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The problem of oil displacement was solved using neural 
networks and machine learning classifiers. The Buckley-
Leverett model is selected, which describes the process of oil 
displacement by water. It consists of the equation of conti­
nuity of oil, water phases and Darcy’s law. The challenge is 
to optimize the oil displacement problem. Optimization will 
be performed at three levels: vectorization of calculations;  
implementation of classical algorithms; implementation of 
the algorithm using neural networks. A feature of the method  
proposed in the work is the identification of the method 
with high accuracy and the smallest errors, comparing the 
results of machine learning classifiers and types of neural 
networks. The research paper is also one of the first papers 
in which a comparison was made with machine learning 
classifiers and neural and recurrent neural networks. The 
classification was carried out according to three classi­
fication algorithms, such as decision tree, support vec­
tor machine (SVM) and gradient boosting. As a result of 
the study, the Gradient Boosting classifier and the neu­
ral network showed high accuracy, respectively 99.99 %  
and 97.4 %. The recurrent neural network trained faster 
than the others. The SVM classifier has the lowest accu­
racy score. To achieve this goal, a dataset was created 
containing over 67,000 data for class 10. These data are 
important for the problems of oil displacement in porous 
media. The proposed methodology provides a simple and 
elegant way to instill oil knowledge into machine learning 
algorithms. This removes two of the most significant draw­
backs of machine learning algorithms: the need for large 
datasets and the robustness of extrapolation. The presen­
ted principles can be generalized in countless ways in the 
future and should lead to a new class of algorithms for solv­
ing both forward and inverse oil problems
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1. Introduction

Machine learning and computer vision have long been 
one of the most popular areas of research. In recent years, 
machine learning methods have been widely used in various 
fields of science for processing data. The use of machine learn-
ing in the oil industry is also actively expanding. To solve  
the problems of oil recovery, it is necessary to use geological 
models of reservoir deposits. As the size of the reservoir model  
increases, the computation time increases. Therefore, it takes 
more time to predict oil recovery.

One of the approaches to solving the problem is to use 
machine learning methods and neural networks, which is 
the purpose of this paper. This paper discusses approaches 
to using effective machine learning methods for predicting  
oil recovery. To train the system, historical data from the 
oil field and synthetic data obtained from surrogate models 
based on two wells (injection and production) were used. 
Synthetic data were obtained on the basis of mathematical 
models (oil displacement models, enhanced oil recovery mo
dels) by varying various geological parameters. This problem  

relates to «supervised learning» – a type of machine learning. 
For supervised learning, a complete set of marked-up data is 
required for training the model at all stages of its construction.  
When implementing the algorithm, machine learning and 
classification methods were taken into account. As a result, it 
was found that compared to traditional computational experi
ments on a regular grid, calculations using machine learning 
methods are more productive.

Energy systems represent a unique set of problems for 
machine learning methods. They have large financial and en-
vironmental consequences, great uncertainty and strict phy
sical restrictions. Recent advances in instrumentation, telem-
etry, and data storage have allowed operators to increasingly 
rely on data for decision-making. However, the integration of 
all these data is a problem, while the need to inform decisions 
in a timely manner has become an important competitive dif-
ference in most industries [1]. One of the main motivations 
of this work is that there is still no reliable methodology for 
applying machine learning to terrestrial systems.

After reviewing the literature on existing modern phy
sics-informed machine learning methods, the method and  
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its application to the Buckley-Leverett problem are pre-
sented [2]. Variations of the original problem will continue, 
including several physical and dimensional ones. 

Currently, calculations are one of the most important sec-
tions in the field of oil and gas production. Oil displacement 
and other processes can be simulated. Many leading oil and 
gas companies pay more attention to calculation, because 
without it, the future development of companies is impossible.  
The problem of oil displacement in a porous medium is com-
plex, and using machine learning methods, it is possible to 
correctly predict data for oil production and displacement.

2. Literature review and problem statement

In [3], the technique of a physics informed neural net-
work (PINN) is implemented, which includes information 
from the physics of fluid flow, as well as observed data for mo
deling the Buckley-Leverett problem. The classical problem 
of removing gas into a porous medium filled with water was 
used for checking the implementation. Several cases have been 
tested that show the importance of the connection between 
the observed data and physics-informed neural networks for 
various parameter spaces. The authors of the paper show that 
PINNs are able to capture the general trend of the solution even 
without the observed data, but the resolution and accuracy of 
the solution are significantly improved with the observed data.

The paper [4] explores the development of an artificial neu-
ral network predicting oil production in the State Oil Compa-
ny of the Azerbaijan Republic (SOCAR). The multi-layer per-
ceptron neural network is used to predict oil production. As  
a result, 99 % of the training accuracy is achieved. The authors 
compared the accuracy of the developed model with empirical 
correlations. The disadvantage is that the paper presents only 
a model of a neural network, the forecast with real data was 
not implemented. An excellent correspondence was found 
between the neural network and real data.

In [5], a new model for predicting oil production is pro-
posed. The model is a recurrent neural network with deep 
synchronization, consisting of several hidden layers, each of 
which has several nodes. The proposed model has a simple 
architecture and the ability to track time series data sets with 
a large interval. To assess the reliability of the model, the pro-
posed method was tested using various standard approaches. 
As a result of the work, the authors show that the proposed 
model is superior to existing approaches. The disadvantage 
is that the convergent networks that are presented in the 
papers are relatively slow, especially when capturing long- 
interval dependencies.

In [6], the application of an artificial neural network (ANN) 
for predicting oil recovery and storage capacity of CO2 in the 
RE was presented. Uncertainty parameters, including geolo
gical factors and well operations, were used to create a training 
database. Then a total of 351 numerical samples were modeled 
and the total oil production, total storage of CO2 and total 
accumulation of CO2 were created. According to the results of 
the study, the developed ANN model had excellent forecasting 
characteristics with a high correlation coefficient (R2) exceed-
ing 0.98 compared to objective values, and a total standard 
error of less than 2 %. Results comparison with other papers 
gives the highest accuracy and speed of learning. 

In [7], the vertical deformation of the Earth’s surface 
was used to calculate changes in the reservoir pore pressure. 
A marker stand was installed to measure the displacement 

of the ground and the vertical deformation in place was 
measured. In addition, the authors of the paper provided an 
improved new convolutional neural network (CNN), which 
adopted the image-to-image mode, removed the union layers 
and full connection layers, and also used a new loss function 
that takes into account the matrix of the border influence 
coefficients. Then, the machine learning method in the study 
was used to invert the vertical deformation of the surface to 
change the pore pressure in the oil reservoir. A lot of time was 
spent in processing and training the model.

The paper [8] describes a new approach to managing 
large projects for pumping liquid into dense reservoirs with 
hydraulic fracturing. Neural networks were used to analyze 
the past results of flooding projects and predict future oil 
recovery, as well as water injection and production. Neural 
networks are useful because you do not need to specify  
a structural model between injection and production to 
predict performance. The neural network approach takes 
into account that the behavior of an individual well may 
depend on the history of the well and the injection/produc-
tion conditions in the surrounding wells. In addition, rental 
production is the result of injection and production at many 
wells and their interaction. The authors of the paper envisage 
this approach as an injection policy that leads to a minimum 
amount of injected water and the best oil recovery.

In [9], a new hybrid approach to reservoir modeling based 
on machine learning and physics was presented. The model is 
a neural network that is jointly trained to compare with any 
available experimental data and respect the basic physical laws. 
In the paper, the approach is used as a new way of modeling 
and comparing flow and transport problems in porous media.

The paper [10] presents the application of deep learning 
taking into account physics to the problems of reservoir  
modeling. The model is a neural network that is jointly 
trained to respect the basic physical laws and boundary 
conditions. The present methodology is applied to the Buck-
ley-Leverett model. The model is able to give an exact physi
cal solution both from the point of view of the compaction 
jump and the rarefaction, and takes into account the basic 
partial differential equation together with the initial and 
boundary conditions. Various hypotheses (homogeneous 
and inhomogeneous initial conditions) were tested and show 
that with the correct implementation of physical constraints, 
a reliable solution can be trained in a reasonable amount of 
time and iterations. According to the authors, the presented 
principles can be generalized in countless ways in the future 
and should lead to a new class of algorithms for solving both 
direct and inverse physical problems.

3. The aim and objectives of the study

The aim of this study is to predict and improve the effi-
ciency of solving the oil displacement problem with machine 
learning methods. The scientific novelty of this work lies in the 
identification of a method with high accuracy and the smallest 
errors for solving oil displacement problems using machine 
learning classifiers and neural networks. This will allow pre-
dicting oil displacement with a good and accurate model. 

To achieve the aim, the following objectives were set: 
– to collect a dataset using the Buckley-Leverett model 

for oil displacement; 
– to implement oil displacement forecasting using ma-

chine learning methods;
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– to build a three-dimensional model containing such 
indicators as accuracy, recall and F1-measure for all classes;

– to implement prediction of oil displacement problems 
using neural networks; 

– to conduct a numerical assessment of the quality of 
algorithms in order to determine the best classifier in fore-
casting problems.

4. Materials and methods of research

4. 1. The Buckley-Leverett physical model
Consider the calculation of pumping water from an injec-

tion well at a certain temperature for a certain period of time. 
Pressures Pinj and Pprod (Pinj > Pprod) are given in injection 
and production wells. The pumped water displaces the oil 
in the reservoir, which, in turn, enters the production well.  
It is necessary to study this problem and develop a computer 
model for analyzing non-mass processes during oil displace-
ment in the reservoir. Fig. 1 shows the layout of injection and 
production wells. 

Fig. 1. Scheme of injection and production wells (2D)

Injection well

Production wel

The mathematical model of two-phase filtration consists 
of the equations of the balance of water and oil in the flow. 
The system of equations for the area Ω across the boundary 
interval ∂Ω is written as follows:

m
s
t

v
∂
∂

+ ( ) =1
1 0div
���

, 	 (1)

m
s
t

v
∂
∂

+ ( ) =2
2 0div
���

, 	 (2)

v k
f

P1
1

1

���
= − ∇

µ
, 	 (3)

v k
f

P2
2

2

���
= − ∇

µ
, 	 (4)

where m is the porosity of the reservoir, s1, s2 are the satu-
ration with water and oil, respectively, 0 ≤ s1, s2 ≤ 1, s1+s2 = 1;  


v1, 


v2 – permeability rate; k – absolute permeability; f1, f2 – re
lative phase permeability; µ1, µ2 – viscosity; P – pressure.

Thus, the function P, that is, the pressure, must be found 
under the following initial and final conditions:

∂
∂
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∂

P
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0, 	 (5)

where ∂Ω – the border of the territory [11].

For the calculation by the linear method, a pressure de-
termination algorithm is used. In the n-th time layer of this 
pressure, the pressure is in this time layer, after which the 
calculations are repeated in the same sequence. To check the 
reliability of the results, the compliance of the flow rates of 
the injection and production wells is checked and monitored.

Calculations are made in the following order:
– initial data required for the calculation are provided;
– the pressure distribution is calculated before the con-

dition is met;
– the next calculation takes place in time [12].
In this work, the obtained synthetic data of the mathe-

matical model were divided into training and test samples. 
Four parameters were taken as the input parameters of the 
machine learning model, and the oil recovery factor was taken  
as the output parameter.

Various combinations of parameters of the oil production 
problem (porosity, viscosity of the oil phase and absolute 
permeability of the rock) were taken as input parameters. 
The value of the oil recovery factor was chosen as the output 
parameter. Using the Buckley-Leverett model, 6 synthetic 
datasets were generated for different permeability indices. 
Each dataset contains values for viscosity, porosity and oil 
recovery factor. Oil viscosity ranges from 0.1–0.5, porosity 
ranges from 0.1–0.3 and various permeability options. The 
Buckley-Leverett mathematical model from which the data 
were taken can be seen in [12].

4. 2. Machine Learning Algorithms
The first machine learning method used in this research 

paper is decision trees [13]. The entire training set is con-
sidered at the root of the tree. If it is executed, a forecast is 
selected that will be issued for the node, which can be done in 
several ways. Otherwise, you need to split the set into several 
disjoint ones. As a rule, a decision rule is set at the vertex, 
which takes a certain range of values. This range is divided 
into disjoint sets of objects, where the number of descendants 
is at the top, and each is a set of objects that fall into the de-
scendant. The set at a node is divided according to the selec
ted rule, the algorithm is run recursively for each node. The 
next machine learning algorithm chosen to predict data for 
oil displacement problems is a support vector machine [14]. 
The idea behind a support vector machine is to construct 
a hyperplane that acts as a solution surface, separating the 
positive and negative examples from the training set as much 
as possible. In particular, a support vector machine is an 
approximate implementation of the structural risk minimiza-
tion method, which is based on the fact that the error rate of 
a machine trained on a test set can be represented as the sum 
of learning errors.

The next research method is the gradient improvement 
algorithm [15], one of the most powerful algorithms in the 
field of machine learning.

The next machine learning research method is a neural 
network. In the study, consisting of 5 input data, 128 hid-
den layers and one output. In the neural network archi-
tecture [16], as shown in Fig. 2, the input parameter is the 
parameters from the Buckley-Leverett model, these are 
porosity, viscosity, absolute permeability, time iteration, oil 
recovery coefficient. The architecture of the neural network 
can be seen in Fig. 2.

As shown in the architecture of the algorithm (Fig. 3), 
data from the Buckley-Leverett equation are taken as input. 
Porosity, oil phase viscosity, absolute rock permeability and 
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time iteration were set as input parameters. If there is raw  
data, then these data are preprocessed, and the missing values 
are filled using the linear interpolation function. It is then 
processed to validate outliers, scaled to a given range, and 
then split into training and testing subsets.

Predicted class

Input layer Hidden layer Output layer

Etta

Kviews

Poro

Time

Visc_oil

128 neurons  
Fig. 2. Neural network architecture for the oil 	

displacement problem

After dividing the data, this data were trained us-
ing neural networks and classifiers. The data consist of  
9 classes, but 8 classes were taken for high accuracy of  
the model. When the data were trained with 9 classes, 
our models were retrained and the accuracy of the models 
showed a lower result.

The optimal number of NN layers and the window size 
are selected using a genetic algorithm. The best parameters 
are modeled to compare the performance of the NN and  
RNN models.

5. Results of the study of machine learning methods  
and neural networks

5. 1. Data collection using the Buckley-Leverett model
In general, these data are synthetic data of the Buck-

ley-Leverett mathematical model [12]. The total amount of 
data is 67240.

The parameters in the Buckley-Leverett model were 
obtained (Fig. 4), namely: porosity, viscosity, absolute perme-
ability, time iteration, oil recovery coefficient. 

 

 

 
Class etta Kviews Poro Time Visc_oil 

0 1.0 0.004099 2.0 0.13089 0.0 0.414938 
1 1.0 0.028301 2.1 0.13090 200.0 0.414939 
2 1.1 0.049026 2.2 0.13091 400.0 0.414940 
3 1.2 0.068843 2.3 0.13092 600.0 0.414941 
4 1.3 0.087731 2.4 0.13093 800.0 0.414942 

Fig. 4. Synthetic data of 	
the Buckley-Leverett mathematical model

By studying the data set and visualizing these binned 
counts as columns, you can get a very direct and intuitive 
idea of the distribution of values within a variable. 

5. 2. Results of the machine learning classifier in  
the solution

At the next stage, the quality of classifiers is evalua
ted using the indicators of accuracy, recall and F1-mea- 
sure [17]. Heatmaps and classifier plots were generated using 
these metrics.

To calculate these results, a Jupyter 
Notebook and an Intel Core i7-10750H  
computer, NVIDIA GeForce GTX 1660 
Ti were used.

The process of constructing decision 
trees is a sequential, recursive partition 
of the training set into subsets using de-
cision rules at the nodes. The splitting 
process continues until all nodes at the 
end of all branches are declared leaves. 
Declaring a node as a leaf can occur 
naturally, or upon reaching a certain 
stopping condition. The paper used the 
minimum number of examples per node 
and the maximum tree depth. To display 
the forecast results and metrics, a clas-
sification report is used. It is needed 
to measure the quality of forecasts of 
the classification algorithm. How many 
predictions are correct and how many 
are false. In particular, true positive, 
false positive, true negative and false 
negative results are used to predict the 
indicators of the classification report, 
as shown in Fig. 5. With the help of 
this data, 3 classification metrics were 
taken. These metrics are precision, re-
call, F1-score. Using the Seaborn heat-
map, visualization data were generated.

The report shows the main classification indicators: accu-
racy, recall and F1-score for each class. Metrics are calculated 
using true and false positives, true and false negative results. 
For the Decision Tree classifier, the forecast accuracy is 96 %.

Oil data

Pre-processing
Normalization, 

resample

Parameters, tuning 
weight initializers, 
activation and loss 

function

Training with 
machine learning 
algorithms(neural 

networks and 
classifiers)

Validation

Predicted 
value

Actual 
value

Loss 
function

Loss 
score

 
Fig. 3. Proposed model architecture
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Fig. 5. Classification metrics: 	
a – Classification report for Decision Tree; b – Confusion 

matrix for the Decision Tree model

On the ROC (Receiver Operating Characteristic) curve, 
a higher value on the X-axis indicates a greater number of 
false positives than true negative ones [18]. While a higher 
value on the Y-axis indicates a greater number of true pos-
itive results than false negative ones. So, the choice of the 
threshold depends on the ability to balance between false 
positives and false negatives. A quantitative interpretation 
of this curve is given by an indicator of AUC (Area Under 
Curve) (Fig. 6), bounded by the ROC curve and the axis of 
the proportion of false-positive classifications. The higher 
the AUC result, the better the classifier works. ROC curve is 
simply a TPR relationship to FPR. True Positive Rate (TPR)  
indicates what percentage among all positively predicted 
models. False Positive Rate (FPR): What percentage among 
all negative is incorrectly predicted by the model.

Fig. 6 shows the worst and random sequence of labels. 
The ideal corresponds to the ROC curve passing through the 
point (0, 1), the area under it is equal to 1. The worst is the ROC 
curve passing through the point (1, 0), the area under it is 0.

 

Fig. 6. Receiver Operating Characteristic curves for each 
class of the Decision Tree classifier

5. 3. Building a three-dimensional model containing indi-
cators such as accuracy, recall and F1-measure for all classes

Fig. 7 shows a diagram of accuracy and completeness 
(x- and y-axes, respectively) and their corresponding indi-
cator F1 (z-axis) for the classifier in the solution. When the 
accuracy value reaches one, and the completeness is zero, the 
F1-measure remains equal to 0, ignoring the accuracy. If one 
parameter is small, then the second parameter does not matter, 
since the F1-measure emphasizes the smallest value. Using 
the color indicator shown on the right side of the figure, you 
can see the ratio of accuracy and completeness for each class. 

The SVM result shows less accuracy than other classi-
fiers. Conditions in the construction of the SVM algorithm 
consist in the dividing hyperplane. The problem of construct-
ing an optimal separating hyperplane is reduced to minimiz-
ing w, provided ci(w*xi–b) ≥ 1, 1 ≤ i ≤ n [14]. This can be seen 
in the following results. When roc_auc_score predict results 
is called, an ROC curve is generated with only three points: 
bottom left, top right, and one point representing the model’s 
solution function. This may be useful, but it is not a traditio
nal ROC. A quantitative interpretation of this curve is given 
by an indicator of AUC (Fig. 8), bounded by the ROC curve 
and the axis of the proportion of false-positive classifications. 
The higher the AUC result, the better the classifier works. 

 
                           a                                            b

Fig. 7. The ratio of the quality indicators of the Decision Tree 
algorithm: a – the ratio of accuracy, completeness 	

and F1 indicators; b – the ratio of accuracy and 
memorization indicators

 
Fig. 8. Receiver Operating Characteristic curves for each 

class of the Support Vector Machine classifier: 	
 
 
 
 
 
 
 
 

 – Class:0 ROC area = 0.9951; 	 
 
 
 
 
 
 
 

 – Class:1 ROC area = 0.8841; 	
 
 
 
 
 
 
 
 

 – Class:2 ROC area = 0.5898; 	

 
 
 
 
 
 
 
 

 – Class:3 ROC area = 0.6569; 	

 
 
 
 
 
 
 
 

 – Class:4 ROC area = 0.6434; 	

 
 
 
 
 
 
 
 

 – Class:5 ROC area = 0.6863; 	

 
 
 
 
 
 
 
 
 – Class:6 ROC area = 0.7673; 	

 
 
 
 
 
 
 
  – Class:7 ROC area = 0.8460;
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The ratio of the quality indicators of the SVM al-
gorithm is shown in Fig. 9. Using the color indicator, 
you can see the ratio of accuracy and completeness for  
each class.

 
                           a                                            b

Fig. 9. The ratio of the quality indicators of the Support 
Vector Machine algorithm: a – the ratio of accuracy, 

completeness and F1 indicators; b – the ratio of accuracy 
and memorization indicators

The idea of «gradient boosting» is to take a weak hy-
pothesis or a weak learning algorithm and make a series 
of adjustments to it that will improve the strength of the  
hypothesis/trainee. This type of hypothesis confirmation  
is based on the idea of probably-approximately correct learn-
ing (PAC).

A quantitative interpretation of this curve is given 
by an indicator of AUC (Fig. 10), bounded by the ROC 
curve and the axis of the proportion of false-positive classi- 
fications. The higher the AUC result, the better the clas-
sifier works. 

 
Fig. 10. Receiver Operating Characteristic curves for each 

class of the Gradient Boosting classifier: 	
 
 
 
 
 
 
 
 

 – Class:0 ROC area = 1.0000; 	 
 
 
 
 
 
 
 

 – Class:1 ROC area = 0.9993; 	
 
 
 
 
 
 
 
 

 – Class:2 ROC area = 0.9994; 	

 
 
 
 
 
 
 
 

 – Class:3 ROC area = 0.9968; 	

 
 
 
 
 
 
 
 

 – Class:4 ROC area = 0.9915; 	

 
 
 
 
 
 
 
 

 – Class:5 ROC area = 0.9984; 	

 
 
 
 
 
 
 
 
 – Class:6 ROC area = 0.9947; 	

 
 
 
 
 
 
 
  – Class:7 ROC area = 1.0000;

The ratio of the quality indicators of the Gradient 
Boosting algorithm is shown in Fig. 11. Using a color indi-
cator, you can see the ratio of accuracy and completeness 
for each class.

So far, unsurprisingly, gradient boosting performs bet-
ter than decision tree, which in turn performs better  
than SVM. 

 
                           a                                            b

Fig. 11. The ratio of the quality indicators of the Support 
Vector Machine algorithm: a – the ratio of accuracy, 

completeness and F1 indicators; b – the ratio of accuracy 
and memorization indicators

5. 4. Implementation of the task using neural networks
The neural network architecture used a total of 21658 

parameters. In this study, porosity, oil phase viscosity, absolute 
rock permeability and time iteration were specified as input 
parameters for the NN. The oil recovery factor was specified 
as an output parameter of the neural network. The neural net-
work consists of 5 hidden layers. The activation function is relu, 
and the output layer of the activation function was softmax.  
Mean squared error was used for the loss function. 5 input 
parameters were taken. It was found that five neurons in the 
hidden layer are the optimal number for neural networks [19].

There is a work in which many input parameters were 
used to train a neural network. This led to overfitting and 
underfitting of the neural network.

The standard method for generating ROC curves for neu-
ral networks is to change the threshold of the output node for 
classification. Fig. 12 shows that it generates a higher ROC 
curve result in the sense that it consists of a better distribu-
tion of operating points.

Fig. 12. Receiver Operating Characteristic curves 	
for each class of neural networks: 	

 
 
 
 
 
 
 
 

 – Class:0 ROC area = 0.9995; 	 
 
 
 
 
 
 
 

 – Class:1 ROC area = 0.9686; 	
 
 
 
 
 
 
 
 

 – Class:2 ROC area = 0.8771; 	

 
 
 
 
 
 
 
 

 – Class:3 ROC area = 0.7488; 	

 
 
 
 
 
 
 
 

 – Class:4 ROC area = 0.6806; 	

 
 
 
 
 
 
 
 

 – Class:5 ROC area = 0.7288; 	

 
 
 
 
 
 
 
 
 – Class:6 ROC area = 0.9353; 	

 
 
 
 
 
 
 
  – Class:7 ROC area = 0.9407;

 

The smaller the loss, the better the model. The losses are 
calculated during training and validation, and their interac-
tion shows how well the model copes with these two sets. 
Unlike accuracy, the loss is not a percentage. This is the sum 
of the errors made for each example in the training or test sets.
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In the case of neural networks, the los
ses are usually a negative logarithmic pro
bability and the residual sum of squares for 
classification and regression, respectively. 
Then, naturally, the main goal of the train-
ing model is to reduce (minimize) the value 
of the loss function with respect to the 
model parameters by changing the values of 
the weight vector using various optimiza-
tion methods, such as back propagation in 
neural networks. The amount of loss shows 
how well or poorly a certain model behaves 
after each iteration of optimization. The in-
terpretation of loss and accuracy for a neu-
ral network can be seen in Fig. 13.

The next model for the study is a recurrent neural network. 
The summary of the created model contains the following pa-
rameters: layers and their order in the model, the output form 
of each layer, the number of parameters (weights) in each layer,  
the total number of parameters (weights) in the model [20].

A quantitative interpretation of this curve is given by an 
indicator of AUC (Fig. 14), bounded by the ROC curve and 
the axis of the proportion of false-positive classifications. The 
higher the AUC result, the better the classifier works. 

Fig. 14. Receiver Operating Characteristic curves for each 
class of recurrent neural networks: 	

 
 
 
 
 
 
 
 

 – Class:0 ROC area = 0.9979; 	 
 
 
 
 
 
 
 

 – Class:1 ROC area = 0.8882; 	
 
 
 
 
 
 
 
 

 – Class:2 ROC area = 0.8795; 	

 
 
 
 
 
 
 
 

 – Class:3 ROC area = 0.8387; 	

 
 
 
 
 
 
 
 

 – Class:4 ROC area = 0.6737; 	

 
 
 
 
 
 
 
 

 – Class:5 ROC area = 0.7567; 	

 
 
 
 
 
 
 
 
 – Class:6 ROC area = 0.8350; 	

 
 
 
 
 
 
 
  – Class:7 ROC area = 0.9725;

 

In Fig. 15, you can see that the error function of the train-
ing data is greater than that of the validation data. 

Based on this, the accuracy of the validation 
data is greater than that of the training data.

5. 5. Numerical evaluation of the quality 
of algorithms in order to determine the best 
model

So far, unsurprisingly, gradient boosting 
performs better than decision tree, which in 
turn performs better than SVM. The metrics 
shown in Table 1 were taken from the results 
of the classifiers. These results are shown in 
Fig. 7, 9, 11. According to Table 1, the Gra-
dient Boosting classifier showed a more ac-
curate result and a higher learning rate than 
other classifiers.

Table 1

Metrics for evaluating the quality of the Decision Tree, 	
SVM, Gradient Boosting classifiers

Classification algorithms Precision Recall F1-score

Decision Tree 0.962537 0.962537 0.962537

SVM 0.278971 0.28 0.278971

Gradient Boosting 0.999926 0.999926 0.999926

A comparative indicator of two neural networks shows 
that a neural network predicts more accurately than a recur-
rent neural network. These loss and accuracy function data 
shown in Table 2 were taken from the results of the neural 
networks shown in Fig. 13, 15. As shown in Table 2, the dif-
ference is small. 

Table 2

Loss indicators and accuracy for the neural 	
network models

Neural  
Networks

val_loss train_loss
val_ac-
curacy

train_ac-
curacy

NN 0.026 0.021 0.971 0.974

RNN-LSTM 0.048 0.057 0.93 0.92

As shown in Table 2, the learning loss function is almost 
the same as the validation loss function. Compared to the loss 
function of recurrent neural networks, the loss function of 
neural networks shows a higher result. 

  
a b

Fig. 13. Neural network metrics: a – loss function value; b – accuracy value

  
a b

Fig. 15. Recurrent neural network metrics: a – loss function value; 	
b – accuracy value
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6. Discussion of the results of comparative  
analysis of algorithms

This paper develops a solution to the problem of predict-
ing oil displacement using neural networks and classifiers. 
The dataset for the solution was taken from the Buckley- 
Leverett model [12]. The parameters were obtained within 
the Buckley-Leverett model, which can be seen in Fig. 4, 
namely: porosity, viscosity, absolute permeability, iteration 
over time, oil recovery factor. A total of 67,000 synthetic data 
was collected, consisting of 5 parameters. It was possible to 
take many parameters during oil production, but it will take 
a lot of time to process and train these data and there may 
be retraining of neural networks. When solving this problem 
mathematically, some parameters of the medium and liquid 
were omitted or taken as constant values, since the inclusion 
of such results in a manifold increase in the calculation time. 
As the computational domain, a two-dimensional square sec-
tion of the tank was chosen and the symmetry condition was 
chosen to find the boundary values. The calculations show 
fluid movement in the simulation, but when choosing the 
parameters of the existing reservoir, it can be used to predict 
oil production and displacement in real conditions.

If look at Table 1, the machine learning classifier results 
are respectively 96 %, 27 %, 99 %.

Fig. 5 shows the results of the metrics for each class, the 
average result of each metric. In the SVM classifier for class 9, 
the metrics are 0. This means that only 8 classes can be taken 
during training. The total number of neural network parame
ters is 21658, and parameters of the recurrent neural net-
work – 1642. The speed of training the model of the recurrent 
neural network showed a faster result than the rest of the models. 

The ROC curves of each classifier and neural networks 
can be seen in Fig. 6, 8, 10, 12, 14. The lowest result of ROC 
curves is in the 4th class for the SVM classifier and for the re-
current neural network. The indicators are 0.6434 and 0.6737, 
respectively. Full Gradient Boosting confusion matrix and the 
number of values for each combination of matrices [17]. The 
indicators for true positive decisions (TP) are 11692 and in-
dicators for true negative decisions (TN) are 3409. The classi-
fication errors for false positive (FP) and false negative (FN) 
decisions are 3 each. Support vector machines were also used 
to predict oil displacement, which was also used in the work, 
but the result is much less accurate than for gradient boosting. 
But in comparison with previous works, the accuracy of the 
classifier and neural networks is high. A feature of the pro-
posed method is the identification of the method with high 
accuracy and the smallest errors, comparison of the results of 
machine learning classifiers and types of neural networks. The 
advantage of this work is the high forecasting accuracy, which 
is very important for use in forecasting problems.

In the future, it is planned to parallelize heterogeneous 
parallel computations in order to improve the performance and 
increase the speed of algorithms. To do this, the expected to 
solve problems with the training time that arise when working 
with a large number of training examples are considered.

7. Conclusions

1. The Buckley-Leverett model was studied to solve the 
problem of oil displacement. Oil displacement prediction 
was implemented using machine learning methods such as 
Decision Tree, SVM and Gradient Boosting. Prediction of 
the oil displacement problem was implemented using neural 
and recurrent networks. A numerical assessment of the qua
lity of the algorithms was carried out in order to determine 
the best classifier in forecasting problems. A three-dimen-
sional model containing metrics such as accuracy, recall, and 
F1-measure for all classes was built. The presented research 
work is aimed at the correct prediction of oil displacement. 
To achieve this goal, a dataset was created containing more 
than 67,000 data for Class 10. 

2. The classification was carried out according to three 
classification algorithms. The average accuracy of the De-
cision Tree classifier was 96 %, the SVM algorithm showed 
an accuracy of 28 %, the Gradient Boosting algorithm 
showed an accuracy of 100 %. In addition, the quality of 
the classifier is evaluated by the speed of execution and the 
performance of the algorithm. As for the training time, the 
Decision Tree was faster than the support vector machine 
and Gradient Boosting. 

3. To check the accuracy, cross-validation was performed, 
where the data were divided into five blocks. As for the 
speed of forecasting in the task, although the Decision Tree 
has won in the speed of learning, it is inferior in the speed  
of execution. Thus, the accuracy of forecasts in the Decision 
Tree and Gradient Boosting methods is approximately the 
same. However, SVM and Gradient Boosting performed 
better due to the speed of execution when working in real 
time. The conducted research allowed us to draw the fol-
lowing conclusions based on the estimates of the algorithms: 
the average accuracy for the DT algorithm was 0.96, for the 
SVM algorithm – 0.28 and for Gradient Boosting – 1.00. The 
average recall value for DT was 0.96, for the continuation of 
the SVM algorithm – 0.28, and for Gradient Boosting – 1.00. 
For most classes, these metrics showed good results.

4. The results of neural networks are almost the same as 
the results of classifiers. The accuracy of the neural network is 
97.1 %, and the accuracy of the recurrent neural network is 93 %.

5. The complete Gradient Boosting confusion matrix 
shows 11692 for true positive decisions (TP) and 3409 for 
true negative decisions (TN). Classification errors for false 
positive (FP) and false negative (FN) decisions are 3 each.  
In the future, it is planned to improve the performance of 
these classifiers by parallelizing them using CUDA and 
FPGA technologies.
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