set:
– to propose an approach to the search for new more 

complex generalized solutions to the problems of the theory 
of elasticity in the Cartesian coordinate system using the 
complex variable function argument method;

– on the basis of the obtained result, to construct a 
mathematical model of the flat applied problem of the theory 
of elasticity with complex boundary conditions, taking into 
consideration the attenuation process of terminal loads with 
the transition to different zones of the stressed state;

– to show the influence of the beam shape factor on the 
distribution of stresses in the transition zones with different 
intensity of their attenuation; 

– to obtain a mathematical substantiation of Saint-Ve-
nant’s principle in relation to the bending of a beam with 
variable asymmetric loading.

4. The study materials and methods

When solving the problem of continuum mechanics, the 
defining generalizations using the method of argument func-
tions have been revealed. 

The statement of the flat problem of the theory of elas-
ticity is well known in the literature [4, 16–18]. In this case, 
we obtain:

∂τ∂σ
+ =

∂ ∂
0,xyx

x y
 

∂τ ∂σ
+ =

∂ ∂
0,yx y

x y
 

( ) ( )∇ σ + σ = ∇ ⋅σ =2 2
02 0.x y 		  (1)

Boundary conditions under stresses:

σ − σ
τ = − φ + τ φsin 2 cos2 ,

2
x y

n xy 			   (2)
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where σ0 is the average normal stress or hydrostatic pressure; 
σ, τ are the normal, tangential stresses; φ is the angle of incli-
nation of the contact pad. 

In works [1–3], boundary conditions are represented by 
a trigonometric form, such as:

( )τ = − ⋅ ΑΦ − φsin 2 ,n iT 				    (3)

which assumes for (3):

( )τ = ⋅ ΑΦsin ,xy iT  ( )σ − σ = ⋅ ΑΦ2 cos ,x y iT
	

(4)

where Ti=Ti(x,y) is the coordinate function or the intensity 
of tangential stresses, АФ is the unknown coordinate func-
tion or the first argument function. For a flat problem, the 
following dependence holds:

( )= σ − σ + τ
2 21

4 .
2i x y xyT 			   (5)

Substituting (4) in (5), we obtain an identity, which 
indicates the correspondence and simplification of the main 
provisions of the conclusion and the boundary conditions of 
the problem being solved. 

In this case, linearization is not just one advantage of 
trigonometric substitution. The latter functions are ex-
pressed through an exponential dependence, the indicator 
of which is represented by a complex variable. Fundamental 
substitution is used when the original system of equations is 
linearized. In this case, one can represent:

( )σ= ⋅ θexp ,iT C 				    (6)

where θ=θ(x,y) is the unknown coordinate function or 
the second argument function. Taking into consider-
ation (4), (6), the tangential stress can be represented in the 
basic functions:

( ) ( ) ( )στ = ⋅ ΑΦ = θ ΑΦsin exp sin .xy iT C 		  (7)

In case (7), the statement of the problem changes, which 
can be formulated as follows: at what values of argument 
functions θ and АФ would the system of equations (1), (2) be 
identically satisfied? In work [2], the solution to this system 
of equations is proposed in the Cartesian coordinates in the 
following form:

( ) ( )ΑΦ − 
σ = ± ±θ + σ + + − ΑΦ 

1
0

2

cos
exp ,

sinx

C
f x C

C

( ) ( )ΑΦ − 
σ = ±θ + σ + + − ΑΦ 


1

0
2

cos
exp ,

siny

C
f y C

C

( )( )τ = ±θ ΑΦ + ΑΦ1 2exp sin cos ,xy C C

θ = ΑΦ ,x y
 
θ = ±ΑΦ ,y x  

θ + θ = ΑΦ + ΑΦ =0, 0.xx yy xx yy 		  (8)

Paper [3] proposes a more complex solution for polar coor-
dinates. The analysis reveals that such generalizations can also 
take place in Cartesian coordinates. At the same time, at first, 
such a problem must be solved theoretically. Let us represent 
the intensity of tangential stresses in the following form:

( ) ( )σ σ= θ + −θ1 2exp exp .iT C C 			   (9)

Expression (9) is somewhat reminiscent of the hyperbol-
ic cosine. As can be seen from the presented solution to (8), 
that does not negate the minus in the exponent indicator. 
Taking into consideration (4), (9), write:

( ) ( )
( )

σ σ τ = θ + −θ × 
× ΑΦ + ΑΦ

1 2

1 2

exp exp

sin cos .

xy С С

C C 		  (10)

The representation of the tangent stress in form (10) 
expands the possibilities for the stresses to satisfy the bound-
ary conditions at a deformation site.

5. Results of studying new approaches to solving 
problems of continuum mechanics in the Cartesian 

coordinate system 

5. 1. Using the complex variable function argument 
method based on new generalized solutions

To substantiate the method of argument functions, 
one must show its capabilities in the process of solving the 
problem. Consider the integration of differential equilibrium 
equations taking into consideration expression (10) where 
the basic functions with the presence of two argument 
functions are indicated. Let us write down expression (10) 
through the function of a complex variable:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

σ

σ

σ

σ

θ + ΑΦ − θ − ΑΦ
τ == +

θ + ΑΦ + θ − ΑΦ
+ +

−θ + ΑΦ − −θ − ΑΦ
+ +

−θ + ΑΦ + −θ − ΑΦ
+

'
1

''
1

'
2

''
2

exp exp

2
exp exp

2
exp exp

2
exp exp

,
2

xy

i i
С

i
i i

С

i i
С

i
i i

С 		  (11)

where σ σ= ⋅'
1 1 1,С С С  σ σ= ⋅''

1 1 2,С С С  σ σ= ⋅'
2 2 1,С С С  σ σ= ⋅''

2 2 2.С С С
Equilibrium equations (1) are used to determine normal 

stresses in the following form:

( )∂τ
σ = − + σ + +

∂∫ '
0d ,xy

x x f y C
y

 

( )∂τ
σ = − + σ + +

∂∫ '
0d .xy

y y f x C
x

 	 (12)

Substituting in the expression for the partial derivative 
the value of the tangent stress (11), we obtain

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

σ

σ

σ

σ

 θ + ΑΦ θ + ΑΦ −∂τ
 == +

∂  − θ − ΑΦ θ − ΑΦ 
 θ + ΑΦ θ + ΑΦ +
 + +
 + θ − ΑΦ θ − ΑΦ 
 −θ + ΑΦ −θ + ΑΦ −
 + +
 − −θ − ΑΦ −θ − ΑΦ 

−θ + ΑΦ −θ + ΑΦ +
+

+ −θ − ΑΦ −θ −

'
1

''
1

'
2

''
2

exp1
2 exp

exp1
2 exp

exp1
2 exp

exp1
2 exp

x xxy

x x

x x

x x

x x

x x

x x

x x

i i
С

x i i i

i i
С

i i

i i
С

i i i

i i
С

i i( )
 
 
 ΑΦ 
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Similarly, one finds a derivative along the y coordinate. 
Only the lower indices that denote partial derivatives by the 
corresponding coordinates differ.

Each derivative has four terms. Substituting partial 
derivatives into expressions for normal stresses (12), we 
obtain dependences written in a general form. The sub-in-
tegral functions in (12) are written through partial de-
rivatives at coordinates opposite to that by which the 
integration is carried out. This excludes integration in a 
general form. If we follow a mathematical transition for the 
argument function from one variable to another using the 
Cauchy-Riemann relations:

θ = −ΑΦ ,x y  θ = ΑΦ ,y x

we shall get, after integration, analytical expressions in a 
general form. 

Herewith:

( ) ( )
( ) ( )

σ σ σ = ± ±θ − θ × 
× ΑΦ − ΑΦ + σ + +

1 2

1 2 0

exp exp

cos sin ,

x С С

C C f y C

( ) ( )
( ) ( )

σ σ σ = ±θ − θ × 
× ΑΦ − ΑΦ + σ + +

 1 2

1 2 0

exp exp

cos sin ,

y С С

C C f x C

( ) ( )
( )

σ σ τ = ±θ + θ × 
× ΑΦ + ΑΦ

1 2

1 2

exp exp

sin cos ,

xy С С

C C 		  (13)

θ = ΑΦ ,x y  θ = ±ΑΦ ,y x  

θ + θ = 0,xx yy  ΑΦ + ΑΦ = 0.xx yy
	

It can be shown that expressions (13) identically sat-
isfy the boundary conditions in (3), (4). At Cσ2=0, Cσ1=1, 
expressions (13) completely coincide with (8). Thus, the 
presented result (13) shows that the use of the method of 
argument functions makes it possible to obtain not only a 
solution option but also the possibility of its generalization 
using Cauchy-Riemann relations.

(13) shows not only the defining basic functions of 
the solution but also the conditions for the existence of a 
general solution ‒ these are invariant differential general-
izations between argument functions, including Laplace’s 
equations. It follows that the argument function can be 
defined. The type of differential equations through which 
closing solutions are found becomes known. However, the 
Cauchy-Riemann transformations, accepted for the solu-
tion, are an assumption rather than proof of the existence 
of the solution. An unknown function is the hydrostatic 
pressure σ0, which does not make it possible for the prob-
lem to be closed. For the ultimate result, it is necessary 
to have strict proof of the above provisions and determine 
the value of the hydrostatic pressure in (13). Let us use 
the condition of continuity of deformations (1), taking 
into consideration:

σ + σ = σ′ ′ 02x y

or

σ + σ′ ′
= σ0,

2
x y

where ( )σ = σ − −′ ,x x f y C  ( )σ = σ − −′ .y y f x C
Then:

( ) ( )∆ σ + σ = ∆ σ =′ ′2 2
0 0.x y n 			   (14)

If the bracket in (14) is zero or constant, then the equa-
tion of continuity of deformations is identically satisfied. 
However, these are not the only solutions to the continuity 
equation. For certainty, let us use the integrated expressions 
present in each formula for normal stresses:

( ) ( )
( )

( ) ( ) ( )

σ σ

σ σ

 ±θ − θ ± 
± ΑΦ − ΑΦ =

 = ±θ − θ ⋅ ΑΦ − ΑΦ 





1 2

1 2

1 2 0

exp exp

cos sin

exp exp sin .

n C C

C C

n C C 	 (15)

Expression (15) is of interest. Can it satisfy, as a solu-
tion, the equation of continuity of deformations (14), and 
under what conditions? We are talking about hydrostatic 
pressure σ0. Translating (15) into a complex form of no-
tation, taking into consideration the upper signs of the 
exponents, we obtain:

( )
( )

( )
( )

σ

σ

  θ + ΑΦ − ΑΦ −   σ = − 
 − θ − ΑΦ − ΑΦ   

  −θ + ΑΦ − ΑΦ −   −  
 − −θ − ΑΦ − ΑΦ   

0

0 1

0

0

2

0

exp1
2 exp

exp1
.

2 exp

i
C

i i

i
C

i i
		  (16)

Determining the second derivatives by the coordinates 
of expression (16), we obtain:

( )
( )

( )

( )
( )

( )

( )
( )

σ

σ

σ

  θ + ΑΦ − ΑΦ + ∂ σ    = θ + ΑΦ − ΑΦ −   ∂  + θ + ΑΦ − ΑΦ   
  θ − ΑΦ − ΑΦ +    − θ − ΑΦ − ΑΦ −    + θ − ΑΦ − ΑΦ   
  −θ + ΑΦ − ΑΦ +  −  

 + −θ + ΑΦ − ΑΦ   

2 0
0

1 02 2

0

0

1 02

0

0

2 2

0

1
exp

2

1
exp

2

1
e

2

xx xx

x x

xx xx

x x

xx xx

x x

i
С i

x i i

i
С i

i i

i
С

i i
( )

( )
( )

( )σ

 −θ + ΑΦ − ΑΦ + 

  −θ − ΑΦ − ΑΦ +    + −θ − ΑΦ − ΑΦ    + −θ − ΑΦ − ΑΦ   

0

0

2 02

0

xp

1
exp ;

2

xx xx

x x

i

i
С i

i i

( )

( )
( )

( )

( )
( )

( )

( )

σ

σ

σ

  θ + ΑΦ − ΑΦ + ∂ σ    = θ + ΑΦ − ΑΦ −   ∂   + θ + ΑΦ − ΑΦ  
  θ − ΑΦ − ΑΦ +    − θ − ΑΦ − ΑΦ −     + θ − ΑΦ − ΑΦ  
  −θ + ΑΦ − ΑΦ +  −  

  + −θ + ΑΦ − ΑΦ  

2 0
0

1 02 2

0

0

1 02

0

0

2 2

0

1
exp

2

1
exp

2

1
e

2

yy yy

y y

yy yy

y y

yy yy

y y

i
С i

y i i

i
С i

i i

i
С

i i
( )

( )

( )
( )σ

 −θ + ΑΦ − ΑΦ + 

  −θ − ΑΦ − ΑΦ +    + −θ − ΑΦ − ΑΦ     + −θ − ΑΦ − ΑΦ  

0

0

2 02

0

xp

1
exp .

2

yy yy

y y

i

i
С i

i i
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Substitute the expressions into continuity equation (14) 
and group. We make sure that each operator includes the 
sums of squares that can be converted to the following form:

( )( ) ( )
( )( )

θ + ΑΦ θ − ΑΦ ± θ ΑΦ + θ ΑΦ +

+ θ + ΑΦ θ − ΑΦ

2

.

x y x y x x y y

y x y x

i

	

Such a representation is an important step in solving the 
problem since the resulting nonlinearity can be eliminated 
by taking the products of parentheses equal to zero due to:

θ = ΑΦ ,x y  θ = ±ΑΦ .y x 			   (17)

Substituting conditions (17) into the rest of the above 
expression, note that the parentheses at the complex unity 
are zero, that is:

( )θ ΑΦ + θ ΑΦ = θ ΑΦ + ΑΦ −θ = 0.x x y y x x x x 	

As a result of such transformations, the operators in the 
equations are simplified, and the equation of continuity of 
deformations takes the following form:

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

σ

σ

σ

σ

 ∆ σ = ⋅ θ + θ − ΑΦ + ΑΦ × 

 × θ + ΑΦ − ΑΦ − 

 − ⋅ θ + θ + ΑΦ + ΑΦ × 

 × θ − ΑΦ − ΑΦ − 

 − ⋅ − θ + θ − ΑΦ + ΑΦ × 

 × −θ + ΑΦ − ΑΦ + 

 + ⋅ − θ + θ + ΑΦ + ΑΦ × 

× −θ − ΑΦ − ΑΦ

2
0 1

0

1

0

2

0

2

0

1
2

exp

1
2

exp

1
2

exp

1
2

exp

xx yy xx yy

xx yy xx yy

xx yy xx yy

xx yy xx yy

n C i
i

i

C i
i

i

C i
i

i

C i
i

i  =  0. 	 (18)

From (18), one can see that all operators at different ex-
ponents contain the same differential relations, that is:

θ + θ ,xx yy  ΑΦ + ΑΦ .xx yy 				   (19)

Taking into consideration the Cauchy-Riemann rela-
tions (17), it can be shown that the sums of the second 
derivatives (19) of the argument functions are zero. Indeed:

θ = ΑΦ ,xx yx  θ = ±ΑΦ ,yy xy  

ΑΦ = ±θ ,xx yx  ΑΦ = θ ,yy xy

then

θ + θ = ΑΦ ± ΑΦ = 0,xx yy yx xy  

ΑΦ + ΑΦ = ±θ θ = 0.xx yy yx xy

As a result, the equation of continuity of deformations is 
identically satisfied. Consequently, the hydrostatic pressure 
is determined from the following expression:

( ) ( )
( )

σ σ σ = ±θ − θ × 
× ΑΦ − ΑΦ

0 1 2

1 2

exp exp

cos sin ,

n C C

C C 		  (20)

and the conditions for the existence of a solution to equa-
tion (14), in the following form:

θ = ΑΦ ,x y  θ = ±ΑΦ ,y x  

θ + θ = 0,xx yy  ΑΦ + ΑΦ = 0.xx yy 		   (21)

Comparing expressions (20), (21) with (13), we are 
convinced that these dependences close the problem and 
introduce sufficient certainty in the result. The derived 
solutions correlate with each other with the same unify-
ing Cauchy-Riemann relations. It should be added that 
in determining the normal stresses, the Cauchy-Riemann 
relations were taken as an assumption but, in the case 
of (20), (21), they are obtained in the form of a correct 
derivation, which is perceived as the proof of solving the  
problem.

As a result, for the components of the stress tensor, one 
can write:

( ) ( )
( ) ( )

σ σ σ = ± ⋅ ±θ − ⋅ θ × 
× ΑΦ − ΑΦ + σ + +

1 2

1 2 0

exp exp

cos sin ,

x С С

C C f y C

( ) ( )
( ) ( )

σ σ σ = ⋅ ±θ − ⋅ θ × 
× ΑΦ − ΑΦ + σ + +

 1 2

1 2 0

exp exp

cos sin ,

y С С

C C f x C

( ) ( )
( )

σ σ τ = ⋅ ±θ + ⋅ θ × 
× ΑΦ + ΑΦ

1 2

1 2

exp exp

sin cos ,

xy С С

C C

( ) ( )
( )

σ σ σ = ⋅ ⋅ ±θ − ⋅ θ × 
× ΑΦ − ΑΦ

0 1 2

1 2

exp exp

cos sin ,

n C C

C C 	 (22)

θ = ΑΦ ,x y θ = ±ΑΦ ,y x

θ + θ = 0,xx yy ΑΦ + ΑΦ = 0.xx yy

Consider that the differential relations in (22) determine 
the conditions for the existence of solutions to the problem. 
This can be shown by a specific example. We obtain several 
solutions to the Laplace equation for the argument of the 
trigonometric function, in the following form:

ΑΦ = ΑΑ1 1 ,y ΑΦ = ΑΑ2 2 ,x

ΑΦ = ΑΑ3 3 ,xy ( )ΑΦ = ΑΑ −2 2
4 4 .x y 		  (23)

Substituting (23) in the Laplace equation, we are con-
vinced that with all variants the arguments of trigonometric 
expressions are harmonic functions. 

By substituting (23) in the Cauchy-Riemann relation, 
and then, integrating, we obtain the values for the second 
argument function:

θ = ΑΑ1 1 ,x  θ = ±ΑΑ2 2 ,y  
−

θ = ΑΑ
2 2

3 3 .
2

x y
	 (24)

Expressions (24) satisfy Laplace’s equation. Conse-
quently, (23), (24) are the closing solutions to the statement 
equations of the theory of elasticity. From this example, 
one can see that the proposed approach makes it possible to 
define a series of argument functions, each of which can be 
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a unique condition for a specific applied task. At the same 
time, the list of solutions is far from complete. Such general-
izations concern determining not the specific functions but 
the conditions of their existence.

Expressions (22) can be represented through hyperbolic 
cosines and sinuses. In this case, one can write:

( ) ( ) ( ) ( )
( ) ( )

σ σ σ σ σ = ± − ⋅ ±θ + + ±θ × 
× ΑΦ − ΑΦ + σ + +

1 2 1 2

1 2 0

cosh sinh

cos sin ,

x С С С С

C C f y C

( ) ( ) ( ) ( )
( ) ( )

σ σ σ σ σ = − ⋅ ±θ + + ±θ × 
× ΑΦ − ΑΦ + σ + +

 1 2 1 2

1 2 0

cosh sinh

cos sin ,

y С С С С

C C f x C

( ) ( ) ( ) ( )
( )

σ σ σ σ τ = − ⋅ ±θ + + ±θ × 
× ΑΦ + ΑΦ

1 2 1 2

1 2

sinh cosh

sin cos ,

xy С С С С

C C

( ) ( )
( ) ( )

( )

σ σ

σ σ

 − ⋅ ±θ +
σ = ± ⋅ × 

+ + ±θ  
× ΑΦ − ΑΦ

1 2

0

1 2

1 2

cosh

sinh

cos sin ,

С С
n

С С

C C 	 (25)

θ = ΑΦ ,x y θ = ±ΑΦ ,y x

θ + θ = ΑΦ + ΑΦ =0, 0.xx yy xx yy

The result obtained in form (25) can be compared with 
the solutions obtained with the help of the Fourier series [4]. 
Let us show it. To this end, expressions must be simplified 
in order to obtain private solutions. Assuming C3=C4 in the 
solutions [4], we obtain:

 σ = α α α + α α 
2 2

1 2sin cosh sinh ,x x C y C y

[ ]σ = −α α α + α2
1 2sin cosh sinh ,y x C y C y

[ ]τ = −α α α α + α α1 2cos sinh cosh .xy x C y C y 		  (26)

Let us bring expressions (25) into correspondence with 
expressions (26). Herewith:

=1 0,С
 

= −α2
2 ,С  = 0,n  ( ) ( )= = = 0.f x f y C

In accordance with the method of argument functions, 
one of the solutions to the problem is taken in the form 
of (23), (24):

ΑΦ = ΑΑ2 2 ,x
 
θ = ΑΑ2 2 ,y

 
ΑΑ = α2 .

		

Taking into consideration the simplifications, expres-
sions (25) are to be rewritten in the following form:

( )σ σ σ = − α α + α ⋅ −α 
' ' 2

1 2sin cosh sinh ,x x C y C y

( )σ σ σ = α α + α ⋅ −α 
' ' 2

1 2sin cosh sinh ,y x C y C y

[ ]τ = −α α ⋅ α α + α α1 2cos sinh cosh .xy x C y C y 	 (27)

Comparing the formulas (26) and (27), we are convinced 
of their identity. This indicates that the special cases of both 
solutions obtained by different methods (the method of 
stress functions and the method of argument functions) co-
incide. The presented comparison determines the reliability 

of solution (22) and the possibility of its use in mechanical 
calculations of applied problems.

5. 2. The mathematical model of variable asymmetric 
loading of a pinched console as an applied problem of the 
theory of elasticity

Works [19, 20] report trends in the development of 
the calculation of the stressed state at bending, including 
attempts to implement generalized approaches to solving 
applied and general theoretical problems. Paper [19] deals 
with the problem of bending thick rectangular plates using 
reciprocity theorems based on Reisner’s theory. Study [20] 
gives an accurate analytical solution to the problem of flat 
bending under the action of longitudinal normal loads. 
In this case, the load is set in the form of a trigonometric 
series. This work is to some extent the rationale for choos-
ing the basic trigonometric function in the solution. The 
obtained results are confirmed by the results from finite 
element modeling.

Although works [19, 20] contain elements of certain 
generalizations but cannot be used in other areas of con-
tinuum mechanics, which limits the possibilities of their 
application. 

The capabilities of the method of argument functions 
can be shown when solving an applied problem associated 
with the bending of the console loaded at its end [4]. This 
is one of the problems in which, in addition to solving 
the resistance of materials, the solutions from the math-
ematical theory of elasticity using the stress function are 
shown; Fig. 1.

The length of the console is denoted by l, the height ‒ 
through h=2c. The console is sealed at the left end and 
loaded at the right end by the force P. We shall look for a 
solution using the method of argument functions taking into 
consideration working expressions (22) to (24), that is

( ) ( )
( ) ( )

σ σ σ = ΑΑ ⋅ − −ΑΑ × 
× ΑΑ + σ +

1 1 2 1

2 1 0

exp exp

sin ,

x С x С x

C y f y

( ) ( )
( ) ( )

σ σ σ = − ΑΑ − −ΑΑ × 
× ΑΑ + σ +

1 1 2 1

2 1 0

exp exp

sin ,

y С x С x

C y f x

( ) ( )
( )

σ σ τ = ΑΑ + ⋅ −ΑΑ × 
× ΑΑ

1 1 2 1

2 1

exp exp

cos ,

xy С x С x

C y

( ) ( )
( )

σ σ σ = ⋅ ΑΑ ⋅ − −ΑΑ × 
× ΑΑ

0 1 1 2 1

2 1

exp exp

sin .

n C x C x

C y 	 (28)

Fig. 1. Transverse bending of the console
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The conditions at the contour, at y=±c, σy=0, τxy=0, at 
x=l, σx=0, at x=l, y=0, τxy=τmax=τ0, next:

+

−

τ = −∫ d .
с

xy
с

y P 				    (29)

Assuming σy=0, at f(x)=0, we obtain:

( ) ( )
( )

σ σ σ = − ΑΑ − −ΑΑ × 
× ΑΑ + σ =

1 1 2 1

2 1 0

exp exp

sin 0.

y С x С x

C y

Hence

( ) ( )
( )

σ σ σ = ΑΑ − −ΑΑ × 
× ΑΑ

0 1 1 2 1

2 1

exp exp

sin .

С x С x

C y 		  (30)

Expression (30) corresponds to formula (28). Substitut-
ing (30) in (28) for the stress σx, we obtain:

( ) ( )
( ) ( )

σ σ σ = ΑΑ − −ΑΑ × 
× ΑΑ +

1 1 2 1

2 1

2 exp exp

sin .

x С x С x

C y f y 	 (31)

The next condition, at x=l, σy=0, is substituted in (31), 
we obtain:

( ) ( )
( ) ( )

σ σ = ΑΑ − −ΑΑ × 
× ΑΑ +

1 1 2 1

2 1

0 2 exp exp

sin

С l С l

C y f y 		

or

( ) ( ) ( )
( )

σ σ = − ΑΑ − −ΑΑ × 
× ΑΑ

1 1 2 1

2 1

2 exp exp

sin .

f y C l C l

C y 	 (32)

The boundary conditions, for the tangential stresses on 
the upper and lower faces of the console, take the form, at 
y=±c, τxy=0. Hence:

π
ΑΑ =1 .

2с
					     (33)

Consider the next boundary condition, given (28), at 
x=l, y=0, τxy=τmax=τ0,

( ) ( )σ σ τ = ΑΑ + −ΑΑ 0 1 1 2 1 2exp exp .С l С l C 		  (34)

According to the literature [4], in the direction of sealing, 
normal stresses should increase and reach the maximum value 
at the zero point. This is possible when Cσ1=Cσ2=Cσ because, 
in this case, the difference in the exponents of the square 
bracket for σx becomes zero and the normal stress reaches the 
maximum value. Then, taking into consideration (34):

( ) ( )σ
τ

⋅ =
ΑΑ + −ΑΑ

0
2

1 1

.
exp exp

С C
l l

		  (35)

Substitute in expressions (30), (31) the values of func-
tions and constants (32), (33), (35). The formula to deter-
mine σx takes the following form:

The tangential stress:

 π π   + −    τ     π  =   π πτ    + −      
0

exp exp
2 2

cos .
2exp exp

2 2

xy

x x
c c

y
cl l

c c

	 (37)

Expressions in the form of (36), (37) are convenient for 
analyzing the bending stress along the axis of the console 
and in the transverse direction. They are represented in a 
coordinateless form to provide a computationally convenient 
context. A similar approach is used in work [21].

5. 3. The influence of beam shape factor on stress dis-
tribution in transition zones

Expressions (36), (37) on the right-hand side are written 
as dimensionless quantities that vary within certain limits.

At x=l,

σ = 0,x  
τ π =   τ0

cos .
2

xy y
c

			   (38)

At x=0,

 π π   − −       σ π  = −   π πτ    + −      
0

exp exp
2 2

2 sin .
2exp exp

2 2

x

l l
c c

y
cl l

c c

τ π =   π πτ    + −      
0

2
cos .

2exp exp
2 2

xy y
cl l

c c

		  (39)

If the length of the console is much higher than the 
height, then

π − →  
exp 0,

2
l

c

hence, expressions (39) can be rewritten in the following form:

 π 
   σ π π    = − = −      πτ  
  

0

exp
2

2 sin 2sin ,
2 2exp

2

x

l
c

y y
c cl

c

τ π =   πτ  
  

0

2
cos .

2exp
2

xy y
cl

c

			   (40)

As a result of gradual change, bending stresses can 
reach their extreme values for normal and tangential stress-

σ
= − ×

τ

   π π π π       − − − − −                    × ×
π π   + −      

π ×   

0

2

exp exp exp exp
2 2 2 2

exp exp
2 2

sin .
2

x

l l x x
c c c c

l l
c c

y
c

 (36)
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es. In the final form, for (40), the tendency of the tangential 
stress to zero is determined, at x=0, l/2c→∞; that is, τxy→0. 

Analyzing (38) to (40) reveals that the limiting maxi-
mum values of bending stresses when loaded with force P 
reach the following values:

π τ = τ   0 cos ,
2xy y

c
 π σ = − τ   02 sin .

2x y
c

		  (41)

Thus, at the free end of the console, the normal stress-
es, according to the boundary conditions, are zero, and 
the tangential ones reach a maximum value (41), thereby 
balancing the shear force P. In the hard seal zone, normal 
stresses (41) reach their maximum value [4], and tangen-
tial stresses tend to zero.

For clarity, based on expressions (36), (37), we plot-
ted the bending stresses along the axis of the console 
and in the transverse direction at different values of l/2c 
(Fig. 2‒5).

In the figures, the ordinal axis shows the relative 
values of stresses σx/τ0 (Fig. 2, 4) and τxy/τ0 (Fig. 3, 5); 
the abscissa axis – the relative coordinates of length x/l 
(Fig. 2, 3) and the coordinates of the cross-section of the 
console y/h (Fig. 4, 5).

Figu. 2, 3 demonstrate the distribution of bending 
stresses along the x axis of the console, at different l/2c 
values. Fig. 4, 5 illustrate the distribution of bending 
stresses in the transverse direction y, at l/2c=3 and y=c. 
Fig. 2, 3 display the transition zone in which changes in 
bending stresses occur, both for normal and tangential 
stresses. After reaching the extreme values of stresses for 
a long console, the stressed state of the curved beam sta-
bilizes and resembles the stressed state of pure bending, in 
normal stresses of which only one variable y is indicated. 
There are no tangential stresses and the normal stresses 
no longer change along the length of the console (x coor-
dinate), reaching the maximum value at the surface of the 
beam (41).

Fig. 2. Distribution of normal bending stresses along the length of the console at different values of the ratio l/2c
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5. 4. Mathematical substantiation of the Saint-Ve-
nant’s principle under variable asymmetric loading of a 
pinched console

Fig. 4, 5 show the change in bending stresses in the tran-
sition zone in the transverse direction y at different values of 
the relative coordinate x. There is a tendency to change the 
stresses from zero values to maximum. The presence of this 
section of transition from one stressed state of the beam to 
another is likely a feature of the proposed solution. It is gen-
erally accepted, by virtue of Saint-Venant’s principle [22, 23], 
that a change in the load near the border leads to significant 
changes in stresses only near the end. In such cases, simple 
solutions can produce accurate enough results everywhere 
except for the vicinity of the border [4]. The resulting solution 
fully confirms this principle, with the only difference that the 
neighborhoods of the border can also be indicated by fading 
known stresses in one direction or another.

6. Discussion of results of studying the solution to 
the problem of continuum mechanics in the Cartesian 

coordinate system

The process of changing the stresses in the transition 
zone is determined by the l/2c parameter, that is, the console 
shape factor. With a short console (up to l/2c=3), changes 
in the stress distribution cover the entire rod, Fig. 2–5. The 
influence of boundary conditions at the free end is decisive 
in the distribution of stresses along the entire length of the 
console.

For a long beam (l/2c≥5), there is a rapid enough atten-
uation of the determining action of the boundary conditions 
of the end of the console. In this case, in the region of achiev-
ing extreme stress values, one can use the simplest solutions 
proposed in the resistance of materials or the theory of elas-
ticity, Fig. 2–5.

Fig. 4. Distribution of normal bending stresses along the console cross-section at different values of the relative coordinate x 
in the transition zone
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Fig. 5. Distribution of tangential bending stresses along the console cross-section at different values of the relative 
coordinate x in the transition zone
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In conclusion, the following should be emphasized: our 
different variants of one solution (22), (28), (35), (36) sat-
isfy the system of equations of the theory of elasticity (1), 
boundary conditions (2), the boundary conditions of the 
applied problem (29). Based on solving the problem using 
the method of argument functions, Saint-Venant’s principle 
has been specifically confirmed.

The conditions for solving the problem in the transition 
zone are specified. The comparison with the solutions by 
other authors [4] demonstrates that under certain conditions 
the function of stresses in the form of Fourier series after 
simplifications coincides with solution (27) given in the 
present work. This ensures the reliability of the result of the 
presented advancement.

A feature of the proposed solution is the identification of 
differential conditions of its existence using the argument 
functions, that is Cauchy-Riemann relations, Laplace equa-
tions, including Cartesian coordinates.

The study results can be explained by:
– using the complex variable function argument method; 
– obtaining invariant differential generalizations in the 

form of Cauchy-Riemann relations, including a solution for 
Cartesian coordinates (13), (22), (25), (28), (36), (37);

– the results of the present work were compared with clas-
sical solutions to the problems of the theory of elasticity and 
with the solutions by modern authors. The analysis reveals that 
the proposed mathematical apparatus can be used in the theory 
of metal processing by pressure, geomechanics, the interaction 
of elastic bodies, non-stationary problems associated with the 
transmission of interaction in the form of a wave process.

Limitations include the limits of applicability of solu-
tions. These approaches do not apply to solutions to the 
biharmonic equation using the argument functions in Car-
tesian coordinates. 

The disadvantages of the study include the bulkiness and 
volume of the derivation. This is due, first of all, to the lack 
of accumulated material on this issue.

When solving problems of continuum mechanics, the defin-
ing generalizations in the method of argument functions have 

been revealed but this is not enough to use it in new problems. 
There is a need to expand the method, as well as the possibility 
of its use not only in the problems of continuum mechanics.

7. Conclusions

1. The possibility of using a complex variable function 
argument method as an approach to the search for new 
more complex generalized solutions to the problems of the 
theory of elasticity in the Cartesian coordinate system has 
been estimated. The proposed approach makes it possible to 
define a series of argument functions, each of which can be a 
condition of uniqueness for a specific applied task.

2. Based on our result, a mathematical model has been 
built of the flat applied problem of the theory of elasticity 
with complex boundary conditions, taking into consider-
ation the attenuation process of terminal loads with the 
transition to different zones of the stressed state. The pres-
ence of a transition section from one stressed state of the 
beam to another is likely a feature of the proposed solution. A 
qualitative indicator of the study results is the application of 
the method to solving more complex problems of the theory 
of elasticity, predicting the result.

3. The influence of the beam shape factor on the distri-
bution of stresses in transition zones with different intensity 
of their attenuation has been shown. Expressions that are 
represented in a coordinateless form are convenient for an-
alyzing the bending stress along the axis of the console and 
in the transverse direction. They provide a computationally 
convenient context.

4. The mathematical substantiation of Saint-Venant’s 
principle in relation to the bending of a beam with variable 
asymmetric loading has been obtained. The resulting solu-
tion fully confirms this principle, with the only difference 
that the neighborhoods of the border can also be indicated 
by fading known stresses in one direction or another. Bring-
ing the solution to a particular result, the classical solutions 
have been derived, which confirms its reliability.
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