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Stochastic chance-constrained optimization has a wide 
range of real-world applications. In some real-world appli­
cations, the decision-maker has to formulate the problem as  
a fractional model where some or all of the coefficients are ran­
dom variables with joint probability distribution. Therefore, 
these types of problems can deal with bi-objective prob­
lems and reflect system efficiency. In this paper, we present  
a novel approach to formulate and solve stochastic chance-con­
strained linear fractional programming models. This approach 
is an extension of the deterministic fractional model. The pro­
posed approach, for solving these types of stochastic deci­
sion-making problems with the fractional objective function, 
is constructed using the following two-step procedure. In the 
first stage, we transform the stochastic linear fractional model 
into two stochastic linear models using the goal programming 
approach, where the first goal represents the numerator and 
the second goal represents the denominator for the stochas­
tic fractional model. The resulting stochastic goal program­
ming problem is formulated. The second stage implies solving 
stochastic goal programming problem, by replacing the sto­
chastic parameters of the model with their expectations. The 
resulting deterministic goal programming problem is built and 
solved using Win QSB solver. Then, using the optimal value for 
the first and second goals, the optimal solution for the fractio­
nal model is obtained. An example is presented to illustrate our 
approach, where we assume the stochastic parameters have  
a uniform distribution. Hence, the proposed approach for solv­
ing the stochastic linear fractional model is efficient and easy 
to implement. The advantage of the proposed approach is 
the ability to use it for formulating and solving any decision- 
making problems with the stochastic linear fractional model 
based on transforming the stochastic linear model to a deter­
ministic linear model, by replacing the stochastic parameters 
with their corresponding expectations and transforming the 
deterministic linear fractional model to a deterministic linear 
model using the goal programming approach
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1. Introduction

Linear programming problems have a wide range of 
real-world applications. The linear programming model con-
sists of the linear objective function and linear constraints. 
For more details about these types of optimization problems, 
we refer to [1–5]. If some or all of the coefficients of deci-
sion variables are random variables with joint probability 
distribution, then the problem is known as stochastic linear 
programming (SLP). The paper [6] first presented the prob-
lem that the decision-maker must give his solution before 
the random variables come true, which is called stochastic 
chance-constrained programming (SCP). On the other hand, 
in some real-world applications, the decision-maker has to 
formulate the problem as a ratio between two linear objec-
tive functions, and then the problem is known as a fractional 
linear programming problem. Moreover, if some or all of 
the coefficients are random variables with joint probability 

distribution, then the problem is known as stochastic linear 
fractional programming (SLFP). The solution methods of 
this kind of optimization problems vary from one to another.  
The fundamental drawbacks of such solution are the dif-
ficult-to-predict uncertainty of the result as well as the 
complexity of transforming the stochastic linear fractional 
model into a stochastic linear model. Thus, to solve this op-
timization problem, one needs to establish a computational 
procedure for solving these kinds of problems.

2. Literature review and problem statement

The paper [7] presented a stochastic linear fractional pro-
gramming problem, in which the parameters of the model are 
assumed to be mutually independent Cauchy variates. The 
advantage of this approach is that the resulting problem can 
be solved using the Charnes and Cooper method. However,  
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the parameters of the fractional model are assumed to be mutu-
ally independent Cauchy variates. The main difficulty in solv-
ing the equations is that these equations involve infinite series.

The paper [8] introduced a genetic algorithm to solve 
chance-constrained programming problems. This method 
does not require transforming the stochastic model into 
a deterministic model, but it needs to use some other method 
to check the feasibility such as Monte Carlo simulation. The 
presented approach is used for solving linear problems and 
has not been established for fractional problems because it 
requires some transformation methods.

An interactive conversion technique is presented in the 
paper [9] to solve the linear stochastic fractional program-
ming model. The advantage of this work is to focus on 
stochastic sum-of-probabilistic-fractional programming. The 
paper [10] introduced an application of a stochastic fractional 
model to address classes of assembled printed circuit boards. 
Using this approach, the solution of the first problem gives 
the upper bound of the profit as well as it helps to solve the 
second problem, but this approach deals with linear objective 
function and nonlinear objective function at the same time.

SLFP is applied to a case study of waste flow allocation 
within a municipal solid waste (MSW) management system 
in the paper [11]. This study attempts to provide a new 
modeling framework for solving ratio optimization problems 
associated with random inputs. The main difficulty in solving 
this model is that it requires the LFP duality theory.

The paper [12] introduced a transportation model with 
a stochastic fractional programming problem. This proposed 
model would provide a useful solution under some conditions 
when the company wants to optimize the ratio of profit over 
the cost per unit of shipment in a way to meet the stochastic 
demands with a clear account for variation. The presented 
model is a special class of stochastic linear fractional pro-
gramming problems and more work is required to extend it 
to more general optimization problems.

An application to an assembled printed circuit board 
problem using the chance-constrained programming problem 
is presented in the paper [13]. This study requires that errors 
are estimable with the help of prior knowledge. 

The paper [14] introduced a new method for solving 
chance-constrained programming problems. This algorithm 
is established based on the simplex method and compared 
with the genetic algorithm. The advantage of this method is 
to obtain a feasible solution for any chance-constrained pro-
gramming problem. The presented method needs more work 
to solve the stochastic linear fractional model. 

A differential evolution algorithm for solving stochastic 
programming problems is proposed in the paper [15]. This 
method has better performance in solution quality, conver-
gence rate, and robustness, when compared to other algorithms.

The paper [16] presented a double-sided stochastic 
chance-constrained linear fractional programming model for 
managing irrigation water under uncertainty. A chance-con-
strained linear programming model with Weibull random coef
ficients is proposed in the paper [17]. This approach provides 
better performance for optimizing the job completion time.

The paper [18] introduced a goal programming approach 
to multichoice multiobjective stochastic transportation prob-
lems with extreme value distribution.

Fuzzy stochastic linear fractional programming based 
on fuzzy mathematical programming is suggested in the 
paper [19]. This method provides the solution for the sto-
chastic linear programming with fuzzy coefficients, but 

different approaches need to be used for reducing the model 
into single-objective linear programming (LP) problem. The 
paper [20] presented the solution of a probabilistic fractional 
programming problem, where the parameters of the right-
hand side constraints follow the Cauchy distribution. Using 
this method, the stochastic model can be transformed into 
a deterministic model. Type-2 fuzzy chance-constrained 
fractional integrated programming approach is developed for 
the planning of sustainable management in an electric power 
system under complex uncertainties in the paper [21]. The 
paper [22] introduced a new linear approximation technique 
for solving a fractional stochastic programming problem.  
A stochastic fractional problem involving an inequality type 
of constraints, where all quantities on the right side are 
log-normal random variables, and the objective function coef-
ficients are fractional intervals is presented in the paper [23]. 

3. The aim and objectives of the study

The aim of the study is to devise a new approach for 
solving decision-making problems with stochastic linear 
fractional models.

To accomplish the aim, the following objectives have 
been set:

– to transform the stochastic linear fractional model into 
a stochastic linear model;

– to construct a computational procedure that finds the 
optimal solution for the stochastic linear model.

4. Materials and methods

In this section, a theoretical approach is used to establish 
our computational procedure for the stochastic fractional 
model. This is done by first transforming the stochastic 
fractional model into a stochastic linear model using the 
goal programming approach. After that, there was a need to 
reduce the stochastic model into a deterministic model.

4. 1. Goal programming approach
As in [24], the general goal programming model is as 

follows:
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With d d xi i j
+ − ≥, ,0  for i m= 1,..., ,  for j n= 1,..., ,  where  

U – represents the objective function; aij – represents the coef
ficient of the decision variables; xj – represents the decision 
variable; bi – represents the right-hand side; di

− – represents 
the negative deviational variable; di

+ – represents the positive 
deviational variable.
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Assumptions: 
1. The decision variables are nonnegative.
2. The deviational variables are nonnegative.
3. The feasible region is bounded.
Table 1 shows the deviation cases.

Table 1
Deviation cases

Minimize Constraint type

di
− ≥ bi

di
+ £ bi

d di i
+ −+ = bi

4. 2. Goal programming models
4. 2. 1. Lexicographic goal programming model
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With d d xi i j
+ − ≥, ,0  for i m= 1,..., ;  for j n= 1, , ,...  where  

p – represents the priority of the goal.

4. 2. 2. Weighted Goal Programming Model
In this mathematical model, the decision-maker can set 

up weight for each goal. The mathematical formulation for 
this type is given as follows:
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With d d xi i j
+ − ≥, ,0  for i m= 1,..., ;  for j n= 1, , ,...  where  

U – represents the objective function; aij – represents 
the coefficient of the decision variables; xj – represents 
the decision variable; bi – represents the right-hand side;  
di

− – represents the negative deviational variable; di
+ – rep-

resents the positive deviational variable; wi – represents the 
weight for each goal.

5. Results of the computational procedure  
for the SCLFP

5. 1. Stochastic Chance-Constrained Linear Program-
ming (SCLP) Model 

As in [14, 25], SCLP can be formulated as follows:

MaxZ X C xT( ) = .

S.T.:

P Ax b£ ≥( ) α,  x ≥ 0.

Or 

MaxZ x C xT( ) = .

S.T.:

P A x bi i i£ ≥( ) α ,  i m= 1 2, ,..., ,  x ≥ 0,

where A is a real m×n matrix; x RnÎ ,  b RmÎ ,  C RnÎ ,  D RnÎ  
is the ith confidence level of the constraint. 

Assumptions: 
1. CTx is nonnegative and concave.
2. The decision variables are nonnegative.
3. Underlying random variables follow a uniform distri-

bution.
Remark 5. 1. To transform the stochastic linear model to a 

deterministic linear model, replace the stochastic parameters 
with their corresponding expectations. 

5. 2. Stochastic Chance-Constrained Linear Fractional 
Programming (SCLFP) Model

In this section, we will present the formulation of the 
stochastic fractional model, which represents a ratio between 
two linear objective functions where some or all of the coef-
ficients are random variables with joint probability distribu-
tion and the confidence level of the constraints. 

5. 2. 1. Mathematical formulation 
SCLFP can be formulated as follows:

MaxU x
C x
D x

T

T( ) =
+
+

α
β

. 	 (4)

S.T.:

,P Ax b k SCLFP£( ) ≥ ( )  x ≥ 0,

where A is a real m×n matrix; x RnÎ ,  b RmÎ ,  C RnÎ ,  D RnÎ ,  
α and β are real numbers with β>0 and k represents the con-
fidence level of the constraint.

Assumptions: 
1. CTx+α is nonnegative and concave.
2. DTx+β is positive and convex.
3. Underlying random variables follow a uniform distri-

bution.

5. 2. 2. Solution Method
In this section, we will construct a computational pro-

cedure for solving (SLFP). This approach is based on Re-
mark 5.1, which is transforming the stochastic parameters by 
their expectations and then make use of goal programming,  
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which is one of the most well-known methods to solve 
multi-criteria decision-making problems. Now, the computa-
tional procedure for solving (SLFP) using the goal program-
ming approach is described as follows:

Step 1. Construct two stochastic linear objective func-
tions, which represent the numerator and the denominator 
of the (SCLFP) as follows:

– goal 1: MaxZ C xT
1 = + α.

– goal 2: MinZ D xT
2 = + β.

Step 2. Form the following (SCLP) problems:

MaxZ C xT
1 = + α.

S.T.:

,P Ax b k SCLFP£( ) ≥ ( )  x ≥ 0

and

MinZ D xT
2 = + β.

S.T.:

,P Ax b k SCLFP£( ) ≥ ( )  x ≥ 0.

Step 3. Transform (SCLP) problems in step 2 into de-
terministic linear programming (DLP) problems using Re-
mark 4.1.

Step 4. Find the optimal solution of (DLP) problems in 
step 3 using the goal programming approach as follows: 

If the reduced cost of MaxZ C xT
1 0= + ≥α  and 

Min  Z D xT
2 0= + £β ,  go to step 6. 

Else go to step 5.

Step 5. Construct and update the simplex table for each 
objective function and go to step 4.

Step 6. Find the optimal solution for the (SCLFP) prob-
lem by dividing the optimal value of goal 1 to the optimal 
value of goal 2.

Numerical illustration.
We establish our computational approach by the follow-

ing SCLFP model. 
Let (a, b) be the random variables with uniform distri-

bution in rectangle 1 4 1 3 1£ £ £ £{ }a b, /  and consider the 
following SCLFP problem (5):

Max .U x
x x

x x
( ) =

+
+ +

10 3
7 1

1 2

1 2

S.T.:

ax x SCLFP1 2 70+ £ ( ),

bx x1 2 40+ £ .

Step 1. Construct two stochastic linear objective func-
tions, which represent the numerator and the denominator 
of the (SCLFP) as follows:

– goal 1: Max Z1 = 10x1+3x2;
– goal 2: Min Z2 = 7x1+x2+1.
Step 2. Form the following (SCLP) problems:

Max Z1 = 10x1+3x2.

S.T.:

ax x1 2 70+ £ ,

bx x SCLP1 2 40 1+ £ ( ), x1 0≥ ,  x2 0≥ ,

and

MinZ x x2 1 27 1= + + .  

S.T.:

ax x1 2 70+ £ ,

bx x SCLP1 2 40 2+ £ ( ),  x1 0≥ ,  x2 0≥ ,

Step 3. Transform (SCLP) problems in step 2 into deter-
ministic linear programming (DLP) problems as follows:

There are several approaches to transform stochastic 
linear programming into a deterministic linear programming 
problem [6]. We will use the approach that aims to re-
place  a and b with the corresponding expectations and solve 
the (DLP) problems as follows:

Max  Z x x1 1 210 3= + .  

S.T.:

,
5
2

701 2x x+ £

2
3

40 11 2x x DLP+ £ ( ), x1 0≥ ,  x2 0≥

and 

MinZ x x1 1 27 1= + + .

S.T.:

,
5
2

701 2x x+ £

2
3

40 21 2x x DLP+ £ ( ),  x1 0≥ ,  x2 0≥ .

Step 4. Find the optimal solution of (DLP) problems in 
step 3 using the goal programming approach and the input 
data and output data are described in Table 2 and Table 3 
respectively as follows:

Table 2
Win QSB Input Data

Right-Hand 
Solution

Direc-
tion

x2 x1 Variable

– – 3 10 Max: G1

– – 1 7 Min: G2

70 ≤ 1 2.5 Constraint No. 1

40 ≤ 1 2/3 Constraint No. 2

– – 0 0 Lower Bound

– – ∞ ∞ Upper Bound

– – Continuous Continuous Variable Type
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Table 3
Win QSB Output Data

Total Con-
tribution

Unit Cost
Solution 

Value
Decision 
Variable

Goal Level

200 10 20 x1 G1

0 3 0 x2 G1

140 7 20 x1 G2

0 1 0 x2 G2

200 (Max) Value Goal G1

140 (Min) Value Goal G2

Slack or 
Surplus

Right-Hand 
Solution

Direction
Left-Hand 
Solution

Constraint

20 70 ≤ 50 C1

0 40 ≤ 40 C2

Step 5. Find the optimal solution for the (SCLFP) prob-
lem by dividing the optimal value of goal 1 to the optimal 
value of goal 2 as follows:

MaxU x( ) = =
200
140

1 428. .

Now, in order to analyze the feasibility of this approach, 
we assume θ* = (20.0), and consider:

M x x ax x bx x= ( ) + £ + £{ }1 2 1 2 1 270 40, | , .

Then 

P M P a aθ* , ,Î( ) = + £ + £





18
11

32
11

70
18
11

32
11

40

P M P a b P a P bθ* , ,Î( ) = ≥ ≥





= ≥





⋅ ≥





5
2

2
3

5
2

2
3

P M P a P bθ* ,Î( ) = − <













− <













1
5
2

1
2
3

P M P a P b

P a P b

θ* Î( ) = − <





− <





+

+ <





⋅ <





1
5
2

2
3

5
2

2
3

..

P Mθ* . . . . . .Î( ) = − − + ( )( ) =1 0 5 0 5 0 5 0 5 0 25

This represents the probability of the feasible region.

6. Discussion of the results of solving  
decision-making problems with stochastic linear 

fractional models

To solve the problem (5), first, we have to transform it 
into two linear stochastic models using the goal program-
ming approach. The two stochastic linear models represent 
the numerator and denominator, respectively, for the prob-
lem (5). Next, since the stochastic parameters (a and b) 
have uniform distribution, so using Remark 4. 1 we replace 
them with their expectations and obtain two determinis-

tic linear objective functions. After that, using Win QSB 
solver the input of the deterministic problems as in Table 2 
is interred and the optimal solution of these deterministic 
objective functions is obtained as in Table 3. Finally, us-
ing the optimal solution in Table 3, which represents the  
optimal values of the numerator and denominator respec-
tively, we obtain the optimal solution for the linear frac-
tional model.

Now, we compare our results of the presented ex-
ample with the Charnes and Cooper method [26], de-
nominator objective restriction method [27], and develop-
ment complementary [28] method, which are well-known 
methods for solving linear fractional models in Table 4  
as follows:

Note. We compared our new approach with well-known 
methods based on the value of the fractional objective func-
tion and the values of the decision-making variables.

Table 4

Comparison of the results of the presented example

Methods Solution

Charnes and Cooper 
method X1 = 20, X2 = 0, MaxU X( ) = =200

140
1 428.

Denominator objective 
restriction method X1 = 20, X2 = 0, MaxU X( ) = =200

140
1 428.

Development comple-
mentary method X1 = 20, X2 = 0, MaxU X( ) = =200

140
1 428.

Goal programming 
approach X1 = 20, X2 = 0, MaxU X( ) = =200

140
1 428.

The advantages of the presented approach are that the 
obtained solution is exact, the transformation step is simple, 
and the computational procedure is efficient and easy to im-
plement. The disadvantage of this method is that it requires 
replacing the parameters of the stochastic variables with 
their expectations. 

The assumptions of our approach are that the objective 
function of the numerator has a finite optimal solution and 
the objective function of the denominator has a finite optimal 
solution. 

The limitation of the proposed approach is that the 
probability of the feasible region is small. In this regard, the 
direction for future research is to use some new heuristic 
method to solve this optimization problem and the accuracy 
could be compromised. 

7. Conclusions

1. The stochastic linear fractional model has been trans-
formed into two linear stochastic models using the goal pro-
gramming approach. Using this approach, we set the deno
minator and the numerator of the stochastic linear fractional 
model as two stochastic linear goals. 

2. A computational procedure has been presented to 
solve the stochastic linear model. By replacing the stochas-
tic parameters with their corresponding expectations, the 
stochastic model has been transformed into a deterministic 
model. Also, the optimal solution for the deterministic model 
has been found using Win QSB solver. 
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